MATH 124

Examination 2 November 4, 2008

For a full credit give your answers as exact numbers, not decimal approximations.

- 1. We all know that $\pi \approx 3.14159$. A very popular rational approximation of π is $\frac{22}{7}$. This is the best approximation for π by a fraction with a two-digit denominator. The best rational approximation of π using a fraction with a three-digit denominator is $\frac{355}{113}$. Notice that $\pi < \frac{355}{113} < \frac{22}{7}$. Use an appropriate linear approximation of the function $f(x) = \sin x$ to find a rational approximation of the number $\sin\left(\frac{22}{7}\right)$. Your answer should look like $\sin\left(\frac{22}{7}\right) \approx \frac{a}{b}$, where a is an integer and b is a three-digit positive integer.
- 2. An object is launched vertically into the air and its distance from the ground (in feet) at any time t (in seconds) is given by $h(t) = 100(1 - e^{-t})$. The object is equipped with a remote operated cruise control device (i.e. we can fix the velocity of the object at any moment). Assume that we have fixed the velocity of the object at time $t = \ln 10$.
 - (a) What is the velocity of the object at time $t = \ln 10$?
 - (b) What is the height of the object at time $t = \ln 10$?
 - (c) Assuming that the velocity have been fixed at the time ln 10, give a formula for the height of the object for $t > \ln 10$.
 - (d) When will the object reach the height of 100 ft?
- 3. The picture on the right shows an exponential function $y = f(x) = e^{kx}$ and its tangent line. The function and the tangent line touch at the point (a, a). The point (0, 0) belongs to the tangent line. Determine the numbers k and a.
- 4. Consider the function $f(x) = x 2^x$.
 - (a) Calculate the first and the second derivative of f.

Use the derivatives found in (4a) to identify the maximum intervals where:

(c) (i)
$$f$$
 is concave up; (ii) f is concave down.

5. Differentiate each of the following functions:

(A)
$$\cos(\sqrt{x})$$

(B)
$$\sqrt{\cos(\sqrt{x})}$$

(C)
$$\arctan\left(\frac{1}{x}\right)$$

(B)
$$\sqrt{\cos(\sqrt{x})}$$
 (C) $\arctan\left(\frac{1}{x}\right)$ (D) $\sqrt{1+\sqrt{1+x^2}}$

For the full credit show all your work.

Sin $\frac{22}{7} \approx \pi - \frac{22}{7} \approx \frac{355}{113}$ $= \frac{355*7 - 113*22}{113*7}$ h(t) = 100(1-e-t), h'(t)=100e h (lu 10) = 100 = h (hu10) =190 l(t) = (10) + - lu 10) + t = 19 + lu 10, f(x)=e f'(x) = ke f'(a) = theka Ra=1 → /e1=a/, so /a

2 < ln 2 < 1 1 < \frac{1}{42} < 2 \frac{13}{4} decreasing, concave de decressin, concave up (a) (a) Use the chain rule $(\cos x) = -\sin x$ $\frac{d}{dx}(\cos \sqrt{x}) = -\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}$ (b) Use the chain rule with \sqrt{u} and the prenses of function $\frac{d}{dx}(\sqrt{\cos x}) = \frac{1}{2\sqrt{\cos x}}(-\sin x) \cdot \frac{1}{2\sqrt{x}}$ c) $\frac{d}{dx} \left(\arctan \frac{1}{x} \right) = \frac{1}{1 + \left(\frac{1}{x} \right)^2} \left(-\frac{1}{x^2} \right) = \frac{1}{1 + x^2}$

d/ 1+ (1+x2) d (1+V1+X2) Now the chain rule from the Vin 2 V1+V1+X2 V1+X2