GIVE DETAILED EXPLANATIONS FOR YOUR ANSWERS There are four problems. Each is worth 25 points.

- 1. Consider the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 3 & 5 & 2 \end{bmatrix}$.
 - (a) Can the vector $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$ be written as a linear combination of the columns of A? If your answer is yes, then write \mathbf{b} as a linear combination of the columns of A.
 - (b) Do the columns of A span \mathbb{R}^3 ? If your answer is no, then provide one vector in \mathbb{R}^3 which cannot be written as a linear combination of the columns of A.
- 2. Consider the homogenous equation $A\mathbf{x} = \mathbf{0}$. It is given that the matrix A is row equivalent to

$$\begin{bmatrix} 1 & 1 & 0 & 0 & -3 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Write the general solution of the equation $A\mathbf{x} = \mathbf{0}$ in parametric vector form.

- 3. (a) Write the solution set of the equation $x_1 2x_2 + 3x_3 = 0$ in parametric vector form.
 - (b) Write the solution set of the equation $x_1 2x_2 + 3x_3 = 4$ in parametric vector form.
 - (c) Notice that the equations in (3a) and (3b) have identical left hand sides. Provide a geometric comparison of the solution sets in (3a) and (3b).
- 4. (a) Consider the vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 3 \\ 3 \\ h \end{bmatrix}$. Determine for what values of the parameter h in \mathbf{v}_3 the vectors \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 are linearly dependent.
 - (b) Determine if the columns of the matrix $\begin{bmatrix} 1 & 2 & -1 \\ 4 & 5 & 2 \\ 3 & 2 & 5 \\ 1 & 2 & -1 \end{bmatrix}$ form a linearly independent set.

 $\begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 1 & 0 & 2 \\ 3 & 5 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 12 & 1 & 1 \\ 0 & -1 & -1 & 1 \\ 0 & -1 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} 12 & 1 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ (a) Yes, 5 (3) a linear combination of the columns of A. For example, $\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ b) I need to check: $\begin{bmatrix} 1 & 2 & 1 & | b_1 \\ 1 & 1 & 0 & | b_2 \\ 3 & 5 & 2 & | b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & | b_4 \\ 0 & -1 & -1 & | b_2 - b_4 \\ 0 & -1 & -1 & | b_3 & -3b_4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & | b_4 \\ 0 & 1 & 1 & | b_2 - b_4 \\ 0 & 0 & 0 & | b_3 & 7b_2 - 2b_4 \end{bmatrix}$ If b3-b2-2b1 \$0 the vector [b2] is Not in the span of col. of A. For example 27 15 NOT in the span of col. of A. 2) A is 4x5 matrix. There are 5 unknowns: X1, X3, X4 are basic, X2 and X5 are free. Set X2=5, X5=t, Then the general solution is

 $(3) @ X_1 = 2x_2 + 3x_3$ X2=5, X3=t are free variables. $\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 2s - 3t \\ 5t \\ t \end{bmatrix} = 5 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}$ (b) $x_1 = 4 + 2x_2 - 3x_3$ $x_2 = 5, x_3 = t$ $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 + 2s - 3t \\ s \\ t \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$ © Geometrically both solutions are planes in R3. These planes are parallel: The first plane passes though the origin, the second plane passes through the head of) 8.

(4) (a) $\begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & h \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 0 & -2 & -3 \\ 0 & -3 & 4 & -9 \end{bmatrix}$ tor h = 9/2 the system X1V1+X2V2+X3V3=Dwill have a nontrivial solution. First solution $x_3 = \frac{2}{3}$, $x_2 = -1$, $x_4 = 0$. $0\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} - 1\begin{bmatrix} 2\\ 2\\ 3 \end{bmatrix} + \frac{2}{3}\begin{bmatrix} 3\\ 3\\ 2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 2 & -1 \\ 4 & 5 & 2 \\ 3 & 2 & 5 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \\ 0 & -3 & 6 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ The columns of A do NOT form a liaind. Set. They are linearly dependent. 1*(col 1) + 2(col 2) - 3(col 3) = 0