MATH 209

Examination 1 April 19, 2012

- 1. Let p and q be propositions.
 - (a) Prove that the negation of $p \oplus q$ is $p \leftrightarrow q$.
 - (b) Consider the proposition $(p \to q) \oplus (q \to p)$. Find an equivalent, but much simpler proposition.
- 2. (a) State the definition of a rational number. State the definition of an irrational number.
 - (b) Prove or disprove the following theorem: If a is rational and b is irrational, then ab is irrational.
- 3. The universe of discourse in this problem is the set of all real numbers.

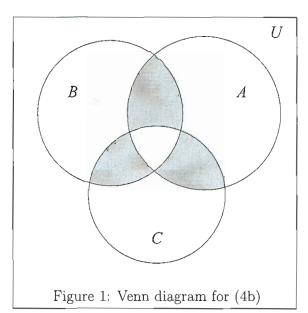
Consider the following proposition:

"For every x there exists y such that for all z we have z < y implies $z^2 > x^2$."

- (a) Write the given proposition using quantifiers.
- (b) State the negation of the proposition in (3a).
- (c) Decide which proposition is true: the proposition in (3a) or the proposition in (3b). Prove your claim.
- 4. Let A and B be sets. The set $A \oplus B$ is defined as $A \oplus B = \{x \mid (x \in A) \oplus (x \in B)\}$.
 - (a) Let A, B, C be given sets. Use a Venn diagram to represent the set $(A \oplus B) \oplus C$.
 - (b) Find a formula for the set represented by the Venn diagram in Figure 1. For the full credit you must use the set in (4a).
- 5. What is wrong with the proof given in the box below? Please be specific.

$$\frac{25}{36} = \frac{9+16}{36} \tag{1}$$

$$\frac{25}{36} = \frac{1}{4} + \frac{4}{9} \tag{2}$$


$$\frac{1}{36} = \frac{1}{4} - 2\frac{1}{2}\frac{2}{3} + \frac{4}{9} \tag{3}$$

$$\left(\frac{1}{6}\right)^2 = \left(\frac{1}{2} - \frac{2}{3}\right)^2 \tag{4}$$

$$\frac{1}{6} = \frac{1}{2} - \frac{2}{3} \tag{5}$$

$$1 = 3 - 4 \tag{6}$$

$$1 = -1 \tag{7}$$

Plene is the truth table that [1] proves the claim POQ | 1 pog | p egg 丁 | 干 | 丁 identical truth tables

6	P	2	(p→2)⊕(g→p)	p o 2
	F	F	F	F
	F	T	T	T
	T	F	T	T
	I	IT	F	F

2) The real number a is rational riff there exist py integers p and g such that $g \neq 0$ and a = P/2.

A real number is irrational if it is Not rational.

121 (2) 6) Huis is not true. a = 0 is retional b= 12 is irrational ab=0 is rational. Thus a is rational and bis irrational and abis rational is possible. 3 a tx = y tz (2<y)-+(2²>x²) (b)]x Hy]z (z<y) 1 (z² < x²) © a is true. For XER set y=-|X|. Then 2 < - |x| -> -2 > |x| ->

→ Z²> |X|²

 \rightarrow $2^2 > \times^2$.

(b) The given set is (AUBUC)-(ABBOC). The line (4) does not imply the line (5). The implication $a^2 = b^2$ a = b 13 Not true. In Huis case $\left(\frac{1}{6}\right)^2 = \left(\frac{-1}{6}\right)^2 \rightarrow \frac{1}{6} = \frac{-1}{6}$