Problem. Prove that among all triangles with a fixed area the equilateral triangle has the
smallest perimeter.

Solution. We will use the variables x,y and h as indicated in the figure below.
With the variables z, y and h the area A and C
the perimeter P are given as follows:
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Applying the method of Lagrange multipliers we get the equations
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Equations (1) and (2) yield x = y. So the above four equations reduce to the following three
equations
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Multiplying (4) by = and (5) by h we obtain
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or, equivalently,
h? — x?

Squaring the last equation and simplifying we get

22(2? + h?) = (h? — 2%)*.

Expending both sides we get
ot + (zh)? = * — 2(hx)? + 2.



Now we use (3) and further simplify

AZ=pt - 242

Hence A
h=+3 \/Z, and T = -

Now we calculate the sides of the triangle:
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Thus, the triangle obtained by the Lagrange method is equilateral.
Since the Lagrange method produced only one possible extreme value for the perimeter and
since for a small h the corresponding P is large, we conclude that we obtained a triangle

with the minimal perimeter.




