MATH 224 Examination 2 February 3, 2012

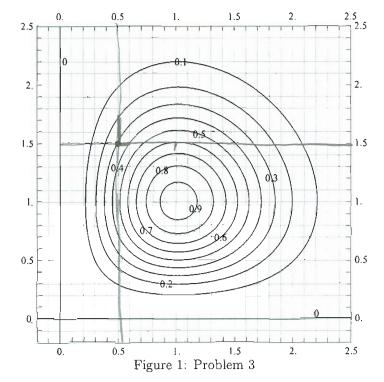
GIVE DETAILED EXPLANATIONS FOR YOUR ANSWERS.
THERE ARE FOUR PROBLEMS. EACH PROBLEM IS WORTH 25 POINTS.

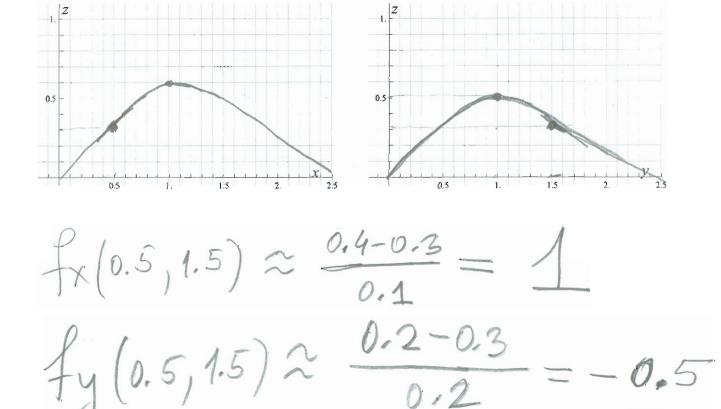
- 1. Consider the vectors $\overrightarrow{v} = 2\overrightarrow{i} 2\overrightarrow{j} + 1\overrightarrow{k}$ and $\overrightarrow{w} = -3\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$.
 - (a) Calculate the following three quantities: $\|\vec{v}\|$, $\|\vec{w}\|$ Calculate $\vec{v} \cdot \vec{w}$.
 - (b) Write the vector \overrightarrow{w} as the sum of two vectors, one parallel and one perpendicular to \overrightarrow{v} .

(a)
$$||\vec{v}|| = \sqrt{4+4+1} = 3$$

 $||\vec{w}|| = \sqrt{9+4+4} = \sqrt{14}$
 $|\vec{v}| = -6-2+2 = -6$

(b)
$$\frac{1}{11}$$


- 2. Given three points A = (3, 4, 2), B = (2, 6, 0) and C = (7, 2, 7), find:
 - (a) A unit vector which is perpendicular to the plane containing A, B and C.
 - (b) The area of the triangle ABC.
 - (c) Denote by α the angle at the vertex A in the triangle ABC. Give exact and approximate value for α in radians. (Pay attention here. The answer does not follow directly from (2a).)
 - (d) Determine which of the angles $0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{5\pi}{6}, \pi$ is the closest to the angle α .


b area
$$\frac{3}{2}$$
 $\frac{9}{4\sqrt{5}} = \frac{1}{\sqrt{5}}$
 $\frac{3}{\sqrt{5}}$ $\frac{3}{\sqrt{5}} = \frac{1}{\sqrt{5}}$
 $\frac{7}{\sqrt{5}}$ $\frac{7}{\sqrt{5}$

$$\mathcal{L} = \arccos(-2/\sqrt{5}) \approx 2.67795$$

OVER

- Examination 2
- 3. A contour diagram of a continuous function z=f(x,y) is given in Figure 1. This contour plot is in the xy-plane with the contours labeled by the corresponding z values ranging from 0 to 0.9 in steps of 0.1. Notice that the point (0.5, 1.5) is indicated on the plot. Answer the following questions:
 - (a) On a separate plot in xz-plane graph the function z = f(x, 1.5).
 - (b) On a separate plot in yz-plane graph the function z = f(0.5, y).
 - (c) Based on the contour plot give good estimates of $f_x(0.5, 1.5)$ and $f_y(0.5, 1.5)$. Make sure that your estimates are consistent with the plots you provided in (3a) and (3b).

- 4. In this problem we consider the function $f(x,y)=\sqrt{x^2+y^2}$ and its graph; that is the surface $z=\sqrt{x^2+y^2}$. Notice that f(3,4)=5, that is the point (3,4,5) is on this surface.
 - (a) Find the equation of the tangent plane to the graph of the function f(x, y) at the point (3, 4, 5).
 - (b) Show that the tangent plane which you found in (4a) passes through the origin.
 - (c) In this item replace the point (3,4) with an arbitrary point $(a,b) \neq (0,0)$. Show that the tangent plane to the graph of the function $f(x,y) = \sqrt{x^2 + y^2}$ at the point $(a,b,\sqrt{a^2 + b^2})$ passes through the origin.

(d) Using what we learned for the first exam, can you explain why all tangent planes pass through the origin?

surface is the