ON TWO COMMON SEQUENCES

BRANKO CURGUS

In this note we shall give a simple and easy-to-remember proof that two se-
quences ({a,} and {s,} defined below), commonly used to define the number e,
converge to the same limit. Surprisingly, many elementary analysis textbooks do
not include this topic. The proofs in the classical book [2, Theorem 3.31] and in a
more recent book [1, Proposition 3.3.1] are more involved. Related questions have
been considered in [3] and [4], however.

We start by recalling Bernoulli’s inequality. It states that for all real numbers r
with r > —1,7 # 0, and all integers m greater than 1,

I+7r)™>14rm.

We also recall that the binomial theorem states that for all real numbers z and y,
and all positive integers m,

m = m m—
e =3 (7)ot
k=0

where (’z) = k,(#ik), are binomial coefficients.
By N we denote the set of all positive integers. The following two sequences are
commonly used to define the number e:
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Proposition 1. The sequence {s,} is increasing and bounded above by 3.

Proof. The sequence {s,} is increasing since

Sp41 — Sp = '>O for all n € N.

(n+1)

Clearly s; < 3. Further, notice that 1/k! < 1/((k — 1)k) for all integers k with
k > 2. Therefore, for all integers n greater than 1 we have
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This proves that 3 is an upper bound for {s,}. O

Proposition 2. The following inequalities hold: a1 = s1 and for all integers n
greater than 1,

3
1 n— — < ap < Sp.
(1) Sn = < n <s
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Proof. A straightforward verification yields a; = s and so — 3/2 < as < s2. Now
let n be an integer greater than 2. The following proof of (1) is a succession of five
steps each suggesting the next one.

1. The binomial theorem with z =1, y = 1/n and m = n yields

' < n! 1 "1 n/!
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2. Let k be integer with 2 < k < n. The coefficient of 1/k! in expansion (2) for
an is, after cancellation of common terms in the numerator and denominator, a

product of exactly k factors:
n! nn—1)---(n—k+1)
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3. The number 1 is the greatest and (1 — (k — 1)/n) is the smallest factor of the
last product. Therefore,

<1kn1)k<nk<n”!_k)!1-<1i>(1z)-.-<1]%1)<1’“1.

4. Bernoulli’s inequality with r = —(k — 1) /n and m = k yields

k
(1_k—1> >1_kk;1:1_u.
n n

n
The last two displayed relations together imply
(k—1)k n!

n nk(n —k)!
5. Inequalities (3) give bounds for the coefficient of 1/k! in (2). The consequent
inequalities for a,, are

(3) 1- <1.

"1 (k — 1)k "1
(4) 1+1+Zk!<1_n><“"<1+1+2k!'1zs"'
k=2 k=2
Finally, a simplification of the left-hand side of (4) shows that it is equal to
1 = 1(k-1k I~ 1 1
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Moreover, by Proposition 1 s,_2 < 3 and therefore s,, — %Sn,g > 8, —3/n. Hence,
the left-hand side of (4) is greater than s, — 3/n. Thus, (1) holds for n > 2. O

Theorem 3. The sequences {a,} and {s,} converge to the same limit.

Proof. The sequence {s,} converges by the Monotone Convergence Theorem and
Proposition 1. The sequence {a,} converges to the same limit by the Squeeze
Theorem and Proposition 2. ([

Theorem 3 justifies the following definition.

Definition 4. The number e is the common limit of the sequences {a, } and {s,}.
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