
Limits

B. Ćurgus

1 Numbers

All numbers in these notes are real numbers. The set of all real numbers is denoted by R.
The most important subsets of real numbers are the set of natural numbers, denoted by N,

and the set of integers, denoted by Z. That is

N = {1, 2, 3, . . .}, Z = {−n : n ∈ N} ∪ {0} ∪ N.

Important subsets of R are intervals. Let a and b be real numbers such that a < b. Here are
all possible intervals with endpoints a and b:

x ∈ [a, b] means a ≤ x ≤ b, x ∈ (a, b) means a < x < b,

x ∈ [a, b) means a ≤ x < b, x ∈ (a, b] means a < x ≤ b.

The set [a, b] is called a closed interval. The set (a, b) is called an open interval. The sets [a, b)
and (a, b] are called half-open interval or half-closed interval. These intervals are called finite
intervals. The infinite intervals are

[a,+∞) :=
{
x ∈ R : x ≥ a

}
, (a,+∞) :=

{
x ∈ R : x > a

}
,

(−∞, a] :=
{
x ∈ R : x ≤ a

}
, (−∞, a) :=

{
x ∈ R : x < a

}
.

The set R is also an infinite interval. Sometimes it is written as (−∞,+∞).
Let S be a subset of R. If u is the smallest number in S, then u is called a minimum of S

and we write u = minS. If v is the greatest number in S, then v is called a maximum of S and
we write v = maxS. Notice that the set Z has neither a minimum nor a maximum. Also (a, b)
has neither a minimum nor a maximum. The set N has no maximum and minN = 1. Each finite
subset of R has both a minimum and a maximum.

2 Functions

2.1 The definition

Next we review the definition of a function. Let A and B be sets. A function f from A to B is
a rule that assigns exactly one element of B to each element in A. This relationship between
the sets A and B and the rule f is indicated by the following notation: f : A → B. For x ∈ A
the unique element of B which is assigned to x by the function f is called the value of f at x.
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This element is denoted by f(x). The set A is domain of f . The subset {f(x) ∈ B : x ∈ A} of
B is the range of f .

In this class we are interested in functions for which both sets A and B are subsets of the set
of real numbers R. Some examples of such functions are given below.

2.2 Examples

For each of the examples below answer the following questions: (a) What are the domain and
the range of the function? (b) Plot the function using your graphing calculator. Plot the
function by hand emphasizing the details missed by your graphing calculator.

Example 2.2.1. Let Sign : R → R be given by the formula

Sign(x) :=







1 for x > 0,

0 for x = 0,

−1 for x < 0.

This function is called the sign function.

Example 2.2.2. Let UnitStep : R → R be given by the formula

UnitStep(x) :=

{

1 for x ≥ 0,

0 for x < 0.

This function is called the unit step function.

Example 2.2.3. Let Floor : R → R be given by the formula

Floor(x) = ⌊x⌋ := max
{
k ∈ Z : k ≤ x

}
.

This function is called the floor function. In other words for a given x ∈ R, ⌊x⌋ is the unique
integer with the following property

⌊x⌋ ≤ x < ⌊x⌋ + 1.

As an immediate consequence we get that

x− 1 < Floor(x) ≤ x for all x ∈ R.

Example 2.2.4. Let Ceiling : R → R be given by the formula

Ceiling(x) = ⌈x⌉ := min{k ∈ Z : k ≥ x}.
This function is called the ceiling function.

(a) Prove that x ≤ Ceiling(x) < x+ 1 for all x ∈ R.

Example 2.2.5. Let Abs : R → R be given by the formula

Abs(x) = |x| :=
{

x if x ≥ 0,

−x if x < 0.

This function is called the absolute value function.

Exercise 2.2.6. Prove that max{u, v} = v + (u− v) UnitStep(u− v) for all u, v ∈ R.
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2.3 Absolute value

For a given real number a the number |a| is called the absolute value of the number a.
From calculus you are familiar with the geometric representation of real numbers as points on

a straight line. This is done by choosing a point on the line to represent 0 and another point to
represent 1. Then, every real number will correspond to a point on this line (called the number
line), and every point on the number line will correspond to a real number. This geometric
representation might be very helpful in doing the problems.

Geometrically, the absolute value of a represents the distance between 0 and a, or, generally
|a− b| is the distance between the real numbers a and b on the number line.

The basic properties of the absolute value are given in the following exercises.

Exercise 2.3.1. Prove the following statements.

(i) |x| = max{x,−x}.
(ii) |x| ≥ 0 for all x ∈ R.

(iii) |−x| = |x| for all x ∈ R.

(iv) −x ≤ |x| and x ≤ |x| for all x ∈ R.

(v) |xy| = |x||y| for all x, y ∈ R.

(vi)

∣
∣
∣
∣

x

y

∣
∣
∣
∣
=

|x|
|y| for all x, y ∈ R, y 6= 0.

Proof. To prove (i) we consider two cases. Case I. Assume x ≥ 0. Then −x ≤ 0. Since −x ≤ 0
and 0 ≤ x, it follows that −x ≤ x. Therefore max{x,−x} = x. By Definition in Example
2.2.5 for x ≥ 0 we have that Abs(x) = x. Hence, we conclude that Abs(x) = max{x,−x} in
this case. Case II. Assume x < 0. Then −x > 0. Since −x > 0 and 0 > x, it follows that
−x > x. Therefore max{x,−x} = −x. By Definition in Example 2.2.5 for x < 0 we have that
Abs(x) = −x. Hence, we conclude that Abs(x) = max{x,−x} in this case.

Since Cases I and II include all real numbers x, the equality Abs(x) = max{x,−x} is proved.
The statement (ii) can also be proved by considering two cases.
To prove (iii) note that by (i) |x| = max{x,−x} and also |−x| = max{−x,−(−x)} =

max{−x, x}. Since max{x,−x} = max{−x, x}, we conclude that |x| = |−x|.
By the definition of max we have max{a, b} ≥ a and max{a, b} ≥ b for any real numbers a

and b. Therefore max{x,−x} ≥ x and max{x,−x} ≥ −x. Using (i) we conclude |x| ≥ x and
|x| ≥ −x. This proves (iv).

Exercise 2.3.2. Let x ∈ R and a > 0. Prove that |x| < a if and only if −a < x < a.

Exercise 2.3.3. (a) Let a, b ∈ R. Prove that |a+ b| ≤ |a|+ |b|.

(b) Let x, y, z ∈ R. Prove that |x− y| ≤ |x− z|+ |z − y|.

(c) Let x, y ∈ R. Prove that
∣
∣|x| − |y|

∣
∣ ≤ |x− y|.

Proof. Proof of (a). By Exercise 2.3.1 (iv) we know that a ≤ |a| and b ≤ |b|. Therefore we
conclude that

a+ b ≤ |a|+ |b|. (2.3.1)

By Exercise 2.3.1 (iv) we know that −a ≤ |a| and −b ≤ |b|. Therefore we conclude

−(a+ b) = −a + (−b) ≤ |a|+ |b|. (2.3.2)
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The inequalities (2.3.1) and (2.3.2) imply

max{a+ b,−(a + b)} ≤ |a|+ |b|. (2.3.3)

By Exercise 2.3.1 (i) the inequality (2.3.3) yields |a+ b| ≤ |a|+ |b|. This proves (a).
Prove (b) and (c) as an exercise.

The inequalities in Exercise 2.3.3 are often called the Triangle Inequalities.

2.4 New functions from old

Definition 2.4.1. Given two functions f : A → B and g : A → B, with A,B ⊂ R, and two real
numbers α and β we form a new function αf + βg : A → B defined by

(αf + βg)(x) := a f(x) + β g(x), for all x ∈ A.

Notice that f(x) and g(x) are real numbers so that α f(x) and β g(x) in the above formula is
just a multiplication of real numbers. The function αf + βg is called a linear combination of the
functions f and g.

Definition 2.4.2. Given two functions f : A → B and g : A → B, with A,B ⊂ R we form a
new function fg : A → B defined by

(fg)(x) := f(x)g(x), for all x ∈ A.

Notice that f(x) and g(x) are real numbers so that f(x)g(x) in the above formula is just a
multiplication of real numbers. The function fg is called the product of the functions f and g.

Definition 2.4.3. Given two functions f : A → B and g : B → C a new function g ◦ f : A → C
is defined by

(g ◦ f)(x) := g(f(x)), x ∈ A.

The function g ◦ f is called the composition of the functions f and g.

Applying these definitions to familiar functions gives rise to new, sometimes very interesting
functions.

2.5 More examples

Exercise 2.5.1. For each of the functions given below answer the following questions: (a)
What are the domain and the range of the function? (b) Plot the function using your graphing
calculator. Plot the function by hand emphasizing the details missed by your graphing calculator.

(a) x 7→ xAbs(x) (b) x 7→ x(1− Abs(x))
(c) x 7→ x Sign(x) (d) x 7→ Ceiling(x)− Floor(x)
(e) x 7→ x− Floor(x) (f) x 7→ xFloor(1/x)
(g) x 7→ (1 + Sign(x))/2 (h) x 7→ x UnitStep(x)
(i) x 7→ Sign(Abs(x)) (j) x 7→ Abs(Sign(x))
(k) x 7→ Floor(Abs(x)) (l) x 7→ Ceiling(Abs(x))
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3 Limit of a function as x approaches +∞
3.1 The definition

Definition 3.1.1. A function x 7→ f(x) has the limit L as x approaches +∞ if the following
two conditions are satisfied:

(I) There exists a real number X0 such that f(x) is defined for each x ≥ X0.

(II) For each real number ǫ > 0 there exists a real number X(ǫ) ≥ X0 such that

x > X(ǫ) ⇒ |f(x)− L| < ǫ.

L

L+ ǫ

L− ǫ

X(ǫ)

Figure 1: An illustration for (II) in Definition 3.1.1

If the conditions (I) and (II) in Definition 3.1.1 are satisfied we write lim
x→+∞

f(x) = L.

3.2 Examples for Definition 3.1.1

Example 3.2.1. Prove that lim
x→+∞

1√
x− 1

= 0.

Solution. We have to show that the conditions (I) and (II) in Definition 3.1.1 are satisfied. First
we have to provide X0. We can take X0 = 2, since if x ≥ 2, then x − 1 > 0 and 1/

√
x− 1 is

defined.
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Next we show that the condition (II) is satisfied. Let ǫ > 0 be given. We have to find a real
number X(ǫ) ≥ 2 such that

x > X(ǫ) ⇒
∣
∣
∣
∣

1√
x− 1

− 0

∣
∣
∣
∣
< ǫ. (3.2.1)

In some sense we have to solve the inequality
∣
∣
∣
∣

1√
x− 1

− 0

∣
∣
∣
∣
< ǫ.

for x. The first step is to simplify it. Clearly
∣
∣
∣
∣

1√
x− 1

− 0

∣
∣
∣
∣
=

1√
x− 1

for x ≥ 2.

Thus we need to solve
1√
x− 1

< ǫ.

This inequality is solved for x by using the following sequence of algebraic steps:

1√
x− 1

< ǫ ⇔
√
x− 1 >

1

ǫ
⇔ x− 1 >

1

ǫ2
⇔ x >

1

ǫ2
+ 1. (3.2.2)

Since we need X(ǫ) ≥ 2, we choose X(ǫ) := max

{
1

ǫ2
+ 1, 2

}

.

It remains to prove that the implication (3.2.1) is satisfied. Assume that

x > X(ǫ). (3.2.3)

Since X(ǫ) ≥ 2, we conclude that x > 2. Therefore x − 1 > 0 and 1/
√
x− 1 is defined. Since

X(ǫ) ≥ 1/ǫ2 + 1, we conclude that

x >
1

ǫ2
+ 1.

Now the equivalences (3.2.2) imply that

1√
x− 1

< ǫ. (3.2.4)

Since 1/
√
x− 1 is positive we conclude that

1√
x− 1

=

∣
∣
∣
∣

1√
x− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

1√
x− 1

− 0

∣
∣
∣
∣
. (3.2.5)

Combining (3.2.4) and (3.2.5), yields
∣
∣
∣
∣

1√
x− 1

− 0

∣
∣
∣
∣
< ǫ. (3.2.6)

Thus, we have proved that the assumption (3.2.3) implies the inequality (3.2.6). This is exactly
the implication (3.2.1).



7

Example 3.2.2. Determine the limit of the function x 7→ Ceiling(x)

x
as x approaches +∞ and

prove your claim.

Solution. In Example 2.2.4 it is established that x ≤ Ceiling(x) < x + 1 for each real number
x. Therefore, for large x, the value of Ceiling(x) does not differ much from x. Therefore it is
reasonable to make the following claim

lim
x→+∞

Ceiling(x)

x
= 1.

Next we shall prove this claim using Definition 3.1.1. Since the function x 7→ Ceiling(x)

x
is

defined for all x 6= 0, we can take X0 = 1.
Next we show that the condition (II) is satisfied. Let ǫ > 0 be given. We have to find a real

number X(ǫ) ≥ 1 such that

x > X(ǫ) ⇒
∣
∣
∣
∣

Ceiling(x)

x
− 1

∣
∣
∣
∣
< ǫ. (3.2.7)

Solving for x the inequality ∣
∣
∣
∣

Ceiling(x)

x
− 1

∣
∣
∣
∣
< ǫ (3.2.8)

is not easy. To find solutions of this inequality we first need to simplify it. In this process of
simplification we can replace the expression

∣
∣
∣
∣

Ceiling(x)

x
− 1

∣
∣
∣
∣

with an expression which is greater or equal to it. In Example 2.2.4 we learned that

x ≤ Ceiling(x) < x+ 1. (3.2.9)

Since we consider only x ≥ 1, we can divide by x in (3.2.9) and subtract 1 from each term to get

0 ≤ Ceiling(x)

x
− 1 <

x+ 1

x
− 1 =

1

x
.

Therefore ∣
∣
∣
∣

Ceiling(x)

x
− 1

∣
∣
∣
∣
≤ 1

x
for all x ≥ 1. (3.2.10)

This inequality is the key step in this proof. Therefore I call it the BIg INequality, or BIN. (Each
of the proofs involving the definition of limit involves a BIN.) The importance of BIN lies in the
fact that instead of solving (3.2.8), we can solve for x the simpler inequality

1

x
< ǫ.

The solution of this inequality (remember x ≥ 1) is x >
1

ǫ
.
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Now we can define X(ǫ) := max

{
1

ǫ
, 1

}

. With this X(ǫ) the implication (3.2.7) is true. It is

easy to prove this claim: Assume that

x > X(ǫ) = max

{
1

ǫ
, 1

}

.

Then x ≥ 1 and x >
1

ǫ
. Since x ≥ 1 the BIN inequality (see (3.2.10))

∣
∣
∣
∣

Ceiling(x)

x
− 1

∣
∣
∣
∣
≤ 1

x

is true. Since also x >
1

ǫ
, we conclude that

1

x
< ǫ.

The last two displayed inequalities imply that

∣
∣
∣
∣

Ceiling(x)

x
− 1

∣
∣
∣
∣
< ǫ.

This proves the implication (3.2.7).

Exercise 3.2.3. Determine whether the following functions have limits as x approaches +∞.
Prove your statements using the definition.

(a) x 7→ x

3x− 2
(b) x 7→ 2x

x2 + x+ 1
(c) x 7→ x+ sin(x)

x− 1

(d) x 7→ x2 + x

x3 + 3
(e) x 7→ x3 − 2x2 + 1

x3 + x+ 101
(f) x 7→

√
x+ 1−

√
x

(g) x 7→ x2 + x cos(x)

x2 − x+ 5
(h) x 7→

(
1

x

)1/ lnx

(i) x 7→ x2 − 1

x2 + 2x sin(x)

(j) x 7→ x−
√
x2 − x

Exercise 3.2.4. Guess the limit of the function x 7→ ln

(

1 +
1

x

)x

and prove your guess.

Hint: 1) Use the rules for logarithms to simplify the expression. 2) Use the representation of the
logarithm function u 7→ ln(u) as an integral (area under the graph of the function u 7→ 1/u) to
find an upper and lower bound for the given function x 7→ ln

(
1 + 1

x

)x
for large values of x. The

bounds should be very simple functions of x.
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3.3 Negative results

How can we prove that lim
x→+∞

f(x) = L is false? This means that the condition (I) or the condition

(II) in Definition 3.1.1 is not satisfied.
Next we formulate the negation of the condition (I): (In class I will explain how to formulate

negations of statements involving “for all” and “there exists”)

The negation of (I): For each X ∈ R there exists x ≥ X such that f(x) is not defined.

Example 3.3.1. Prove that the function f(x) =
1

x Sign
(
sin(x)

) does not satisfy the condition

(I).

Solution. For this function the negation of (I) is true. This function is not defined for all x = k π
where k ∈ Z. To prove that the negation of (I) is true let X ∈ R be arbitrary. Then

πCeiling
(
X/π

)
≥ X

and f(x) is not defined for x = πCeiling
(
X/π

)
.

Below is the plot of the function f . Small circles indicate that this function is not defined at
x = π, 2π, 3π, . . . , 9π.

2 3 4 5 6 7 8 9

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

πππππππππ

Figure 2: This function does not satisfy (I) in Definition 3.1.1

The negation of the condition (II) is more complicated:

The negation of (II): There exists ǫ > 0 such that for every X ∈ R there exists x > X
such that |f(x)− L| ≥ ǫ.
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Example 3.3.2. Prove that lim
x→+∞

sin(x) = 0 is false.

Solution. Let ǫ = 1/2. For arbitrary X ∈ R we have

πCeiling
(
X/π

)
+ π/2 > X

and, for x = πCeiling
(
X/π

)
+ π/2, we have | sin(x)| = 1. Therefore

| sin(x)− 0| ≥ 1/2.

0 2 3 4 5 6 7

-1.5

-1

-0.5

0

0.5

1

1.5

2

πππππππ

Figure 3: Illustration for the solution of Example 3.3.2

Now we consider the statement “ lim
x→+∞

f(x) does not exist.”

This means that for each L ∈ R, lim
x→+∞

f(x) = L is false.

Example 3.3.3. Prove that lim
x→+∞

sin(x) does not exist.

Solution. Let L ∈ R be arbitrary. We need to prove that lim
x→+∞

sin(x) = L is false. Consider

two cases L < 0 and L > 0. Assume L < 0. Let ǫ = 1/2. For arbitrary X ∈ R we have

2πCeiling

(
X

2π

)

+
π

2
> X

and, for x = 2πCeiling
(
X
2π

)
+ π

2
, we have sin(x) = 1. Therefore

| sin(x)− L| = |1− L| = 1 + |L| ≥ 1/2.

Do the case L > 0 as an exercise.
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3.4 Infinite limits

Definition 3.4.1. A function x 7→ f(x) has the limit +∞ as x approaches +∞ if the following
two conditions are satisfied:

(I) There exists a real number X0 such that f(x) is defined for each x ≥ X0.

(II) For each real number M there exists a real number X(M) ≥ X0 such that

x > X(M) ⇒ f(x) > M.

In this case we write lim
x→+∞

f(x) = +∞.

Definition 3.4.2. A function x 7→ f(x) has the limit −∞ as x approaches +∞ if the following
two conditions are satisfied:

(I) There exists a real number X0 such that f(x) is defined for each x ≥ X0.

(II) For each real number M there exists a real number X(M) ≥ X0 such that

x > X(M) ⇒ f(x) < M.

3.5 Examples of infinite limits

Example 3.5.1. Let f(x) =
√
x. Prove that lim

x→+∞

√
x = +∞.

Solution. The function
√· is defined for all x ≥ 0. Therefore we can take X0 = 0 in the part (I)

of the definition.

Now consider the part (II) of the definition. Let M ∈ R be arbitrary. we have to determine
a real number X(M) such that

x > X(M) ⇒ √
x > M.

This will be accomplished if we solve the inequality
√
x > M . If M < 0, then all x ≥ 0 satisfy

this inequality. If M ≥ 0 then the solution of the inequality is x > M2. Thus, we can take

X(M) =

{

M2 if M ≥ 0,

0 if M < 0 .

Clearly, X(M) ≥ 0 for all M ∈ R and

x > X(M) ⇒
√
x > M.

Example 3.5.2. Let f(x) = Floor(x). Prove that lim
x→+∞

Floor(x) = +∞.
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Solution. The function Floor is defined for all x ∈ R. Therefore we can take X0 = 0 in the part
(I) of the definition.

Now consider the part (II) of the definition. Let M ∈ R be arbitrary. We have to determine
a real number X(M) ≥ X0 such that

x > X(M) ⇒ Floor(x) > M. (3.5.1)

This will be accomplished if we solve the inequality

Floor(x) > M. (3.5.2)

Since we don’t know much about Floor it is not easy to solve (3.5.2). To achieve the implication
(3.5.1), we can replace Floor(x) in (3.5.2) with a smaller quantity g(x) such that g(x) > M is
easy to solve. Thus we need g(x) such that

(A) Floor(x) ≥ g(x) for all x > X0.

(B) g(x) > M is easy to solve.

By the definition of Floor(x) we conclude that 0 ≤ x− Floor(x) < 1 for all x ∈ R. Therefore

x− 1 < Floor(x) for all x ∈ R. (3.5.3)

Clearly x− 1 > M is easy to solve: x > M + 1. Thus, we can take X(M) = max{M + 1, 0} in
the part (II) of the definition. Clearly X(M) ≥ X0 = 0. Let x > X(M). Then x > M + 1 and
therefore x− 1 > M . By the inequality (3.5.3) we conclude that

Floor(x) > x− 1 > M.

Thus x > X(M) implies Floor(x) > M .

The key step in the solution of Example 3.5.2 was the discovery of the function g(x) such
that

(A) f(x) ≥ g(x) for all x > X0.

(B) g(x) > M is easy to solve.

Most proofs about limits follow this same pattern. I will sometimes refer to a discovery of the
function g as a Big Inequality.

Exercise 3.5.3. Determine whether the following functions have the limit +∞ when x ap-
proaches +∞.

(a) x 7→ x2

2x+ 1
(b) x 7→ lnx (c) x 7→ x−√

x

(d) x 7→ x− ln(x) (e) x 7→ x2 − x− 1

x+ 2
√
x+ 1

(f) x 7→ 1

sin
(
1
x

)

(g) x 7→
√

x−
√

x−√
x (h) x 7→ (cosx)2x√

x+ sin(x)
(j) x 7→ (2 + cos(x))x√

x+ sin(x)
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4 Limit of a function at a real number a

4.1 The definition

Definition 4.1.1. A function f has the limit L ∈ R as x approaches a real number a if the
following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for each x in the set
(
a− δ0, a

)
∪
(
a, a+ δ0

)
.

(II) For each real number ǫ > 0 there exists a real number δ(ǫ) such that 0 < δ(ǫ) ≤ δ0 and

0 < |x− a| < δ(ǫ) ⇒ |f(x)− L| < ǫ.

Remark 4.1.2. Notice that the condition that x belongs to the set
(
a− δ0, a

)
∪
(
a, a+ δ

)
can be

expressed in terms of the distance between x and a as: 0 < |x− a| < δ0.

The following figure illustrates Definition 4.1.1.

L

L+ ǫ

L− ǫ

a a + δ(ǫ)a− δ(ǫ)

Figure 4

Next we restate Definition 4.1.1 using the terminology of a calculator screen. The figure
below shows a fictional calculator screen with 35 pixels. We assume that ymin and ymax are
chosen in such a way that the number L is in the middle of the y-range and that xmin and xmax
are such that a is in the middle of the x-range.
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Definition 4.1.3 (Calculator Screen). A
function f has a limit L as x approaches a
if (I) in Definition 4.1.1 is satisfied and

• for each choice of ymin and ymax
there exists ∆ (which depends on ymin
and ymax) such that 0 < ∆ ≤ δ0 and
such that whenever we choose xmin
and xmax such that xmax − xmin <
2∆ the graph of the function f will
appear to be a straight horizontal line
on the calculator screen with the only
possible exception at the pixel contain-
ing x = a.

xmin
a− δ(ǫ)

a xmax
a+ δ(ǫ)

ymin

L− ǫ

L
L+ ǫ

ymax

?

For the specific fictional calculator screen shown above, the connection between Definition 4.1.1
and Definition 4.1.3 is given by ǫ = (ymax− ymin)/8, xmin = a − δ(ǫ), xmax = a + δ(ǫ) and
δ(ǫ) = ∆.

The fictional screen in the example below is chosen for its simplicity. The screen of TI-92
(see the manual p. 321) is 239 pixels wide and 103 pixels tall; it has 24617 pixels. The screen
of TI-83 (see the manual p. 8-16) and of TI-82 is 95 pixels wide and 63 pixels tall; it has 5985
pixels. The screen of TI-85 (see the manual p. 4-13) is 127 pixels wide and 63 pixels tall; it has
8001 pixels. The screen of TI-89 (see the manual p. 222) is 159 pixels wide and 77 pixels tall; it
has 12243 pixels. Using these numbers you can calculate the connection between ǫ and δ(ǫ) in
Definition 4.1.1 and the screen of your calculator.

4.2 Examples for Definition 4.1.1

Example 4.2.1. Prove lim
x→2

(3x− 1) = 5.

Solution. (I) Here f(x) = 3x − 1. This function is defined on R. We can take any positive
number for δ0. Since it might be useful to have a specific δ0 to work with, we set δ0 = 1.

Let ǫ > 0 be given. Let δ(ǫ) = min{ǫ/3, 1}. Assume 0 < |x− 2| < δ(ǫ). Since δ(ǫ) ≤ ǫ/3, we
conclude that |x− 2| < ǫ/3. Next, we calculate

|(3x− 1)− 5| = |3x− 6| = 3 |x− 2| . (4.2.1)

It follows from the assumption 0 < |x− 2| < δ(ǫ) that |x− 2| < ǫ/3. Therefore we conclude

|(3x− 1)− 5| = 3 |x− 2| < 3
ǫ

3
= ǫ.

Thus we proved that

0 < |x− 2| < δ(ǫ) ⇒ |(3x− 1)− 5| < ǫ.

This is exactly the implication in (II) in Definition 4.1.1. Since ǫ > 0 was arbitrary this completes
the proof.
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Remark 4.2.2. How did we guess the formula for δ(ǫ) in the previous proof? We first studied the
implication in the statement (II) in Definition 4.1.1. The goal in that implication is to prove

|(3x− 1)− 5| < ǫ.

To prove this inequality we need to assume something about |x−2|. To find out what to assume,
we simplified the expression |(3x− 1)− 5| until |x − 2| appeared (see (4.2.1)). Then we solved
for |x − 2|. In this process of simplification we can afford to make the right-hand side larger.
This will be illustrated in the next example.

Example 4.2.3. Prove lim
x→2

(3x2 − 2x− 1) = 7.

Solution. As usual, we first deal with (I). Again f(x) = 3x2 − 2x− 1 is defined on R and we can
take any positive number for δ0. Since it might be useful to have a specific choice of δ0, we put
δ0 = 1. (Notice that this implies that, from now on, we consider only in the values of x which
are in the set (1, 2) ∪ (2, 3).)

Next we shall discover an inequality which will help us find a formula for δ(ǫ):

|(3x2 − 2x− 1)− 7| = |3x2 − 2x− 8| = |(3x+ 4)(x− 2)| = |3x+ 4| |x− 2|.

Now we use the fact that we are considering only the values of x which are in the set (1, 2)∪(2, 3).
For x ∈ (1, 2) ∪ (2, 3) the value of |3x+ 4| does not exceed 13. Therefore

|(3x2 − 2x− 1)− 7| ≤ 13 |x− 2| for all x ∈ (1, 2) ∪ (2, 3).

Let ǫ > 0 be given. The inequality 13 |x− 2| < ǫ is easy to solve for |x− 2|. The solution is
|x− 2| < ǫ/13. Now we define δ(ǫ):

δ(ǫ) = min
{ ǫ

13
, 1
}

.

The remaining step of the proof is to prove the implication

|x− 2| < δ(ǫ) ⇒ |(3x2 − 2x− 1)− 7| < ǫ.

We hope that at this point you can prove this implication on your own.

Example 4.2.4. Prove lim
x→2

x3 − x− 4

x− 1
= 2.

Solution. We first deal with (I). Notice that the function f(x) =
x3 − x− 4

x− 1
is defined on R\{1}.

In this proof we are interested in the values of x near a = 2. Therefore, for δ0 we can take any
positive number which is smaller than 1. Since it is useful to have a specific number, we put
δ0 = 1/2. (Notice that this implies that from now on we consider only the values of x which are
in the set (3/2, 2) ∪ (2, 5/2).)

Next we shall discover an inequality which will help us find a formula for δ(ǫ):

∣
∣
∣
∣

x3 − x− 4

x− 1
− 2

∣
∣
∣
∣
=

∣
∣
∣
∣

x3 − 3x− 2

x− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

(x2 + 2x+ 1)(x− 2)

x− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

x2 + 2x+ 1

x− 1

∣
∣
∣
∣
|x− 2|. (4.2.2)
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Now remember that we are interested only in the values of x which are in the set (3/2, 2)∪(2, 5/2).
For x ∈ (3/2, 2) ∪ (2, 5/2) we estimate

∣
∣
∣
∣

x2 + 2x+ 1

x− 1

∣
∣
∣
∣
=

x2 + 2x+ 1

x− 1
≤ 16

1/2
= 32 for all x ∈ (3/2, 2) ∪ (2, 5/2). (4.2.3)

Combining (4.2.2) and (4.2.3) we get
∣
∣
∣
∣

x3 − x− 4

x− 1
− 2

∣
∣
∣
∣
≤ 32 |x− 2| for all x ∈ (3/2, 2) ∪ (2, 5/2).

Let ǫ > 0 be given. The inequality 32 |x−2| < ǫ is very easy to solve for |x−2|. The solution
is |x− 2| < ǫ/32. Now we define δ(ǫ):

δ(ǫ) = min

{
ǫ

32
,
1

2

}

.

The remaining piece of the proof is to prove the implication

|x− 2| < δ(ǫ) ⇒
∣
∣
∣
∣

x3 − x− 4

x− 1
− 2

∣
∣
∣
∣
< ǫ.

We hope that at this point you can prove this on your own. Write down all the details of your
reasoning.

Example 4.2.5. Prove lim
x→4

√
x = 2.

Solution. As usual, we first deal with (I). Notice that the function f(x) =
√
x is defined on

(0,+∞). We are interested in the values of x near the point a = 4. Thus, for δ0 we can take
any positive number which is < 4. Since it is useful to have a specific number, we put δ0 = 1.
(Notice that this implies that from now on in this proof we are interested only in the values of
x which are in the set (3, 4) ∪ (4, 5).)

Next we shall discover an inequality which will help us find a formula for δ(ǫ):

∣
∣
√
x− 2

∣
∣ =

∣
∣
∣
∣

(
√
x− 2)(

√
x+ 2)√

x+ 2

∣
∣
∣
∣
=

∣
∣
∣
∣

x− 4√
x+ 2

∣
∣
∣
∣
=

∣
∣
∣
∣

1√
x+ 2

∣
∣
∣
∣
|x− 4|. (4.2.4)

Now remember that we are interested only in the values of x which are in the set (3, 4) ∪ (4, 5).
For x ∈ (3, 4) ∪ (4, 5) we estimate

∣
∣
∣
∣

1√
x+ 2

∣
∣
∣
∣
=

1√
x+ 2

≤ 1√
3 + 2

≤ 1

2
for all x ∈ (3, 4) ∪ (4, 5). (4.2.5)

Combining (4.2.4) and (4.2.5) we get

∣
∣
√
x− 2

∣
∣ ≤ 1

2
|x− 4| for all x ∈ (3, 4) ∪ (4, 5).

Let ǫ > 0 be given. The inequality 1
2
|x − 4| < ǫ is easy to solve for |x − 4|. The solution is

|x− 4| < 2ǫ. Now define δ(ǫ):
δ(ǫ) = min {2ǫ, 1} .
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The remaining step of the proof is to prove the implication

|x− 4| < min {2ǫ, 1} ⇒
∣
∣
√
x− 2

∣
∣ < ǫ.

We hope that at this point you can prove this on your own. As before, please do it and write
down the details of your reasoning.

Example 4.2.6. Prove that for any a > 0, lim
x→a

1

x
=

1

a
.

Solution. Let a > 0. As before, we first deal with (I) in Definition 4.1.1. Notice that the function
f(x) = 1/x is defined on R\{0}. We are interested in the values of x near the point a > 0. Thus,
for δ0 we can take any positive number which is < a. Since it is useful to have a specific number,
we put δ0 = a/2. (Notice that this implies that from now on in this proof we are interested only
in the values of x which are in the set (a/2, a) ∪ (a, 3a/2).)

Next we shall discover an inequality which will help us find a formula for δ(ǫ):

∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
=

∣
∣
∣
∣

a− x

xa

∣
∣
∣
∣
=

|a− x|
xa

=
1

xa
|x− a| . (4.2.6)

Now remember that we are interested only in the values of x which are in the set (a/2, a) ∪
(a, 3a/2). For x ∈ (a/2, a) ∪ (a, 3a/2) we estimate

1

xa
≤ 1

(a/2)a
=

2

a2
for all x ∈ (a/2, a) ∪ (a, 3a/2). (4.2.7)

Combining (4.2.6) and (4.2.7) we get

∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
≤ 2

a2
|x− a| for all x ∈ (a/2, a) ∪ (a, 3a/2).

Let ǫ > 0 be given. The inequality 2
a2
|x− a| < ǫ is easy to solve for |x− a|. The solution is

|x− a| < (a2/2)ǫ. Now define δ(ǫ):

δ(ǫ) = min

{
a2

2
ǫ,
a

2

}

.

The remaining step of the proof is to prove the implication

|x− a| < min

{
a2

2
ǫ,
a

2

}

⇒
∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
< ǫ.

We hope that at this point you can prove this on your own. Write down the details of your
reasoning.

Exercise 4.2.7. Find each of the following limits. Prove your claims using Definition 4.1.1.
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(a) lim
x→3

(2x+ 1) (b) lim
x→1

(−3x− 7) (c) lim
x→1

(4x2 + 3)

(d) lim
x→2

x

x− 1
(e) lim

x→3

x2 − x+ 2

x+ 1
(f) lim

x→0
x1/3

(g) lim
x→0

(
1

|x|

)3/ ln|x|

(h) lim
x→0

tanx (i) lim
x→0

1

cos x

(j) lim
x→3

1

x
(k) lim

x→1

1

x2 + 1
(l) lim

x→−2

x

x2 + 4 x+ 3

Exercise 4.2.8. Let f (x) =
x+ 1

x2 − 1
. Does f have a limit at a = 1? Justify your answer.

Exercise 4.2.9. Prove that for any a > 0, lim
x→a

√
x =

√
a.

4.3 Infinite limits

Definition 4.3.1. A function f has the limit +∞ as x approaches a real number a if the
following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for each x in the set
(
a− δ0, a

)
∪
(
a, a+ δ0

)
.

(II) For each real number M > 0 there exists a real number δ(M) such that 0 < δ(M) ≤ δ0
and

0 < |x− a| < δ(ǫ) ⇒ f(x) > M.

Definition 4.3.2. A function f has the limit −∞ as x approaches a real number a if the
following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for each x in the set
(
a− δ0, a

)
∪
(
a, a+ δ0

)
.

(II) For each real number M < 0 there exists a real number δ(M) such that 0 < δ(M) ≤ δ0
and

0 < |x− a| < δ(ǫ) ⇒ f(x) < M.

Exercise 4.3.3. Find each of the following limits. Prove your claims using the appropriate
definition.

(a) lim
x→0

1

|x| (b) lim
x→−3

1

(x+ 3)2
(c) lim

x→2

x− 3

x(x− 2)2

(d) lim
x→−1

x

(x+ 1)4
(e) lim

x→+∞

x2 − x+ 2

x+ 1
(f) lim

x→+∞

x2 − x

3− x



19

4.4 One-sided limits

Definition 4.4.1. A function f has the limit L ∈ R as x approaches a real number a from the
left if the following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for each x in the set
(
a−δ0, a

)
.

(II) For each real number ǫ > 0 there exists a real number δ(ǫ) such that 0 < δ(ǫ) ≤ δ0 and

0 < a− x < δ(ǫ) ⇒ |f(x)− L| < ǫ.

If the conditions (I) and (II) in Definition 4.4.1 are satisfied we write lim
x↑a

f(x) = L.

Definition 4.4.2. A function f has the limit L ∈ R as x approaches a real number a from the
right if the following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for each x in the set
(
a, a+δ0

)
.

(II) For each real number ǫ > 0 there exists a real number δ(ǫ) such that 0 < δ(ǫ) ≤ δ0 and

0 < x− a < δ(ǫ) ⇒ |f(x)− L| < ǫ.

If the conditions (I) and (II) in Definition 4.4.2 are satisfied we write lim
x↓a

f(x) = L.

Definition 4.4.3. A function f has the limit +∞ as x approaches a real number a from the
left if the following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for each x in the set
(
a−δ0, a

)
.

(II) For each real number M > 0 there exists a real number δ(M) such that 0 < δ(M) ≤ δ0
and

0 < a− x < δ(M) ⇒ f(x) > M.

If the conditions (I) and (II) in Definition 4.4.3 are satisfied we write lim
x↑a

f(x) = +∞.

Definition 4.4.4. A function f has the limit +∞ as x approaches a real number a from the
right if the following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for each x in the set
(
a, a+δ0

)
.

(II) For each real number M > 0 there exists a real number δ(M) such that 0 < δ(M) ≤ δ0
and

0 < x− a < δ(M) ⇒ f(x) > M.

If the conditions (I) and (II) in Definition 4.4.4 are satisfied we write lim
x↓a

f(x) = +∞.

Definition 4.4.5. A function f has the limit −∞ as x approaches a real number a from the
left if the following two conditions are satisfied:
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(I) There exists a real number δ0 > 0 such that f(x) is defined for each x in the set
(
a−δ0, a

)
.

(II) For each real number M < 0 there exists a real number δ(M) such that 0 < δ(M) ≤ δ0
and

0 < a− x < δ(M) ⇒ f(x) < M.

If the conditions (I) and (II) in Definition 4.4.5 are satisfied we write lim
x↑a

f(x) = −∞.

Definition 4.4.6. A function f has the limit −∞ as x approaches a real number a from the
right if the following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for each x in the set
(
a, a+δ0

)
.

(II) For each real number M < 0 there exists a real number δ(M) such that 0 < δ(M) ≤ δ0
and

0 < x− a < δ(M) ⇒ f(x) < M.

If the conditions (I) and (II) in Definition 4.4.6 are satisfied we write lim
x↓a

f(x) = −∞.

Exercise 4.4.7. Find each of the following limits. Prove your claims using the appropriate
definition.

(a) lim
x↑5

3x− 15√
x2 − 10x+ 25

(b) lim
x↓5

3x− 15√
x2 − 10x+ 25

(c) lim
x↑2

x− 3

x(x− 2)

(d) lim
x↓0

(
1

x
− 1

x2

)

(e) lim
x↑5

2√
5− x

(f) lim
x↓5

6

5− x

(g) lim
x↑3

x+ 3

x2 − 9
(h) lim

x↑−3

x2

x2 − 9
(i) lim

x↓0

(
x−√

x
)

(j) lim
x→3

x

(x− 3)2
(k) lim

x↓−1

x2

x+ 1
(l) lim

x→+∞

(
x−√

x
)
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5 New limits from old

5.1 Squeeze theorems

In this section and in Section 5.3 we establish general properties of limits which are based on the
formal definition of limit. These properties are stated as theorems.

Establishing theorems of this kind involves a major step forward in sophistication. Up to this
point we have been trying to show that limits exist directly from the definition. Now for the first
time we are going to assume that some limit exists (I refer to this in class as a green limit.)
and try to make use of this information to establish the existence of some other limit (I refer to
this in class as a red limit.). Remember that to establish the existence of a limit, we had to come
up with a procedure for finding δ(ǫ) that will work for any ǫ > 0 that is given. If we assume the
existence of a limit, then we are assuming the existence of such a procedure, though we may not
know explicitly what it is. I refer to this as a green δ(ǫ). It is this procedure we will need to use
in order to construct a new procedure for the limit whose existence we are trying to establish. I
refer to this as a red δ(ǫ).

We start by considering squeeze theorems that resemble the role of BIN in previous sections.
The following theorem is the Sandwich Squeeze Theorem.

Theorem 5.1.1. Let f, g and h be given functions and let a and L be real numbers. Suppose
that the following three conditions are satisfied.

(1) lim
x→a

f(x) = L,

(2) lim
x→a

h(x) = L,

(3) There exists η0 > 0 such that f(x), g(x) and h(x) are defined for all x ∈
(
a−η0, a

)
∪
(
a, a+η0

)

and
f(x) ≤ g(x) ≤ h(x) for all x ∈

(
a− η0, a

)
∪
(
a, a+ η0

)
.

Then
lim
x→a

g(x) = L.

Proof. Here we have three functions and three definitions of limits, one for each function. There-
fore we have to deal with three δ-s. We shall give them appropriate names that will distinguish
them from each other. Let us name them δf , δg and δh.

In the theorem it is assumed that lim
x→a

f(x) = L. This means that we are given the fact that

for each ǫ > 0 there exists δf (ǫ) > 0 (that is, we are given a function δf (ǫ)) such that

0 < |x− a| < δf (ǫ) ⇒ |f(x)− L| < ǫ. (5.1.1)

In class I refer to these as a green δf (·) and a green implication.
Since the theorem assumes that lim

x→a
h(x) = L, we are also given that for each ǫ > 0 there

exists δh(ǫ) > 0 such that

0 < |x− a| < δh(ǫ) ⇒ |h(x)− L| < ǫ. (5.1.2)
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Again we refer to these as a green δh(·) and a green implication.
We need to prove that lim

x→a
g(x) = L. Therefore, following the definition of limit, we have to

show that the following conditions are satisfied:

(I) There exists a real number δ0,g > 0 such that g(x) is defined for each x in the set
(
a −

δ0,g, a
)
∪
(
a, a+ δ0,g

)
.

(II) For each real number ǫ > 0 there exists a real number δg(ǫ) such that 0 < δg(ǫ) ≤ δ0,g and
such that

0 < |x− a| < δg(ǫ) ⇒ |g(x)− L| < ǫ. (5.1.3)

Since we have to produce δ0,g, δg(ǫ) and we have to prove the last implication, all of these objects
are red.

Notice that η0 in the theorem is green.
The objective here is to use the green objects to produce the red objects. We shall do that

next. We put:

(I) δ0,g = η0. By the assumption of the theorem g(x) is defined for each x in the set
(
a −

η0, a
)
∪
(
a, a + η0

)
.

(II) For each real number ǫ > 0, put

δg(ǫ) = min
{
δf (ǫ), δh(ǫ), η0

}
.

This is a beautiful expression since the red object is expressed in terms of the green objects.

It remains to prove the red implication (5.1.3) using the green implications and the assump-
tions of the theorem.

To prove (5.1.3), assume that 0 < |x− a| < δg(ǫ). Then, clearly, 0 < |x − a| < η0. This is

telling me that x 6= a and that x is no further than η0 from a. Consequently, x ∈
(
a − η0, a

)
∪

(
a, a+ η0

)
. Therefore, by the assumption of the theorem

f(x) ≤ g(x) ≤ h(x).

Subtracting L from each term in this inequality, we conclude that

f(x)− L ≤ g(x)− L ≤ h(x)− L.

Using the property of the absolute value that −|u| ≤ u ≤ |u| for each real number u, we conclude
that

−|f(x)− L| ≤ f(x)− L ≤ g(x)− L ≤ h(x)− L ≤ |h(x)− L|. (5.1.4)

From the assumption 0 < |x − a| < δg(ǫ), we conclude that 0 < |x − a| < δf (ǫ). By the green
implication (5.1.1), this implies that |f(x)− L| < ǫ and therefore

−ǫ < −|f(x)− L|. (5.1.5)

From the assumption 0 < |x − a| < δg(ǫ), we conclude that 0 < |x − a| < δh(ǫ). By the green
implication (5.1.2), this implies that

|h(x)− L| < ǫ. (5.1.6)
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Putting together the inequalities (5.1.4), (5.1.5) and (5.1.6), we conclude that

−ǫ < g(x)− L < ǫ. (5.1.7)

The inequalities in (5.1.7) are equivalent to

|g(x)− L| < ǫ.

This proves that 0 < |x−a| < δg(ǫ) implies |g(x)−L| < ǫ and this is exactly the red implication
(5.1.3). This completes the proof.

The following theorem is the Scissors Squeeze Theorem.

Theorem 5.1.2. Let f, g and h be given functions and let a ∈ R and L ∈ R. Assume that

(1) lim
x→a

f(x) = L,

(2) lim
x→a

h(x) = L,

(3) There exists η0 > 0 such that f(x), g(x) and h(x) are defined for all x ∈
(
a−η0, a

)
∪
(
a, a+η0

)

and

f(x) ≤ g(x) ≤ h(x) for all x ∈
(
a− η0, a

)
,

and

h(x) ≤ g(x) ≤ f(x) for all x ∈
(
a, a + η0

)
.

Then

lim
x→a

g(x) = L.

5.2 Examples for squeeze theorems

The following picture and the numbers that you can see on it are essential for getting squeezes
for limits involving trigonometric functions. The table to the left shows the numbers that you
should be able to identify on the picture.
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Geometric Associated
Object Number

Circular Arc
from C to B u

Line Segment 0A cosu

Line Segment AB sin u

Line Segment AC 1− cos u

Line Segment CB You Calculate

Line Segment CD tanu

Line Segment 0B 1

Line Segment 0C 1

0 A

B

1

1

C

D

Example 5.2.1. Prove that lim
x→0

cosx = 1.

Solution. Set η0 =
π

3
. Consider positive u. Look at the picture above. The triangle △ACB is a

right triangle. Therefore its hypothenuse, the line segment CB, is longer than its side AC which
equals to 1− cosu. Thus

1− cosu = AC ≤ CB. (5.2.1)

The line segment CB is a segment of a straight line, therefore it is shorter than any other
curve joining C and B. In particular it is shorter than the circular arc joining the points C and
B. The length of this circular arc is u. Thus

CB ≤ Length of the Circular Arc from C to B ( = u ). (5.2.2)

Putting together the inequalities (5.2.1) and (5.2.2), we conclude that

1− cos u ≤ u for all 0 < u <
π

3
. (5.2.3)

Since the length 0A = cosu is smaller than 1, from (5.2.3) we conclude that

0 ≤ 1− cosu ≤ u for all 0 < u <
π

3
,

or, equivalently,

1− u ≤ cosu ≤ 1 for all 0 < u <
π

3
,

Now we substitute u = |x| and use the fact that cos |x| = cos x and (5.2) becomes

1− |x| ≤ cosx ≤ 1 for all − π

3
< x <

π

3
.
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This is a sandwich squeeze for cosx. It is easy to prove that lim
x→0

1 = 1 and lim
x→0

(
1 − |x|

)
=

1. (Please prove this using the definition!) Now the Sandwich Squeeze Theorem implies that
lim
x→0

cosx = 1.

Example 5.2.2. Prove that lim
x→0

sin x

x
= 1.

Solution. To get a sandwich squeeze for this problem consider the following three areas on the
picture above.

Area 1 The triangle △0CB .

Area 2 The segment of the unit disc bounded by the line segments 0C and 0B and the circular
arc segment joining points C and B.

Area 3 The triangle △0CD .

The picture tells clearly the inequality between these areas. Write that inequality. Calculate
each area in terms of the numbers that appear in the table above. This will lead to the inequality,
which when simplified gives

cosu ≤ sin u

u
≤ 1 for all 0 < x <

π

3
. (5.2.4)

Using the same idea as in the previous example, the inequality (5.2.4) leads to

cosx ≤ sin x

x
≤ 1 for all x ∈

(

−π

3
, 0
)

∪
(

0,
π

3

)

. (5.2.5)

The inequality (5.2.5) is exactly what we need in the Sandwich Squeeze Theorem. Please fill in
all the details of the rest of the proof.

Example 5.2.3. Prove that lim
x→0

1− cosx

x2
=

1

2
.

Solution. To establish squeeze inequlaities consider three lengths:

Length 1 The line segment AB .

Length 2 The line segment CB .

Length 3 The length of a circular arc joining the points C and B.

The picture tells clearly the inequalities between these three lengths. Write these inequalities.
Calculate each length in terms of the numbers that appear in the table above. This will lead to
the inequalities, which, when simplified, give

1

2

(
sin u

u

)2

≤ 1− cosu

u2
≤ 1

2
for all 0 < u <

π

3
. (5.2.6)

From the inequality (5.2.6) and one inequality established in a previous example you can get an
“easy” sandwich squeeze. Please fill in all the details of the rest of the proof.

Example 5.2.4. Prove that lim
x→0

ln(1 + x)

x
= 1.

Solution. The idea is to use the definition of ln as an integral and work with areas to get
squeeze inequalities.
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5.3 Algebra of limits

A nickname that I gave to a function which has a limit L when x approaches a is: f is constantish
L near a. If we are dealing with constant functions f(x) = L and g(x) = K, then clearly the
sum f + g of these two functions is a constant function equal to L + K. The same is true for
the product fg which is the constant function equal to LK. Another question is whether we can
talk about the reciprocal 1/f . If L 6= 0, then the reciprocal of f is defined and it equals 1/L. In
this section we shall prove that all these properties hold for constantish functions.

Theorem 5.3.1. Let f, g, and h, be functions with domain and range in R. Let a, K and L be
real numbers. Assume that

(1) lim
x→a

f(x) = K,

(2) lim
x→a

g(x) = L.

Then the following statements hold.

(A) If h = f + g, then lim
x→a

h(x) = K + L.

(B) If h = fg, then lim
x→a

h(x) = KL.

(C) If L 6= 0 and h =
1

g
, then lim

x→a
h(x) =

1

L
.

(D) If L 6= 0 and h =
f

g
, then lim

x→a
h(x) =

K

L
.

Proof. The assumption lim
x→a

f(x) = K implies that

green(I-f) There exists (green!) δ0,f > 0 such that f(x) is defined for all x in
(
a − δ0,f , a

)
∪

(
a, a + δ0,f

)
;

green(II-f) For each ǫ > 0 there exists (green!) δf (ǫ) such that 0 < δf (ǫ) ≤ δ0,f and such that

0 < |x− a| < δf (ǫ) ⇒ |f(x)−K| < ǫ. (5.3.1)

The assumption lim
x→a

g(x) = L implies that

green(I-g) There exists (green!) δ0,g > 0 such that g(x) is defined for all x in
(
a − δ0,g, a

)
∪

(
a, a + δ0,g

)
;

green(II-g) For each ǫ > 0 there exists (green!) δg(ǫ) such that 0 < δg(ǫ) ≤ δ0,g and such that

0 < |x− a| < δg(ǫ) ⇒ |g(x)− L| < ǫ. (5.3.2)

Proof of the statement (A). Remember that h(x) = f(x) + g(x) here. First we list what is red
in this proof.
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red(I-h) There exists (red!) δ0,h > 0 such that h(x) is defined for all x in
(
a− δ0,h, a

)
∪
(
a, a+

δ0,h
)
;

red(II-h) For each ǫ > 0 there exists (red!) δh(ǫ) such that 0 < δh(ǫ) ≤ δ0,h and such that

0 < |x− a| < δh(ǫ) ⇒ |h(x)− (K + L)| < ǫ. (5.3.3)

I will not elaborate here how I got the idea for δ0,h and δh(ǫ), I will just give formulas and
convince you that my choice is a correct one. The idea for the formulas comes from the boxed
paragraph on page 28. I invite you to enjoy the separation of colors in the following formulas.

Let ǫ > 0 be given. Put

δ0,h := min {δ0,f , δ0,g}
δh(ǫ) := min

{

δf

( ǫ

2

)

, δg

( ǫ

2

)}

Now we have to prove that h(x) is defined for each x ∈
(
a− δ0,h, a

)
∪
(
a, a + δ0,h

)
. Assume

that x ∈
(
a− δ0,h, a

)
∪
(
a, a+ δ0,h

)
. Then

0 < |x− a| < δ0,h ≤ min {δ0,f , δ0,g} . (5.3.4)

It follows from (5.3.4) that
0 < |x− a| < δ0,f ,

and therefore x ∈
(
a− δ0,f , a

)
∪
(
a, a + δ0,f

)
. Thus f(x) is defined. It also follows from (5.3.4)

that
0 < |x− a| < δ0,g,

and therefore x ∈
(
a− δ0,g, a

)
∪
(
a, a+ δ0,g

)
. Thus g(x) is defined. Therefore h(x) = f(x) + g(x)

is defined for each x ∈
(
a− δ0,h, a

)
∪
(
a, a + δ0,h

)
.

Now we will prove the red implication (5.3.3). Assume

0 < |x− a| < δh(ǫ) = min
{

δf

( ǫ

2

)

, δg

( ǫ

2

)}

. (5.3.5)

Then
0 < |x− a| < δf

( ǫ

2

)

. (5.3.6)

The inequality (5.3.6) and the implication (5.3.1) allow me to conclude that

|f(x)−K| < ǫ

2
. (5.3.7)

It follows from (5.3.5) that

0 < |x− a| < δg

( ǫ

2

)

. (5.3.8)

The inequality (5.3.8) and the implication (5.3.2) allow me to conclude that

|g(x)− L| < ǫ

2
. (5.3.9)
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Now we remember that the absolute value has the property that |u + v| ≤ |u| + |v|. We
will apply this to the expression

|h(x)− (K + L)| = |f(x) + g(x)−K − L| = |(f(x)−K)
︸ ︷︷ ︸

u

+ (g(x)− L)
︸ ︷︷ ︸

v

|

to get
|h(x)− (K + L)| ≤ |f(x)−K|+ |g(x)− L|. (5.3.10)

This inequality plays a role of a BIN in this abstract proof. It has an unfriendly object on the
left and all friendly objects on the right.

The inequalities (5.3.7), (5.3.9) and (5.3.10) imply that

|h(x)− (K + L)| < ǫ

2
+

ǫ

2
= ǫ. (5.3.11)

Reviewing my reasoning above you should be convinced that based on the assumption (5.3.5) we
proved the inequality (5.3.11). This is exactly the implication (5.3.3). This completes the proof
of the statement (A).

Proof of the statement (B). Remember that h(x) = f(x)g(x) here. We first list what is red in
this proof.

red(I-h) There exists (red!) δ0,h > 0 such that h(x) is defined for all x in
(
a− δ0,h, a

)
∪
(
a, a+

δ0,h
)
;

red(II-h) For each ǫ > 0 there exists (red!) δh(ǫ) such that 0 < δh(ǫ) ≤ δ0,h and such that

0 < |x− a| < δh(ǫ) ⇒ |h(x)−KL| < ǫ. (5.3.12)

I will not elaborate how I got the idea for δ0,h and δh(ǫ), I will just give formulas and convince
you that my choice is a correct one. The idea for the formulas comes from the boxed paragraph
on page 30. Again, I invite you to enjoy the separation of colors in the following formulas.

Let ǫ > 0 be given. Put

δ0,h := min {δ0,f , δg(1)}

δh(ǫ) := min

{

δf

(
ǫ

2(|L|+ 1)

)

, δg

(
ǫ

2(|K|+ 1)

)}

Now we have to prove that h(x) is defined for each x ∈
(
a− δ0,h, a

)
∪
(
a, a + δ0,h

)
. Assume

that x ∈
(
a− δ0,h, a

)
∪
(
a, a+ δ0,h

)
. Then

0 < |x− a| < δ0,h ≤ min {δ0,f , δg(1)} . (5.3.13)

It follows from (5.3.13) that
0 < |x− a| < δ0,f ,
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and therefore x ∈
(
a− δ0,f , a

)
∪
(
a, a+ δ0,f

)
. Thus f(x) is defined. It also follows from (5.3.13)

that
0 < |x− a| < δg(1). (5.3.14)

Since by the assumption (II-g) we know that δg(1) ≤ δ0,g, the inequality (5.3.14) implies that

0 < |x− a| < δ0,g.

Therefore x ∈
(
a − δ0,g, a

)
∪
(
a, a + δ0,g

)
. Thus g(x) is defined. Therefore h(x) = f(x)g(x) is

defined for each x ∈
(
a− δ0,h, a

)
∪
(
a, a+ δ0,h

)
.

At this point we will prove another consequence of the inequality (5.3.14). This inequality
and the implication (5.3.2) allow me to conclude that

|g(x)− L| < 1.

Therefore
−1 < g(x)− L < 1 ,

or, equivalently
−1 + L < g(x) < L+ 1.

Multiplying the last inequality by −1, we conclude that

−1 − L < −g(x) < −L+ 1.

From the last two inequalities we conclude that max{g(x),−g(x)} < max{L + 1,−L + 1} =
max{L,−L}+ 1. Thus

|g(x)| < |L|+ 1. (5.3.15)

Now we will prove the red implication (5.3.12). Assume

0 < |x− a| < δh(ǫ) = min

{

δf

(
ǫ

2(|L|+ 1)

)

, δg

(
ǫ

2(|K|+ 1)

)}

. (5.3.16)

Then

0 < |x− a| < δf

(
ǫ

2(|K|+ 1)

)

. (5.3.17)

The inequality (5.3.17) and the implication (5.3.1) allow me to conclude that

|f(x)−K| < ǫ

2(|L|+ 1)
. (5.3.18)

It follows from (5.3.16) that

0 < |x− a| < δg

(
ǫ

2(|K|+ 1)

)

. (5.3.19)

The inequality (5.3.19) and the implication (5.3.2) allow me to conclude that

|g(x)− L| < ǫ

2(|K|+ 1)
. (5.3.20)
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Now we remember that the absolute value has the property that |u + v| ≤ |u| + |v| and
that |uv| = |u||v|. we will apply these properties to the expression

|h(x)−KL| = |f(x)g(x)−KL| = |
(
f(x)g(x)−Kg(x)

)

︸ ︷︷ ︸

u

+
(
Kg(x)−KL

)

︸ ︷︷ ︸

v

|

≤ |f(x)g(x)−Kg(x)
)
|+ |Kg(x)−KL|

≤ |g(x)| |f(x)−K|+ |K| |g(x)− L|.

Summarizing
|h(x)−KL| ≤ |g(x)| |f(x)−K|+ |K| |g(x)− L|. (5.3.21)

The inequalities (5.3.15) and (5.3.21) imply that

|h(x)−KL| ≤
(
|L|+ 1

)
|f(x)−K|+ |K| |g(x)− L|. (5.3.22)

This inequality plays a role of a BIN in this abstract proof. It has an unfriendly object on the
left and all friendly objects on the right.

The inequalities (5.3.18), (5.3.20) and (5.3.22) imply that

|h(x)− LK| ≤
(
|L|+ 1

) ǫ

2(|L|+ 1)
+ |K| ǫ

2(|K|+ 1)
<

ǫ

2
+

ǫ

2
= ǫ. (5.3.23)

I hope that my reasoning above convinces you that the assumption (5.3.16) implies the
inequality (5.3.23). This is exactly the implication (5.3.12). This completes the proof of the part
(B).

Proof of the statement (C). Here we assume that L 6= 0 and h(x) =
1

g(x)
. Next we list what is

red in this proof.

red(I-h) There exists (red!) δ0,h > 0 such that h(x) is defined for all x in
(
a− δ0,h, a

)
∪
(
a, a+

δ0,h
)
;

red(II-h) For each ǫ > 0 there exists (red!) δh(ǫ) such that 0 < δh(ǫ) ≤ δ0,h and such that

0 < |x− a| < δh(ǫ) ⇒
∣
∣
∣
∣

1

g(x)
− 1

L

∣
∣
∣
∣
< ǫ. (5.3.24)

I will not elaborate how I got the idea for δ0,h and δh(ǫ), I will just give formulas and convince
you that my choice is a correct one. The idea for the formulas comes from the boxed paragraph
on page 32. Again, I invite you to enjoy the separation of colors in the following formulas.

Let ǫ > 0 be given. Remember that it is assumed that |L| > 0. Put

δ0,h := δg

( |L|
2

)

δh(ǫ) := min

{

δg

(
ǫL2

2

)

, δg

( |L|
2

)}

.
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Now we have to prove that h(x) is defined for each x ∈
(
a− δ0,h, a

)
∪
(
a, a + δ0,h

)
. Assume

that x ∈
(
a− δ0,h, a

)
∪
(
a, a+ δ0,h

)
. Then

0 < |x− a| < δ0,h = δg

( |L|
2

)

.

This inequality and the implication (5.3.2) allow me to conclude that

|g(x)− L| < |L|
2
.

Therefore

−|L|
2

< g(x)− L <
|L|
2

,

or, equivalently

−|L|
2

+ L < g(x) < L+
|L|
2
.

Multiplying the last inequality by −1, we conclude that

−L− |L|
2

< −g(x) <
|L|
2

− L.

From the last two displayed relationships we conclude that

max{g(x),−g(x)} > max

{

L− |L|
2
,−L− |L|

2

}

= max{L,−L} − |L|
2
.

Thus

|g(x)| > |L| − |L|
2

=
|L|
2

> 0. (5.3.25)

Consequently, g(x) 6= 0. Therefore, h(x) =
1

g(x)
is defined for all x ∈

(
a− δ0,h, a

)
∪
(
a, a+ δ0,h

)
.

Now we will prove the red implication (5.3.24). Assume

0 < |x− a| < δh(ǫ) = min

{

δg

(
ǫL2

2

)

, δg

( |L|
2

)}

. (5.3.26)

Then

0 < |x− a| < δg

(
ǫL2

2

)

. (5.3.27)

The inequality (5.3.27) and the implication (5.3.2) allow me to conclude that

|g(x)− L| < ǫL2

2
. (5.3.28)

It also follows from (5.3.26) that

0 < |x− a| < δg

( |L|
2

)

.
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We already proved that this inequality implies (5.3.25). Therefore

1

|g(x)| <
2

|L| . (5.3.29)

This inequality is used at the last step in the sequence of inequalities below. In some sense this
is an abstract version of a “pizza-party” play.

Using our standard tools, algebra, properties of the absolute value and the inequality
(5.3.29) we get

∣
∣
∣
∣
h(x)− 1

L

∣
∣
∣
∣
=

∣
∣
∣
∣

1

g(x)
− 1

L

∣
∣
∣
∣
=

∣
∣
∣
∣

L− g(x)

g(x)L

∣
∣
∣
∣
=

|L− g(x)|
|g(x)| |L|

=
|g(x)− L|
|g(x)| |L| ≤

1

|g(x)|
|g(x)− L|

|L| ≤ 2

|L|
|g(x)− L|

|L| .

Summarizing ∣
∣
∣
∣

1

g(x)
− 1

L

∣
∣
∣
∣
≤ 2

L2
|g(x)− L| . (5.3.30)

This inequality plays a role of a BIN in this abstract proof. It has an unfriendly object on the
left and all friendly objects on the right.

The inequalities (5.3.28) and (5.3.30) imply that
∣
∣
∣
∣

1

g(x)
− 1

L

∣
∣
∣
∣
≤ 2

L2

ǫL2

2
= ǫ. (5.3.31)

I hope that the reasoning above convinces you that the assumption (5.3.26) implies the inequality
(5.3.31). This is exactly the implication (5.3.24). This completes the proof of the part (C).

Proof of the statement (D). Here we assume that L 6= 0 and h(x) =
f(x)

g(x)
. We can prove the

statement (D) by using the universal power of the statements (B) and (C). First define the

functions g1(x) =
1

g(x)
. Then, by the statement (C) we know

lim
x→a

g1(x) =
1

L
. (5.3.32)

Clearly, h(x) = f(x)g1(x). Now we can apply the statement (B) to this function h. Taking into
account (5.3.32) the statement (B) implies

lim
x→a

h(x) = K
1

L
=

K

L
.

This completes the proof of the statement (D). The theorem is proved.

Exercise 5.3.2. Use the algebra of limits to give much simpler proofs for most of the limits in
the previous exercises and examples.
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5.4 L’Hospital rule

By definition f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

Theorem 5.4.1. Let f and g be functions and let a be a real number such that f(a) = g(a) = 0.
Assume that the derivatives f ′(a) and g′(a) exist and g′(a) 6= 0. Then

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

Proof. Assume that the limits f ′(a) = lim
x→a

f(x)− f(a)

x− a
and g′(a) = lim

x→a

g(x)− g(a)

x− a
exist and

g′(a) 6= 0. Then the limit

lim
x→a

f(x)− f(a)

x− a
g(x)− g(a)

x− a

(5.4.1)

exists and it equals
f ′(a)

g′(a)
. Remember that f(a) = g(a) = 0 and simplify

f(x)− f(a)

x− a
g(x)− g(a)

x− a

=

f(x)

x− a
g(x)

x− a

=
f(x)

g(x)
. (5.4.2)

Based on (5.4.1) and (5.4.2) we conclude that

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

The following is a more powerful version of the L’Hospital rule. It’s proof is not that much
more complicated, but we will skip it here.

Theorem 5.4.2. Let f and g be functions and let a be a real number such that f(a) = g(a) = 0.
Assume that there exists δ0 > 0 such that f(x), g(x), f ′(x), g′(x) are defined for all x ∈

(
a −

δ0, a
)
∪
(
a, a+ δ0

)
. Assume that

lim
x→a

f ′(x)

g′(x)
= L.

Then lim
x→a

f(x)

g(x)
= L.

Example 5.4.3. Calculate lim
x→0

x− sin x

x3
.
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Solution. Put f(x) = x− sin x and g(x) = x3. Put δ0 = 1. Then f(x) and g(x) is defined for all
x ∈ (−1, 1). Let x ∈ (−1, 1) and calculate f ′(x) = 1− cosx and g′(x) = 3x2. Now calculate

lim
x→0

f ′(x)

g′(x)
= lim

x→0

1− cosx

3x2
= lim

x→0

1

3
· 1− cosx

x2

=
1

3
· lim
x→0

1− cos x

x2
=

1

3
· 1
2
=

1

6

Exercise 5.4.4. Use the L’Hospital Rule to find each of the following limits.

(a) lim
x→1

x9 − 1

x5 − 1
(b) lim

x→1

xa − 1

xb − 1
(c) lim

x→π/2

1− sin x

cosx

(d) lim
x→1

ln x

x− 1
(e) lim

x→0

1− cos x

(sin x)2
(f) lim

x→0

ln(1 + x)

sin x

(g) lim
x→0

ex − 1

x
(h) lim

x→0

ex − 1− x

x2
(i) lim

x→0

x+ tanx

sin x
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6 Continuous functions

6.1 Definition and examples

All this work about limits will now pay off since we shall be able to give mathematically rigorous
definition of a continuous function.

Definition 6.1.1. Let f be a real valued function of a real variable and let a be a real number.
The function f is continuous at a if the following two conditions are satisfied:

(i) The function f is defined at a, that is f(a) is defined.

(ii) lim
x→a

f(x) = f(a).

To understand Definition 6.1.1 the reader has to understand the concept of limit. Sometimes
it is useful to state the definition of continuity directly, without appealing to the concept of limit.

Definition 6.1.2. Let f be a real valued function of a real variable and let a be a real number.
The function f is continuous at a if the following two conditions are satisfied:

(I) There exists a δ0 > 0 such that f(x) is defined for all x ∈ (a− δ0, a+ δ0).

(II) For each ǫ > 0 there exists δ(ǫ) such that 0 < δ(ǫ) ≤ δ0 and such that

|x− a| < δ(ǫ) ⇒ |f(x)− f(a)| < ǫ.

Definition 6.1.2 is called ǫ-δ definition of continuity.

Definition 6.1.3. Let I be an interval in R. A function f is continuous on I if it is continuous
at each point in I.

Example 6.1.4. Let c be a real number and define f(x) = c for all x ∈ R. Use Definition 6.1.2
to prove that f is continuous at an arbitrary real number a.

Example 6.1.5. Let f(x) = x for all x ∈ R. Use Definition 6.1.2 to prove that f is continuous
at an arbitrary real number a.

Example 6.1.6. Use ǫ-δ definition of continuity, that is Definition 6.1.2, to prove that the
function f(x) = 1/x is continuous on the interval (0,+∞).

Solution. Let a ∈ (0,+∞), that is let a be an arbitrary positive number. Chose δ0 = a/2. Since
a > 0, we conclude that a/2 > 0 and f(x) = 1/x is defined for all x ∈

(
a/2, 3a/2

)
.

Let ǫ > 0 be arbitrary. Now we have to solve
∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
< ǫ for |x− a|.

First simplify the expression, using the fact that x > 0 and a > 0 and rules for the absolute
value: ∣

∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
=

∣
∣
∣
∣

a− x

x a

∣
∣
∣
∣
=

|a− x|
|x| |a| =

|x− a|
x a

.
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To get a larger expression which will be easy to solve we replace x in the denominator by the
smallest possible value for x. That value is a− a/2 = a/2. This gives me my BIN:

∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
=

|x− a|
x a

≤ |x− a|
a

2
a

= 2
|x− a|
a2

.

Thus my BIN is

∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
≤ 2

|x− a|
a2

valid for all x ∈
(
a/2, 3a/2

)
.

Solving the inequality 2
|x− a|
a2

< ǫ for |x− a| is easy. The solution is |x− a| < a2 ǫ/2. Now

we define

δ(ǫ) = min

{
a2 ǫ

2
,
a

2

}

.

To finish the proof, it remains to prove the implication

|x− a| < δ(ǫ) ⇒
∣
∣
∣
∣

1

x
− 1

a

∣
∣
∣
∣
< ǫ.

This should be easy, using the BIN.

Example 6.1.7. Use ǫ-δ definition of continuity, that is Definition 6.1.2, to prove that the
function x 7→ √

x is continuous on the interval (0,+∞).

Solution. Let a ∈ (0,+∞). Chose δ0 =
a

2
. Since a > 0, as before we conclude that

a

2
> 0 and

the function x 7→ √
x is defined for all x ∈ (a/2, 3a/2).

Let ǫ > 0 be arbitrary. Now we have to solve

∣
∣
√
x−√

a
∣
∣ < ǫ for |x− a|.

First simplify algebraically the expression, using the fact that x > 0 and a > 0 and rules for the
absolute value.

∣
∣
√
x−

√
a
∣
∣ =

∣
∣
∣
∣

(√
x−

√
a
) 1

1

∣
∣
∣
∣
=

∣
∣
∣
∣

(√
x−

√
a
)
√
x+

√
a√

x+
√
a

∣
∣
∣
∣
=

∣
∣
∣
∣

x− a√
x+

√
a

∣
∣
∣
∣

=
|x− a|

|√x+
√
a| =

|x− a|√
x+

√
a
≤ |x− a|√

a

Thus my BIN is:
∣
∣
√
x−

√
a
∣
∣ ≤ |x− a|√

a
, valid for x > 0.

Solving
|x− a|√

a
< ǫ for |x− a| is easy: The solution is |x− a| < √

a ǫ. Now we define

δ(ǫ) = min
{√

a ǫ,
a

2

}

.

It remains to prove the implication |x − a| < min
{√

a ǫ,
a

2

}

⇒ |√x−√
a| < ǫ. This

should be easy, using the BIN.
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Example 6.1.8. Let f(x) =
1

x2 + 1
for all x ∈ R. Use ǫ-δ definition to prove that f is continuous

at an arbitrary a ∈ R.

The following theorem follows from Theorem 5.3.1.

Theorem 6.1.9 (Algebra of Continuous Functions). Let f and g be functions and let a be a real
number. Assume that f and g are continuous at the point a.

(a) If h = f + g, then h is continuous at a.

(b) If h = fg, then h is continuous at a.

(c) If h =
f

g
and g(a) 6= 0, then h is continuous at a.

Example 6.1.10. Let a, b, c be any real numbers. Let f(x) = ax2 + bx+ c for all x ∈ R. Let v
be an arbitrary real number. Prove that f is continuous at v.

Example 6.1.11. Let f(x) =
1

x2 + 1
for all x ∈ R. Use algebra of continuous functions to prove

that f is continuous on R.

Example 6.1.12. Let f(x) = sin x for all x ∈ R. Prove that f is continuous at an arbitrary real
number a.

Solution. The proof consists of two steps:

(1) Use the definition of limit and inequalities that we proved for sin and cos to prove the
following two limits

lim
x→a

sin(x− a) = 0 ,

lim
x→a

cos(x− a) = 1 .

(2) Use the addition formula for sin x = sin(x− a+ a) and the algebra of limits to complete the
proof.

Example 6.1.13. Let f(x) = cosx for all x ∈ R. Prove that f is continuous at an arbitrary
real number a.

Example 6.1.14. Let f(x) = tanx for all −π

2
< x <

π

2
. Prove that f is continuous at an

arbitrary real number a such that −π

2
< a <

π

2
.

Solution. Use the algebra of continuous functions.

Example 6.1.15. Let f(x) = lnx for all x ∈ (0,+∞). Prove that f is continuous at an arbitrary
real number a.
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Solution. Use the definition of ln to derive the squeeze for ln:

1− 1

x
≤ ln x ≤ x− 1, 0 < x < +∞.

Use the above squeeze to prove that for arbitrary a > 0 we have lim
x→a

ln
(x

a

)

= 0. Now use the

rule for logarithms ln uv = ln u+ ln v.

Example 6.1.16. Let f(x) = ex for all x ∈ R. Prove that f is continuous at an arbitrary real
number a.

Solution. Use the fact that x 7→ ex is the inverse of the logarithm function to derive the squeeze
for it:

1 + x ≤ ex ≤ 1

1− x
, −∞ < x < 1.

Get the rest of the proof as an exercise.

The following theorem claims that a composition of continuous functions is continuous. I will
post a proof on the class website.

Theorem 6.1.17. Let f and g be functions and let a be a real number. Assume that g is
continuous at a and that f is continuous at g(a). If h = f ◦ g, then h is continuous at a.


