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7 Sequences of real numbers

7.1 Definitions and examples

Definition 7.1.1. A sequence of real numbers is a real function whose domain is the set N of
natural numbers.

Let s : N → R be a sequence. Then the values of s are s(1), s(2), s(3), . . . , s(n), . . . . It is
customary to write sn instead of s(n) in this case. Sometimes a sequence will be specified by
listing its first few terms

s1, s2, s3, s4, . . . ,

and sometimes by listing of all its terms {sn}n∈N or {sn}+∞
n=1. One way of specifying a sequence

is to give a formula, or recursion formula for its n−th term sn. Notice that in this notation s is
the “name” of the sequence and n is the variable.

Some examples of sequences follow.

Example 7.1.2. (a) 1, 0, −1, 0, 1, 0, −1, . . . ;

(b) 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, . . . ;

(c) 1, 1, 1, 1, 1, . . . ; (the constant sequence)
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of this sequence?)

Recursively defined sequences

Example 7.1.3. (a) x1 = 1, xn+1 = 1 +
xn

4
, n = 1, 2, 3, . . . ;

(b) x1 = 2, xn+1 =
xn

2
+

1

xn

, n = 1, 2, 3, . . . ;

(c) a1 =
√
2, an+1 =

√
2 + an, n = 1, 2, 3, . . . ;

(d) s1 = 1, sn+1 =
√
1 + sn, n = 1, 2, 3, . . . ;

(e) x1 =
9

10
, xn+1 =

9 + xn

10
, n = 1, 2, 3, . . . .

(f) b1 =
1

2
, bn+1 =

1

2
√
1− b2n

, n = 1, 2, 3, . . .

(g) f1 = 1, fn+1 = (n+ 1) fn, n = 1, 2, 3, . . . .

Some important examples of sequences are listed below.
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bn = c, c ∈ R. n ∈ N, (7.1.1)

pn = an, a ∈ R, n ∈ N, (7.1.2)

xn =

(

1 +
1

n

)n

, n ∈ N, (7.1.3)

yn =

(

1 +
1

n

)(n+1)

, n ∈ N, (7.1.4)

zn =
(

1 +
a

n

)n

, a ∈ R, n ∈ N, (7.1.5)

f1 = 1, fn+1 = fn · (n+ 1), n ∈ N. (7.1.6)

(The standard notation for the terms of the sequence {fn}+∞
n=1 is fn = n!, n ∈ N.)

qn =
an

n!
, a ∈ R, n ∈ N, (7.1.7)

t1 = 2, tn+1 = tn +
1

n!
n ∈ N, (7.1.8)

v1 = 1 + a, vn+1 = vn +
an

n!
, a ∈ R, n ∈ N. (7.1.9)

Let {an}+∞
n=1 be an arbitrary sequence. An important sequence associated with {an}+∞

n=1 is the
following sequence

S1 = a1, Sn+1 = Sn + an+1, n ∈ N. (7.1.10)

7.2 Convergent sequences

Definition 7.2.1. A sequence {sn}+∞
n=1 of real numbers converges to the real number L if for

each ǫ > 0 there exists a number N(ǫ) such that

n ∈ N, n > N(ǫ) ⇒ |sn − L| < ǫ.

If {sn}+∞
n=1 converges to L we will write

lim
n→+∞

sn = L or sn → L (n → +∞).

The number L is called the limit of the sequence {sn}+∞
n=1. A sequence that does not converge to

a real number is said to diverge.

Example 7.2.2. Let r be a real number such that |r| < 1. Prove that limn→+∞ rn = 0.

Solution. First note that if r = 0, then rn = 0 for all n ∈ N, so the given sequence is a constant
sequence. Therefore it converges. Let ǫ > 0. We need to solve |rn − 0| < ǫ for n. First simplify
|rn − 0| = |rn| = |r|n. Now solve |r|n < ǫ by taking ln of both sides of the inequality (note that
ln is an increasing function)

ln |r|n = n ln |r| < ln ǫ.
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Since |r| < 1, we conclude that ln |r| < 0. Therefore the solution is n >
ln ǫ

ln |r| . Thus, with

N(ǫ) =
ln ǫ

ln |r| , the implication

n ∈ N, n > N(ǫ) ⇒ |rn − 0| < ǫ

is valid.

Example 7.2.3. Prove that lim
n→+∞

n2 − n− 1

2n2 − 1
=

1

2
.

Solution. Let ǫ > 0 be given. We need to solve
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< ǫ for n. First simplify:
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2 (2n2 − 1)

∣
∣
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∣
=

2n+ 1

4n2 − 2

Now invent the BIN:
2n+ 1

4n2 − 2
≤ 2n+ n

4n2 − 2n2
=

3n

2n2
=

3

2n
.

Therefore the BIN is: ∣
∣
∣
∣

n2 − n− 1

2n2 − 1
− 1

2

∣
∣
∣
∣
≤ 3

2n
valid for n ∈ N.

Solving for n is now easy:

3

2n
< ǫ. The solution is n >

3

2ǫ
.

Thus, with N(ǫ) =
3

2ǫ
, the implication

n > N(ǫ) ⇒
∣
∣
∣
∣

n2 − n− 1

2n2 − 1
− 1

∣
∣
∣
∣
< ǫ

is valid. Using the BIN, this implication should be easy to prove.

This procedure is very similar to the procedure for proving limits as x approaches infinity. In
fact the following two theorems are true.

Theorem 7.2.4. Let x 7→ f(x) be a function which is defined for every x ≥ 1. Assume that
lim

x→+∞
f(x) = L. If the sequence {an}+∞

n=1 is defined by

an = f(n), n = 1, 2, 3, . . . ,

then lim
n→+∞

an = L.
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Theorem 7.2.5. Let x 7→ f(x) be a function which is defined for every x ∈ [−1, 0) ∪ (0, 1].
Assume that lim

x→0
f(x) = L. If the sequence {an}+∞

n=1 is defined by

an = f(1/n), n = 1, 2, 3, . . . ,

then lim
n→+∞

an = L.

The above two theorems are useful for proving limits of sequences which are defined by a
formula. For example you can prove the following limits by using these two theorems and what
we proved in previous sections.

Exercise 7.2.6. Find the following limits. Provide proofs.

(a) lim
n→+∞

sin

(
1

n

)

(b) lim
n→+∞

n sin

(
1

n

)

(c) lim
n→+∞

ln

(

1 +
1

n

)

(d) lim
n→+∞

n ln

(

1 +
1

n

)

(e) lim
n→+∞

cos

(
1

n

)

(f) lim
n→+∞

1

n
cos

(
1

n

)

The Algebra of Limits Theorem holds for sequences.

Theorem 7.2.7. Let {an}+∞
n=1, {bn}+∞

n=1 and {cn}+∞
n=1, be given sequences. Let K and L be real

numbers. Assume that

(1) lim
x→+∞

an = K,

(2) lim
x→+∞

bn = L.

Then the following statements hold.

(A) If cn = an + bn, n ∈ N, then lim
x→+∞

cn = K + L.

(B) If cn = anbn, n ∈ N, then lim
x→+∞

cn = KL.

(C) If L 6= 0 and cn =
an
bn

, n ∈ N, then lim
x→+∞

cn =
K

L
.

Theorem 7.2.8. Let {an}+∞
n=1 and {bn}+∞

n=1 be given sequences. Let K and L be real numbers.
Assume that

(1) lim
x→+∞

an = K.

(2) lim
x→+∞

bn = L.

(3) There exists a natural number n0 such that

an ≤ bn for all n ≥ n0.

Then K ≤ L.
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Theorem 7.2.9. Let {an}+∞
n=1, {bn}+∞

n=1 and {sn}+∞
n=1 be given sequences. Assume the following

1. The sequence {an}+∞
n=1 converges to the limit L.

2. The sequence {bn}+∞
n=1 converges to the limit L.

3. There exists a natural number n0 such that

an ≤ sn ≤ bn for all n > n0.

Then the sequence {sn}+∞
n=1 converges to the limit L.

Prove this theorem.

7.3 Sufficient conditions for convergence

Many limits of sequences cannot be found using theorems from the previous section. For example,
the recursively defined sequences (a), (b), (c), (d) and (e) in Example 7.1.3 converge but it cannot
be proved using the theorems that we presented so far.

Definition 7.3.1. Let {sn}+∞
n=1 be a sequence of real numbers.

1. If a real number M satisfies

sn ≤ M for all n ∈ N

then M is called an upper bound of {sn}+∞
n=1 and the sequence {sn}+∞

n=1 is said to be bounded
above.

2. If a real number m satisfies
m ≤ sn for all n ∈ N,

then m is called a lower bound of {sn}+∞
n=1 and the sequence {sn}+∞

n=1 is said to be bounded
below.

3. The sequence {sn}+∞
n=1 is said to be bounded if it is bounded above and bounded below.

Theorem 7.3.2. If a sequence converges, then it is bounded.

Proof. Assume that a sequence {an}+∞
n=1 converges to L. By Definition 7.2.1 this means that for

each ǫ > 0 there exists a number N(ǫ) such that

n ∈ N, n > N(ǫ) ⇒ |an − L| < ǫ.

In particular for ǫ = 1 > 0 there exists a number N(1) such that

n ∈ N, n > N(1) ⇒ |an − L| < 1.

Let n0 be the largest natural number which is ≤ N(1). Then n0 + 1, n0 + 2, . . . are all > N(1).
Therefore

|an − L| < 1 for all n > n0.
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This means that
L− 1 < an < L+ 1 for all n > n0.

The numbers L− 1 and L+ 1 are not lower and upper bounds for the sequence since we do not
know how they relate to the first n0 terms of the sequence. Put

m = min{a1, a2, . . . , an0 , L− 1}
M = max{a1, a2, . . . , an0 , L+ 1}.

Clearly

m ≤ an for all n = 1, 2, . . . , n0

m ≤ L− 1 < an for all n > n0.

Thus m is a lower bound for the sequence {an}+∞
n=1.

Clearly

an ≤M for all n = 1, 2, . . . , n0

an < L+ 1 ≤M for all n > n0.

Thus M is an upper bound for the sequence {an}+∞
n=1.

Is the converse of Theorem 7.3.2 true? The converse is: If a sequence is bounded, then it
converges. Clearly a counterexample to the last implication is the sequence (−1)n, n ∈ N. This
sequence is bounded but it is not convergent.

The next question is whether boundedness and an additional property of a sequence can
guarantee convergence. It turns out that such an property is monotonicity defined in the following
definition.

Definition 7.3.3. A sequence {sn}+∞
n=1 of real numbers is said to be

non-decreasing if sn ≤ sn+1 for all n ∈ N,

strictly increasing if sn < sn+1 for all n ∈ N,

non-increasing if sn ≥ sn+1 for all n ∈ N.

strictly decreasing if sn > sn+1 for all n ∈ N.

A sequence with either of these four properties is said to be monotonic.

The following two theorems give powerful tools for establishing convergence of a sequence.

Theorem 7.3.4. If {sn}+∞
n=1 is non-decreasing and bounded above, then {sn}+∞

n=1 converges.

Theorem 7.3.5. If {sn}+∞
n=1 is non-increasing and bounded below, then {sn}+∞

n=1 converges.

To prove these theorems we have to resort to the most important property of the set of real
numbers: the Completeness Axiom.

The Completeness Axiom. If A and B are nonempty subsets of R such that for every a ∈ A
and for every b ∈ B we have a ≤ b, then there exists c ∈ R such that a ≤ c ≤ b for all a ∈ A and
all b ∈ B.
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Proof of Theorem 7.3.4. Assume that {sn}+∞
n=1 is a non-decreasing sequence and that it is bounded

above. Since {sn}+∞
n=1 is non-decreasing we know that

s1 ≤ s2 ≤ s3 ≤ · · · ≤ sn−1 ≤ sn ≤ sn+1 ≤ · · · . (7.3.1)

Let A be the range of the sequence {sn}+∞
n=1. That is A =

{
sn : n ∈ N

}
. Clearly A 6= ∅. Let

B be the set of all upper bounds of the sequence {sn}+∞
n=1. Since the sequence {sn}+∞

n=1 is bounded
above, the set B is not empty. Let b ∈ B be arbitrary. Then b is an upper bound for {sn}+∞

n=1.
Therefore

sn ≤ b for all n ∈ N.

By the definition of A this means

a ≤ b for all a ∈ A.

Since b ∈ B was arbitrary we have

a ≤ b for all a ∈ A and for all b ∈ B.

By the Completeness Axiom there exists c ∈ R such that

sn ≤ c ≤ b for all n ∈ N and for all b ∈ B. (7.3.2)

Thus c is an upper bound for {sn}+∞
n=1 and also c ≤ b for all upper bounds b of the sequence

{sn}+∞
n=1. Therefore, for an arbitrary ǫ > 0 the number c− ǫ (which is < c) is not an upper bound

of the sequence {sn}+∞
n=1. Consequently, there exists a natural number N(ǫ) such that

c− ǫ < s
N(ǫ)

. (7.3.3)

Let n ∈ N be any natural number which is > N(ǫ). Then the inequalities (7.3.1) imply that

s
N(ǫ)

≤ sn. (7.3.4)

By (7.3.2) the number c is an upper bound of {sn}+∞
n=1. Hence we have

sn ≤ c for all n ∈ N. (7.3.5)

Putting together the inequalities (7.3.3), (7.3.4) and (7.3.5) we conclude that

c− ǫ < sn ≤ c for all n ∈ N such that n > N(ǫ). (7.3.6)

The relationship (7.3.6) shows that for n ∈ N such that n > N(ǫ) the distance between numbers
sn and c is < ǫ. In other words

n ∈ N, n > N(ǫ) implies |sn − c| < ǫ.

This is exactly the implication in Definition 7.2.1. Thus, we proved that

lim
n→+∞

sn = c.
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Example 7.3.6. Prove that the sequence

tn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
− lnn, n = 1, 2, 3, . . . ,

converges.

Solution. Use the definition of ln as the integral to prove that for n > 1

tn >

∫ n

1

(
1

Floor(x)
− 1

x

)

dx.

Deduce that tn > 0.
Represent

tn − tn+1 =
(
ln(n+ 1)− lnn

)
− 1

n+ 1

as an area (or a difference of two areas). Conclude that tn − tn+1 > 0.
Now use one of the preceding theorems.

8 Infinite series of real numbers

8.1 Definition and basic examples

The most important application of sequences is the definition of convergence of an infinite series.
From the elementary school you have been dealing with addition of numbers. As you know the
addition gets harder as you add more and more numbers. For example it would take some time
to add

S100 = 1 + 2 + 3 + 4 + 5 + · · ·+ 98 + 99 + 100

It gets much easier if you add two of these sums, and pair the numbers in a special way:

2S100 = 1 + 2 + 3 + 4 + · · ·+ 97 + 98 + 99 + 100

100 + 99 + 98 + 97 + · · ·+ 4 + 3 + 2 + 1

A straightforward observation that each column on the right adds to 101 and that there are 100
such columns yields that

2S100 = 101 · 100, that is S100 =
101 · 100

2
= 5050.

This can be generalized to any natural number n to get the formula

Sn = 1 + 2 + 3 + 4 + 5 + · · ·+ (n− 1) + n =
(n + 1)n

2
.

This procedure indicates that it would be impossible to find the sum

1 + 2 + 3 + 4 + 5 + · · ·+ n + · · ·

where the last set of · · · indicates that we continue to add natural numbers.


