
Decimal expansions

The integers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are called digits, or more precisely, decimal digits. We set
D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Theorem 1. Let d : N → D be a sequence of digits. Prove that the series

+∞
∑

k=1

dk
10k

converges to a number in the interval [0, 1]

Proof. To prove that the series
∑+∞

k=1

dk

10k
converges, we need to prove that the sequence of partial

sums

Sn =
n

∑

k=1

dk
10k

for all n ∈ N,

converges. First observe that for all n ∈ N we have

Sn+1 − Sn =
dn+1

10n+1
≥ 0.

(The last inequality holds since dn+1 ≥ 0 and 10n+1 > 0.) Consequently Sn ≤ Sn+1 for all n ∈ N,
that is the sequence Sn, n ∈ N, is nondecreasing. Next we will prove that this sequence is bounded
above. For all k ∈ N we have that

dk ≤ 9

and therefore, since 10k > 0, we have

dk
10k

≤
9

10k
.

Consequently, for all n ∈ N we have

Sn =
n

∑

k=1

dk
10k

≤
n

∑

k=1

9

10k
.

When we discussed geometric series we proved that

n
∑

k=1

9

10k
=

9

10

1− 1

10n

1− 1

10

.

Since clearly
9

10

1− 1

10n

1− 1

10

<
9

10

1

1− 1

10

= 1.

The last three displayed relations prove that

Sn < 1 for all n ∈ N.
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Since we proved that the sequence Sn, n ∈ N, is nondecreasing and bounded above, the Monotone
convergence theorem implies that this sequence converges. This proves that the series

∑

∞

k=1

dk

10k

converges. Denote the sum of this series by s, that is

s = lim
n→+∞

Sn.

We clearly have 0 ≤ Sn ≤ 1 for all n ∈ N. By Theorem 7.2.8 in the notes these inequalities imply

0 ≤ s ≤ 1.

This proves the theorem.

If d : N → D is a sequence of digits and

s =
+∞
∑

k=1

dk
10k

,

then the series
∑+∞

k=1

dk

10k
is called a decimal expansion of the number s. This series is commonly

written as
s = 0.d1d2d3d4d5 . . .

A famous decimal expansion is

0.1415926535897932384626433832795028841971 . . . .

Here

d1 = 1, d2 = 4, d3 = 1, d4 = 5, d5 = 9, d6 = 2, d7 = 6, d8 = 5, d9 = 3, d10 = 5, d11 = 8, d12 = 9, . . . .

In the next theorem we prove that each real number in [0, 1) has a decimal expansion.

Theorem 2. Let x be an arbitrary number in [0, 1) and set

dn = ⌊10n x⌋ − 10 ⌊10n−1 x⌋ for all n ∈ N.

Then dn ∈ D for all n ∈ N and

x =
+∞
∑

k=1

dk
10k

.

Proof. First prove that dn ∈ D for all n ∈ N. For arbitrary n ∈ N we clearly have dn ∈ Z. We
also have the following two inequalities

dn = ⌊10nx⌋ − 10⌊10n−1x⌋ ≥ ⌊10nx⌋ − 10 10n−1x > −1

and
dn = ⌊10nx⌋ − 10⌊10n−1x⌋ ≤ 10nx− 10⌊10n−1x⌋ = 10

(

10n−1x− ⌊10n−1x⌋
)

< 10.

Thus, dn is an integer and −1 < dn < 10. This proves that dn ∈ D.
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Let n ∈ N be arbitrary. Calculate

Sn =
n

∑

k=1

dk
10k

=
d1
10

+
d2
102

+
d3
103

+ · · ·+
dn−1

10n−1
+

dn
10n

=
⌊10x⌋ − 10⌊x⌋

10
+

⌊102x⌋ − 10⌊10x⌋

102
+

⌊103x⌋ − 10 ⌊102x⌋

103

+ · · ·+
⌊10n−1x⌋ − 10⌊10n−2x⌋

10n−1
+

⌊10n x⌋ − 10 ⌊10n−1 x⌋

10n

=

(

⌊10x⌋

10
− 0

)

+

(

⌊102x⌋

102
−

⌊10x⌋

10

)

+

(

⌊103x⌋

103
−

⌊102x⌋

102

)

+ · · ·+

(

⌊10n−1x⌋

10n−1
−

⌊10n−2x⌋

10n−2

)

+

(

⌊10nx⌋

10n
−

⌊10n−1x⌋

10n−1

)

=
⌊10nx⌋

10n
.

Since
⌊10nx⌋ ≤ 10nx < ⌊10nx⌋ + 1,

we have
0 ≤ 10nx− ⌊10nx⌋ < 1,

and therefore, since 10n > 0,

0 ≤ x−
⌊10nx⌋

10n
<

1

10n
.

Consequently, for all n ∈ N we have

0 ≤ x− Sn <
1

10n
.

This is like a BIN. Let ǫ > 0 be arbitrary. Set N(ǫ) = − log ǫ. Then n > N(ǫ) implies n > log(1/ǫ),
and thus 10n > 1/ǫ. Consequently 1/(10n) < ǫ. Since, by BIN, 0 ≤ x − Sn < 1/(10n) we deduce
that |x− Sn| < ǫ. This proves that

x = lim
n→+∞

Sn =
+∞
∑

k=1

dk
10k

.

The reasoning presented here can be adopted to any numeral system with a base b, where b
is a natural number greater than 1. For example, in the hexadecimal numeral system the digits
listed in increasing order are

Dhex = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,D,E, F}.

In the hexadecimal numeral system the famous decimal expansion mentioned before becomes

0.243F6A8885A308D313198A2E03707344A4093822 . . . ,

which is certainly not that famous.
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Exercise 3. Some of us are lucky enough to have the initials which are hexadecimal digits. So,
we might be curious which number has hexadecimal expansion 0.BCBCBCBCBC.... For the full
entertainment value, represent this number as a fraction of two natural numbers in hexadecimal
numeral system.

Exercise 4. You might think that the previous exercise is somewhat egotistical. If that is the
case, or in any case, repeat the previous exercise for the number 0.ABCABCABCABCABC....
But in this case, please do not forget to simplify the fraction.
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