ON TWO COMMON SEQUENCES

BRANKO CURGUS

The following two sequences are commonly used to define the number e as their

limit:
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Here N denotes the set of all positive integers.
In this note we give a direct and easy-to-remember proof that the sequences
{P,} and {S,,} converge to the same limit.

1. PRELIMINARIES

We first recall the binomial theorem which states that for all real numbers z and
y, and all positive integers m,

m - m m—
@+y)m=> (k>w Ryt

k=0
where (ZL) = k,(r’n’iik), are binomial coefficients.
We will also use the familiar formula
k—1k
1+2+...+k_1:%’

which, as the story goes (see [I] for an impressive detailed account), Carl Friedrich
Gauss discovered shortly after his seventh birthday.
Further, we will use the following three limit theorems.

Squeeze Theorem. If {a,}, {b,} and {c,} are sequences such that a, < b, < ¢,
for all n € N and both {a,} and {c,} converge to the same limit L, then {b,}
converges to L.

Sum of Limits Theorem. If {a,} converges to K and {b,} converges to L, then
the sequence {a, + b,} converges to K + L.

Monotone Convergence Theorem. An increasing sequence which is bounded
above converges.

2. REsSuULTS

Proposition 1. The sequence {S,} is increasing and bounded above by 3.
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Proof. The sequence {S,,} is increasing since
1

Sn+1—5n2m>0 for all n € N.

Clearly S; < 3. Further, notice that 1/k! < 1/((k — 1)k) for all integers k with
k > 2. Therefore, for all integers n greater than 1 we have

S l+1+1+1+ L L
"o 2t 3! (n—l)! n!
S R LI S ! T
- 1-2 2.3 m=2)(n—1) (n—1)n

. 1 1 n 1 l
n—2 n-—1 n—1 n

_g_1
N n
<3
This proves that 3 is an upper bound for {S,}. O

Proposition 2. For all n € N we have
3
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Proof. A straightforward calculations confirm that is true for n =1 and n = 2.
Now let n be an integer greater than 2. The following proof of is a succession
of five steps each suggesting the next one.

1. The binomial theorem with 2 = 1, y = 1/n and m = n yields an expanded
expression for P,:

P( ) Zm **””Zk. lnk (2)

2. For k € {2,...,n}, we rewrite the coefficient with 1/k! in as the product
of k — 1 factors:
n! nn—1)---(n—k+1)
(n—k)Ink nk
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3. Notice that 1 is an upper bound for since all the factors in are positive
and less then 1.

4. Next we look for a lower bound for the product in . We proceed recursively.
At each step, in some sense, we turn a product into a sum. For k = 2 the product
in has only one term and obviously
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Multiplying both sides by (1—2), then expanding the right-hand side and dropping
a positive term, we get a lower bound for k = 3:

I
n n n n n
Now multiply both sides by (1 — %) we similarly get a lower bound for k = 4:
1 2 1+2 1+2
(-D0-)(-)- (-8t
n n n n n n
Repeating this process a total of k — 1 times yields:

(1—11)(1_73)...(1_’“”1) >1_1+~~~J7rl(k:fl):1_(k;n1)k.

We record the upper and lower bound for the product in as follows: For all
ke€{2,...,n} we have

1—

(k—1)k n!
< <1 4
2n nk(n —k)! )
5. We apply the inequalities from to the most right expression in to estab-
lish the inequalities for P,:

"1 (k- 1k —~ 1
1+1+;k!(1—2n><Pn<1+1+ka!~1—Sn- ()
=2 =2

A simplification of the left-hand side of leads to

"1 &1 (k-1Dk 1 & 1 1
Zk! Zk! 2n " 2nz(k—2)! "ot
k=0 k=2 k=2
Further, since S,,_2 < 3, we also have
1 3
Sn—%5n72>5n—%
Consequently, the left-hand side of is greater than S,, —3/(2n). This proves

for all n > 2 and completes the proof of the proposition. O
Theorem 3. The sequences {P,} and {S,} converge to the same limit.

Proof. Since by Proposition [1| the sequence {S,,} is increasing and bounded above,
the Monotone Convergence Theorem implies that it converges. The sequence
{—2/(3n)} converges to 0, by the Sum of Limits Theorem, the sequence {Sn —
2/(3n)} converges to the limit of {S,}. Now, by Proposition [2{ and the Squeeze
Theorem the sequence {P,} converges to the the limit of {S,}. O

Theorem [3] justifies the following definition.
Definition 4. The number e is the common limit of the sequences { P, } and {5, }.
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