
Infinite Series
- Geometric series

- Harmonic Series

- Telescopic Series
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A big question is : Why
does this

series converge ? The answer
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③ The sequence of Harmonic numbers
is unbounded .
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The sequence of Hn diverges
since it is unbounded .

Above we proved that Ham > MEI threw
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Then we know that
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In general , for
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This shows that the Harmonic
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not bounded .



Exercise Prove that the infinite series

⇐ ¥* diverges .


