The number e is irrational

Branko éurgus
November 11, 2020

Here we use the following definition of e:
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Lemma 1. For every m,n € N we have
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Proof. Let m,n € N. For n < m the inequality is clear. If n > m we have
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The following theorem is proved somewhere else. It is the background knowledge in this context.

Theorem 2. Let L € R and let {s,}, be a convergent sequence with the limit L. Let a,b € R be
such that for some ng € N we have
a<s,<b

for all n € N such that n > ng. Then a < L <b.
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Applying Theorem 2 to inequality (1) and the definition of e \ge obtain the following corollary.
Corollary 3. For every m € N we have — 6
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In particular, with m = 3,
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Theorem 4. For all p € Z and and all ¢ € N we have
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Proof. Since e is positive, (4) holds for all ¢ € N and all p € Z such that p < 0. VA = 9\

Let ¢ € N be such that ¢ > 1. By (2) we have

5
2 2 2
0<q'<€—zk,>—‘ﬂ(q <3 2

— +1) g+1

If ¢ = 1, then by (3)
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From the preceding two displayed inequalities we have
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Let p,q € N.. Then A
ey = q!
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Since |
vk e {0,1,....q} %ez,
equality (6) yields
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From (5)and (7) we deduce
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Consequently,
VpeN VgeN e;ég.

Together with the first sentence of this proof, this proves the theorem. O



