
All about the set
{
x ∈ Z : x > 0 and x ≤ 1

}
Proposition 1. The only element of the set

{
x ∈ Z : x > 0 and x ≤ 1

}
is the number 1.

Proof. Set S :=
{
x ∈ Z : x > 0 and x ≤ 1

}
. Since we proved 0 < 1 and

clearly 1 ≤ 1, we have 1 ∈ S. Thus S 6= ∅. Since by definition 0 < x for all
x ∈ S, the set S is bounded below by zero. Therefore, the Well-Ordering
Axiom the set S has a minimum. Set m := minS. The integer m has the
following two properties:

m ∈ S,

m ≤ x for all x ∈ S.

Since m ∈ S, m > 0 and m ≤ 1. Therefore, by Axiom 15 applied twice,
m2 > 0 and m2 ≤ m. The last inequality, Axiom 13 and m ≤ 1 imply
m2 ≤ 1. Hence m2 ∈ S. Since m is the minimum of S, we have m ≤ m2.
Since we already proved m2 ≤ m, it follows that m2 = m; that is m m = 1m.
Since we know that m 6= 0, Axiom 10 implies m = 1.

Let x be an arbitrary number in S. Then, by definition of S, x ≤ 1.
Since 1 = min S, 1 ≤ x. Hence x = 1. This proves that 1 is the only element
in S.

Proposition 2. Let k ∈ Z. Then
{
x ∈ Z : x > k and x ≤ k+1

}
= {k+1}.

Proof. Set, as before,

S :=
{
x ∈ Z : x > 0 and x ≤ 1

}
and

T :=
{
x ∈ Z : x > k and x ≤ k + 1

}
.

We will prove the following equivalence:

x ∈ T ⇔ x− k ∈ S.

Assume x ∈ T . Then x > k and x ≤ k + 1. By Axiom 14, x − k > 0 and
x− k ≤ 1. Therefore x− k ∈ S.

Now assume x− k ∈ S. Then, x− k > 0 and x− k ≤ 1. By Axiom 14,
x > k and x ≤ k + 1. Therefore x ∈ T .
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By Proposition 1, x− k ∈ S if and only if x− k = 1. Clearly, x− k = 1
if and only if x = k + 1. Thus,

x− k ∈ S ⇔ x = k + 1.

The last two displayed equivalences yield

x ∈ T ⇔ x = k + 1.

The last equivalence implies T = {k + 1}.
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