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Problem 1. Let a, b, c, j, k be positive integers such that

a = cj, b = ck.

(a) Prove the implication: If lcm(j, k) = m, then lcm(a, b) = cm.

(b) Is the converse implication true? Justify your answer.

Proof. Let
S =

{

x ∈ Z : x > 0, j|x, k|x
}

and
T =

{

y ∈ Z : y > 0, a|y, b|y
}

.

By Proposition 1.3.9 the set S has a minimum and T has a minimum. By Definition 2.1.6

lcm(j, k) = min S and lcm(a, b) = min T.

Proof of (a). Assume that m = lcm(j, k) = min S. Then m ∈ S, that is m is a positive multiple
of j and k. Therefore, there exist integers u, v such that m = uj, m = vk. Multiplying the last
two equations by c we get mc = ujc and mc = vkc. Since a = cj and b = ck, we get mc = ua and
mc = vb. Thus mc is a multiple of both a and b. Moreover, since c > 0, mc > 0. Hence mc ∈ T .
Therefore lcm(a, b) ≤ mc.

I still need to prove lcm(a, b) ≥ mc. Here is a proof. To prove this I will use the fact that
m = min S. Set n = lcm(a, b). Then n is a positive common multiple of a and b. Therefore, there
exist w, z ∈ Z such that n = aw, n = bz. Since a = cj and b = ck, we get n = cjw, n = ckz.
Thus n is a multiple of c and n = cf where f = jw = kz. Since both n and c are positive f is
positive. Also f is a common multiple of j and k. Therefore f ∈ S. Hence f ≥ m. Since c > 0,
we get fc ≥ mc. Recall that n = cf . Thus, n ≥ mc. So, we proved lcm(a, b) ≥ mc.

Proof of (b). The converse implication is true and the proof is similar to the proof of (a).
Assume that mc = lcm(a, b) = min T . Then mc ∈ T , that is mc is a positive multiple of a and

b. Therefore, there exist integers q, r such that mc = qa, mc = rb. Since a = cj and b = ck, we
get mc = qjc and mc = rkc. Therefore m = qj = rk. Thus m is a positive common multiple of j
and k. That is, m ∈ S. Therefore m ≥ lcm(j, k).

I still need to prove lcm(j, k) ≥ m. Here is a proof. To prove this I will use the fact that
mc = min T . Set o = lcm(j, k). Then o is a positive common multiple of j and k. Therefore,
there exist s, t ∈ Z such that o = sj, o = tk. Multiplying the last two equalities by c we get
oc = sjc = tkc. Since a = cj and b = ck, we get oc = sa = tb. Thus oc is a common multiple of
a and b. Moreover oc is positive. Thus oc ∈ T . Therefore oc ≥ mc. Since c > 0 we conclude that
o ≥ m. Thus lcm(j, k) ≥ m is proved.

Before before doing remaining problems I will prove two lemmas.

Lemma 1. If a and b are relatively prime and c > 0, then gcd(ac, bc) = c.



Proof. Assume that a and b are relatively prime and c > 0. Set d = gcd(ac, bc). Clearly c is a
common divisor of both ac and bc. Since d is the greatest common divisor of ac and bc we get
c ≤ d. By Theorem 2.1.3 there exist x, y ∈ Z such that ax + by = 1. Multiplying by c we get
acx + bcy = c. Since d is common divisor of ac and bc, there exist u, v ∈ Z such that ac = du and
bc = dv. Hence dux+ dvy = c. Thus d(ux+ vy) = c. Since both d and c are positive, we conclude
that ux + vy is positive and consequently d ≤ c. So, we proved c ≤ d and d ≤ c. Consequently
d = c.

Lemma 2. Let c ∈ Z. If d is a positive integer such that d|c and d|(c + 1), then d = 1.

Proof. Assume that d > 0, d|c and d|(c + 1) Consequently d|(−c). By Proposition 1.2.3 we get
d|

(

(c + 1) − c
)

, that is d|1. Since d > 0 we deduce that d = 1.

Problem 2. Let k ∈ N. Let tk =
k(k + 1)

2
be the k-th triangular number. Find the formula for

gcd(tk, tk+1) in terms of k. Prove that your formula is correct.

Proof. If k is even, then gcd(tk, tk+1) = k +1. Assume that k is even and set k = 2j, where j ∈ N.
Then tk = j(2j + 1) and tk+1 = (2j + 1)(j + 1). Since gcd(j, j + 1) = 1, by Lemma1, we conclude
that gcd(tk, tk+1) = 2j + 1 = k + 1. (Here is a proof that gcd(j, j + 1) = 1. Set d = gcd(j, j + 1).
Then d|(j + 1) and d|j. By Lemma 2, d = 1. Thus gcd(j, j + 1) = 1.)

If k is odd, then gcd(tk, tk+1) = (k + 1)/2. Assume that k is odd and set k = 2j − 1, where
j ∈ N. Then tk = (2j−1)j and tk+1 = j(2j+1). Next I will prove that Since gcd(2j−1, 2j+1) = 1.
Set d = gcd(2j − 1, 2j + 1). Then d|(2j − 1) and d|(2j + 1). Consequently, d|

(

(2j + 1)− (2j − 1),
that is d|2. Hence d = 1 or d = 2. Since 2j + 1 is odd, 2 does not divide 2j + 1. Since d|(2j + 1)
we conclude d 6= 2. Therefore, d = 1. By Lemma1, since gcd(2j − 1, 2j + 1) = 1 we have
gcd((2j − 1)j, (2j + 1)j) = j. Since tk = (2j − 1)j, tk+1 = j(2j + 1) and j = (k + 1)/2, the claim
is proved.

Problem 3. Let a and b be nonzero integers. Prove that a and b are relatively prime if and only
if there exists an integer c such that a|c and b|(c + 1).

Proof. Assume that a and b are relatively prime. Then gcd(a, b) = 1. By Theorem 2.1.3 there
exist x, y ∈ Z such that ax+by = 1. Set c = −ax. Then, a|c. Also, by = 1−ax = 1+c. Therefore
b|(c + 1). This proves the existence of c ∈ Z such that a|c and b|(c + 1).

Assume that there exists c ∈ Z such that a|c and b|(c + 1). Let d = gcd(a, b). Then d is a
positive number and d|a and d|b. Since a|c and b|(c + 1), we conclude that d|c and d|(c + 1). By
Lemma 2 we deduce that d = 1. Thus, a and b are relatively prime.

Problem 4. Let a and b be integers, not both zero. Let d = gcd(a, b). Prove that gcd(a2, b2) = d2.
(Hint: First consider the special case of relatively prime integers a and b.)

Proof. Let a and b be integers, not both zero. Assume that gcd(a, b) = 1. Set g = gcd(a2, b2). I
need to prove that g = 1. (I will use Michael’s brilliant idea here.) By Theorem 2.1.3 there exist
integers x and y such that ax + by = 1. Now do some algebra

1 = 13 = (ax + by)3 = a3x3 + 3a2x2by + 3axb2y2 + b3y3 = a2
(

ax3 + 3x2by
)

+ b2
(

3axb2y2 + by3
)

.

Set u = ax3 + 3x2by and v = 3axb2y2 + by3. Thus a2u + b2v = 1. Since g = gcd(a2, b2), there exist
s, t ∈ Z such that a2 = gs and b2 = gt. Hence

1 = a2u + b2v = gsu + gtv = g(su + tv),



that is g|1. Since g > 0 we conclude g = 1. This completes the first part of the proof.
Now assume that d = gcd(a, b) > 1. Then there exist j, k ∈ Z such that a = dj and b = dk.

By Proposition 2.2.5 it follows that gcd(j, k) = 1. By the first part of this proof it follows that
gcd

(

j2, k2
)

= 1. Since a2 = d2j2 and b2 = d2k2 and since j2 and k2 are relatively prime, Lemma 1
implies that

gcd(a2, b2) = gcd
(

d2j2, d2k2
)

= d2.

Problem 5. Let a and b be positive integers. Prove that (b2)|(a2) if and only if b|a.

Proof. Assume first that b|a. Then there exists u ∈ Z such that a = bu. Then a2 = b2u2. Since
u2 ∈ Z and b2 > 0, this means (b2)|(a2).

Now assume that (b2)|(a2). Set d = gcd(a, b). Then by Problem 4, gcd(a2, b2) = d2. But, since
(b2)|(a2), we know that gcd(a2, b2) = b2. Hence d2 = b2, that is

0 = d2 − b2 = (d − b)(d + b).

Since b > 0 and d > 0 we have d+b > 0. Therefore, d−b = 0, that is d = b. Since d|a we conclude
that b|a.


