Assignment 1
MATH 302 May 7, 2009 Solutions
Problem 1. Let a, b, c, 7, k be positive integers such that
a=cj, b=ck.
(a) Prove the implication: If lem(j, k) =m, then lcm(a,b) = cm.

(b) Is the converse implication true? Justify your answer.

Proof. Let
S={z€Z:x>0, jlz, klz}

and
T={yeZ:y>0, aly, bly}.

By Proposition 1.3.9 the set S has a minimum and 7" has a minimum. By Definition 2.1.6
lem(j, k) = min S and lem(a, b) = min 7.

Proof of (a). Assume that m = lem(j, k) = min S. Then m € S, that is m is a positive multiple
of j and k. Therefore, there exist integers u, v such that m = uj, m = vk. Multiplying the last
two equations by ¢ we get mc = ujc and mc = vke. Since a = ¢j and b = ck, we get mc = ua and
mc = vb. Thus mec is a multiple of both a and b. Moreover, since ¢ > 0, mc > 0. Hence mc € T.
Therefore lem(a, b) < me.

[ still need to prove lem(a,b) > mec. Here is a proof. To prove this I will use the fact that
m =min S. Set n = lem(a,b). Then n is a positive common multiple of a and b. Therefore, there
exist w, z € Z such that n = aw, n = bz. Since a = ¢j and b = ck, we get n = cjw, n = ckz.
Thus n is a multiple of ¢ and n = ¢f where f = jw = kz. Since both n and c are positive f is
positive. Also f is a common multiple of j and k. Therefore f € S. Hence f > m. Since ¢ > 0,
we get fc > me. Recall that n = ¢f. Thus, n > me. So, we proved lem(a, b) > me.

Proof of (b). The converse implication is true and the proof is similar to the proof of (a).

Assume that mec = lem(a,b) = minT. Then mc € T, that is mc is a positive multiple of a and
b. Therefore, there exist integers ¢,r such that mc = ga, mec = rb. Since a = ¢j and b = ck, we
get mc = qjc and mc = rkc. Therefore m = qj = rk. Thus m is a positive common multiple of j
and k. That is, m € S. Therefore m > lem(j, k).

[ still need to prove lem(j, k) > m. Here is a proof. To prove this I will use the fact that
me = minT. Set o = lem(j, k). Then o is a positive common multiple of j and k. Therefore,
there exist s,t € Z such that o = sj, o = tk. Multiplying the last two equalities by ¢ we get
oc = sjc = tke. Since a = ¢j and b = ck, we get oc = sa = tb. Thus oc is a common multiple of
a and b. Moreover oc is positive. Thus oc € T. Therefore oc > mec. Since ¢ > 0 we conclude that
o > m. Thus lem(j, k) > m is proved. O

Before before doing remaining problems I will prove two lemmas.

Lemma 1. If a and b are relatively prime and ¢ > 0, then ged(ac, be) = c.



Proof. Assume that a and b are relatively prime and ¢ > 0. Set d = ged(ac, be). Clearly ¢ is a
common divisor of both ac and bc. Since d is the greatest common divisor of ac and be we get
¢ < d. By Theorem 2.1.3 there exist z,y € Z such that ax + by = 1. Multiplying by ¢ we get
acx + bey = c. Since d is common divisor of ac and bc, there exist u,v € Z such that ac = du and
bc = dv. Hence dux + dvy = ¢. Thus d(ux 4 vy) = ¢. Since both d and ¢ are positive, we conclude
that ux + vy is positive and consequently d < c¢. So, we proved ¢ < d and d < ¢. Consequently
d=c. O

Lemma 2. Let ¢ € Z. If d is a positive integer such that d|c and d|(c + 1), then d = 1.

Proof. Assume that d > 0, d|c and d|(c + 1) Consequently d|(—c). By Proposition 1.2.3 we get
d|((c+ 1) —c), that is d|1. Since d > 0 we deduce that d = 1. O

Problem 2. Let k € N. Let t;, = M

ged(ty, tyy1) in terms of k. Prove that your formula is correct.

be the k-th triangular number. Find the formula for

Proof. If k is even, then ged(tx, txr1) = k+ 1. Assume that k is even and set k = 2j, where j € N.
Then t;, = j(2j + 1) and tx41 = (27 +1)(j + 1). Since ged(j, 7+ 1) = 1, by Lemmal, we conclude
that ged(ty, tkr1) = 25+ 1 =k + 1. (Here is a proof that ged(j,j +1) = 1. Set d = ged(j,j + 1).
Then d|(j + 1) and d|j. By Lemma 2, d = 1. Thus ged(j,j + 1) = 1.)

If k£ is odd, then ged(t, txt1) = (kK + 1)/2. Assume that k is odd and set k = 2j — 1, where
j € N. Then t, = (27—1)j and tx1 = j(2j+1). Next I will prove that Since ged(2j—1,2j+1) = 1.
Set d = ged(2j — 1,25 +1). Then d|(2j — 1) and d|(2j + 1). Consequently, d|((2j + 1) — (2j — 1),
that is d|2. Hence d =1 or d = 2. Since 2j + 1 is odd, 2 does not divide 25 + 1. Since d|(25 + 1)
we conclude d # 2. Therefore, d = 1. By Lemmal, since ged(2j — 1,25 + 1) = 1 we have
ged((25 — 1)4, (24 +1)j) = j. Since tx = (2§ — 1)j, tyr1 = j(24 + 1) and j = (k + 1)/2, the claim
is proved. O

Problem 3. Let a and b be nonzero integers. Prove that a and b are relatively prime if and only
if there exists an integer ¢ such that a|c and b|(c + 1).

Proof. Assume that a and b are relatively prime. Then ged(a,b) = 1. By Theorem 2.1.3 there
exist x,y € Z such that ax+by = 1. Set ¢ = —ax. Then, a|c. Also, by = 1—ax = 1+ c¢. Therefore
b|(c 4+ 1). This proves the existence of ¢ € Z such that a|c and b|(c + 1).

Assume that there exists ¢ € Z such that a|c and b|(c + 1). Let d = ged(a,b). Then d is a
positive number and d|a and d|b. Since a|c and b|(c + 1), we conclude that d|c and d|(c+ 1). By
Lemma 2 we deduce that d = 1. Thus, a and b are relatively prime. O

Problem 4. Let a and b be integers, not both zero. Let d = ged(a, b). Prove that ged(a?, b?) = d2.
(Hint: First consider the special case of relatively prime integers a and b.)

Proof. Let a and b be integers, not both zero. Assume that ged(a,b) = 1. Set g = ged(a?,0?). 1
need to prove that g = 1. (I will use Michael’s brilliant idea here.) By Theorem 2.1.3 there exist
integers x and y such that ax + by = 1. Now do some algebra

1 =1°= (azx + by)® = &®2® + 3a®2%by + 3azb®y* + b*y® = o? (ax3 + 3x2by) + b (3axbzy2 + by?’).

Set u = ax® + 3z%by and v = 3axb®y? + by>. Thus a’u + b*v = 1. Since g = ged(a?, b?), there exist
s,t € Z such that a®> = ¢gs and b*> = gt. Hence

1 = a*u + b*v = gsu + gtv = g(su + tv),



that is g|1. Since g > 0 we conclude g = 1. This completes the first part of the proof.

Now assume that d = ged(a,b) > 1. Then there exist j, k € Z such that a = dj and b = dk.
By Proposition 2.2.5 it follows that ged(j, k) = 1. By the first part of this proof it follows that
ged (52, k%) = 1. Since a? = d*j? and b* = d*k? and since j* and k? are relatively prime, Lemma 1
implies that

ged(a?, b?) = gcd(d2j2,d2k2) = d% O

Problem 5. Let a and b be positive integers. Prove that (b%)|(a?) if and only if b|a.

Proof. Assume first that b|a. Then there exists u € Z such that a = bu. Then a* = b*u®. Since
u? € Z and b* > 0, this means (b%)|(a?).

Now assume that (b?)|(a?). Set d = ged(a,b). Then by Problem 4, ged(a?, b?) = d?. But, since
(b%)|(a?), we know that ged(a?, b?) = b?. Hence d? = V?, that is

0=d?— b = (d—b)(d+b).

Since b > 0 and d > 0 we have d+b > 0. Therefore, d—b = 0, that is d = b. Since d|a we conclude
that bla. ]



