A system of two congruences

The following lemma follows easily from Proposition 2.2.3.

Lemma 1. Let a and b be integers and let ny and nsy be relatively prime positive integers. Then
a =b (mod ny) and a = b (mod ny), (1)

if and only if
a =b (mod niny). (2)
Proof. The implication (2) = (1) is clear. Now assume (1). Then n,|(b— a) and ny|(b—a). Since

ny and ny be relatively prime, by Proposition 2.2.3 we have (niny)|(b — a). Hence (2) holds. The
lemma is proved. O

Let a; and ay be integers and let n; and nsy be relatively prime positive integers. Given two
congruences
x = a; (mod ny) and xr = ay (mod ny), (3)

we want to find an integer ¢ and a positive integer m such that x satisfies (3) if and only if =
satisfies
x = ¢ (mod m). (4)

Since ny and ny are relatively prime integers, by Proposition 3.3.2 there exist integers b; and
by such that
biny =1 (mod ny) and bony =1 (mod ny). (5)

Now assume (3) and proceed to construct ¢ and m. From (3) and (5) we have
x = ay (mod ny) and biny = 1 (mod ny),
and consequently
T = a1byny (mod ny).

Since clearly
0 = agbyng (mod ny),

we conclude that
T = a1byng + asbony (mod ny). (6)

Similarly from (3) and (5) we have
T = ay (mod ny) and bany = 1 (mod ny),
and consequently
T = asbeny (mod no).

Since also
0 = ai1byny (mod ny),

we conclude that
T = a1byng + asbony (mod no). (7)



Since n; and ny are relatively prime integers, Lemma 1 and congruences (6) and (7) yield
T = a1bing + asbeny (mod nyny). (8)

Now set ¢ = ai1bing + asbyng and m = niny. With these ¢ and m we proved that (3) implies (4).

Next we prove that (8) implies (3). Assume (8). Then, by Lemma 1,

T = a1byng + asboning (mod ny) and = = arbing + asbaning (mod ny),
Since clearly

0 = asbeny (mod ny) and 0 = a1b1ny (mod ny),
we get

r = a;byny (mod ny) and = = agbeng (mod ny).
Now congruences in (5) imply

a; = a1byng (mod ny) and  ag = agbeny (mod ny).
Therefore,

r = a; (mod ny) and = ay (mod ny),

and (3) is proved.
A system of several congruences

Next we will replace two congruences with r congruences. Here r is a positive integer with
r > 1. Before proceeding with this proof we prove two lemmas.

Lemma 2. Let ny,no,...,n, and s be positive integers. If ged(n;,s) =1 for all j =1,2,...,r,
then
ged(ning -+ n,., s) = 1.

Proof. The contrapositive is easier to prove. Assume that ged(ning---n,,s) > 1. Then there
exists a prime p such that
plegcd(ning - -n,., s).

Since p divides a common divisor of nyns - - -n, and s, we conclude that
pl(mng---n,) and  pls.

By Proposition 2.2.8 there exists k£ € {1,2,...,r} such that p|n,. Hence, p|ged(ng,s) and
consequently ged(ng, s) > 1. Thus, there exists k € {1,2,...,r} such that ged(ng, s) > 1. O



Lemma 3. Let a and b be integers and let ny, ns, ..., n, be positive integers each two of which are
relatively prime. Then

a=b(modn), a=b(modny), ..., a=b(modn,),
if and only if

a=0b (mod niny---n,).

Let a1, as,...,a, be integers and let ny,ns, ..., n, be positive integers each two of which are
relatively prime. That is ged(nj,n,) = 1 whenever j # k and j,k € {1,2,...,7}. Given r
congruences

x=ay (mod ny), x=ay (modny), ..., z=a, (modn,), 9)

we want to find an integer ¢ and a positive integer m such that x satisfies (9) if and only if z
satisfies

x = ¢ (mod m). (10)
We introduce the following notation
m
m=niNg -+ Ny, m;=—, J=12,...,r
1
That is, m is the product of all integers n;,ng,...,n, and m; is the product of r — 1 integers;

namely the integer n; is skipped in this product. Let j be an arbitrary integer in {1,2,...,r}.
Then, by definition m = m;n;. Since ged(n;,ng) = 1 for all k € {1,2,...,r} such that k # j, by
Lemma 2 we have that

ged(mj,nj) = 1.

By the definition of m; we have
ni|m; forall ke {1,2,...,7} suchthat Fk# j.
We proceed similarly as in the case of two congruences. Since n; and m; are relatively prime
integers, by Proposition 3.3.2 there exist integers b; such that
bym; =1 (mod n;) (11)
Now assume (9) and proceed to construct ¢ and m. From (9) and (11) we have
r = a; (mod ny;) and bym; =1 (mod n;),
and consequently
x = a;b;m; (mod n)
For k € {1,2,...,r} such that k # j we have n; |mj. Therefore

0 = agbpymy, (mod n;), ke{l,2,....,r}, k#j.



The last displayed relations contain r congruences. Adding these r congruences we get
r = a1bymy + agbamsy + - - - + a,bym,. (mod n;).
Now set ¢ = a;bymy 4+ asbomsy + - - - + a,.b,m,.. Thus we proved
x = ¢ (mod n;).
Since j € {1,2,...,r} was arbitrary we have
x = ¢ (mod n;) forall  je{l,2,...,r}.

Now Lemma 3 implies
r = ¢ (mod m).
This proves that (9) implies (10).
A proof that (10) implies (9) is left as an exercise.



