
Chapter 3

Congruence

3.1 Congruent Integers

In this section n denotes a positive integer.

Definition 3.1.1. Let n, a and b be integers. If n divides a − b, we say that a and b are
congruent modulo n, and we write

a ≡ b (mod n) .

Example 3.1.2. From the definition: 17 ≡ 2 (mod 5) and −17 ≡ 3 (mod 5) .

Proposition 3.1.3.∗ Let a and b be integers. Then a ≡ b (mod n) if, and only if, a and b leave
the same remainder when divided by n.

Proposition 3.1.4. Let a, b and c be integers. If a ≡ b (mod n) and b ≡ c (mod n) , then
a ≡ c (mod n) .

Proposition 3.1.5. Let a, b, c and d be integers. If a ≡ b (mod n) and c ≡ d (mod n) , then

a + c ≡ b + d (mod n) .

Proposition 3.1.6. Let a, b, c and d be integers. If a ≡ b (mod n) and c ≡ d (mod n) , then

ac ≡ bd (mod n) .

Proposition 3.1.7. Let a and b be integers. If a ≡ b (mod n) , then

gcd(a, n) ≡ gcd(b, n) (mod n) .

Proposition 3.1.8.∗ Let a1, a2, . . . , ar and b1, b2, . . . , br be integers, with r > 1. Suppose that

ai ≡ bi (mod n)

for each value of i. Then

a1 + a2 + · · ·+ ar ≡ b1 + b2 + · · ·+ br (mod n),

a1a2 · · ·ar ≡ b1b2 · · · br (mod n) .
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3.2 Decimal Representation

Definition 3.2.1. We assume in this section that every positive integer has a unique decimal
representation. Let a be a positive integer with decimal representation

a = drdr−1 · · · d1d0 .

That is, r is a non-negative integer, for each i the integer di is between 0 and 9, dr 6= 0, and

a = d0 + d110 + d2102 + · · ·+ dr10r .

The digit sum s, the alternating digit sum t, and the units digit u are given by:

s = d0 + d1 + · · ·+ dr,

t = d0 − d1 + · · · + (−1)rdr,

u = d0 .

Proposition 3.2.2 (Strong Rule of 10).∗ In Definition 3.2.1, a ≡ u (mod 10) .

Proposition 3.2.3 (Strong Rule of 9). In Definition 3.2.1, a ≡ s (mod 9) .

Proposition 3.2.4 (Strong Rule of 11). In Definition 3.2.1, a ≡ t (mod 11) .

Proposition 3.2.5 (Strong Rule of 6). In Definition 3.2.1, a ≡ 4s − 3u (mod 6) .

3.3 Solving Congruences

In this section n denotes a positive integer.

Definition 3.3.1. Let a and b be integers. We say that a and b are multiplicative inverses

modulo n if ab ≡ 1 (mod n) .

Proposition 3.3.2. Let a be an integer that is relatively prime to n. Then there exists an
inverse for a modulo n.

Definition 3.3.3. Two congruences in one or more variables are equivalent, which will be
indicated by the symbol ⇔, if they are both true for exactly the same values of the variables.

Proposition 3.3.4.∗ Let h be a positive integer. Then

x ≡ y (mod n) ⇔ hx ≡ hy (mod hn) .

Proposition 3.3.5. Let n and h be relatively prime integers. Then

x ≡ y (mod n) ⇔ hx ≡ hy (mod n) .

Definition 3.3.6. By solving a congruence of the form ax ≡ b (mod n) we mean to find integers
c and m such that 0 ≤ c ≤ m − 1 and

ax ≡ b (mod n) ⇔ x ≡ c (mod m) .



Section 3.4 Prime Modulus June 25, 2007 21:53 25

Example 3.3.7. Consider the congruence:

46x ≡ 106 (mod 36) .

The congruences below are equivalent to each other:

(a) 46x ≡ 106 (mod 36)

(b) 10x ≡ 34 (mod 36) by the results of Section 3.1.

(c) 5x ≡ 17 (mod 18) by Proposition 3.3.4 with h = 2.

(d) 55x ≡ 187 (mod 18) by Proposition 3.3.5 with h = 11, which is relatively prime to 18.

(e) x ≡ 7 (mod 18) .

That is,
46x ≡ 106 (mod 36) ⇔ x ≡ 7 (mod 18) .

The inverse of 5 modulo 18 was found by trial and error. A general method exists and will be
illustrated with an example after Section 3.5.

Exercise 3.3.8. If possible, solve the congruence 28x ≡ 35 (mod 40) .

Exercise 3.3.9. If possible, solve the congruence 28x ≡ 36 (mod 40) .

3.4 Prime Modulus

Proposition 3.4.1. Let p be a prime and let a be an integer not divisible by p. Then no two
of the integers

a, 2a, 3a, . . . , pa

are congruent modulo p.

Theorem 3.4.2 (Fermat’s Little Theorem).∗ Let p be a prime and let a be an integer not
divisible by p. Then

ap−1 ≡ 1 (mod p) .

Proposition 3.4.3. Let p be a prime and let a be any integer. Then

ap ≡ a (mod p) .

Proposition 3.4.4. Let p be a prime greater than 3 and let a be an integer such that 1 < a <
p − 1. Then there exists a unique integer b such that b is a multiplicative inverse for a modulo
p and 1 < b < p − 1. Moreover, b 6= a.

Example 3.4.5. Here are the pairs of multiplicative inverses for the prime p = 13 :

2 and 7, 3 and 9, 4 and 10, 5 and 8, 6 and 11 .
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Theorem 3.4.6 (Wilson’s Theorem). If p is a prime, then (p − 1)! ≡ −1 (mod p) .

Proposition 3.4.7.∗ Let k and m be positive integers and suppose that p = k + m + 1 is a
prime. If k and m are both odd, then

k!m! ≡ 1 (mod p) .

If k and m are both even, then

k!m! ≡ −1 (mod p) .

Exercise 3.4.8. Use Theorem 3.4.2 to find the remainder left by 2100 when divided by 19.

Exercise 3.4.9. Use Proposition 3.4.7 and an inverse to reduce 97! modulo 101.

3.5 Systems of Congruences

Definition 3.5.1. Let n1, n2, . . . , nr be positive integers and let a1, a2, . . . , ar be integers. In
this section, the expression

x ≡ a1, a2, . . . , ar (mod n1, n2, . . . , nr)

means that x ≡ ai (mod ni) for i = 1, 2, . . . , r.

Proposition 3.5.2. Let n1, n2, . . . , nr be positive integers and let m = n1n2 · · ·nr. Suppose,
for each i, that bi is an inverse for m

ni

modulo ni. If a1, a2, . . . , ar are integers and

c = a1b1
m

n1
+ a2b2

m

n2
+ · · ·+ arbr

m

nr

,

then

c ≡ a1, a2, . . . , ar (mod n1, n2, . . . , nr) .

Proposition 3.5.3. Let r > 1 and let n1, n2, . . . , nr be positive integers, each two of which
are relatively prime. Let m = n1n2 · · ·nr. If b is an integer and b is divisible by each of the ni,
then b is divisible by m.

Theorem 3.5.4 (The Chinese Remainder Theorem). Let r > 1 and let n1, n2, . . . , nr be positive
integers, each two of which are relatively prime. Set m = n1n2 · · ·nr. If a1, a2, . . . , ar are any
integers, then there exists an integer c such that

x ≡ a1, a2, . . . , ar (mod n1, n2, . . . , nr) ⇔ x ≡ c (mod m) .

Exercise 3.5.5. Use Proposition 3.5.2 and Theorem 3.5.4 to find c and m such that 0 < c < m
and

x ≡ 2, 5, 6 (mod 5, 7, 9) ⇔ x ≡ c (mod m) .
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3.6 Several Examples

Example 3.6.1. The object is to find an inverse for 55 modulo 127. We construct a Euclidean
array, related to the one in Chapter 2

127 55 17 4 1
2 3 4

30 13 4 1 0
.

Hence, 127 · 13 − 55 · 30 = 1. This can be written as 55(−30) ≡ 1 (mod 127) . Thus, −30 is a
multiplicative inverse for 55 modulo 127. So is −30 + 127 = 97. That is,

55 · 97 ≡ 1 (mod 127) .

Example 3.6.2. Consider the congruence

550x ≡ 130 (mod 635) .

The congruences below are equivalent to each other:

(a) 550x ≡ 130 (mod 635)

(b) 110x ≡ 26 (mod 127) dividing through by 5.

(c) 55x ≡ 13 (mod 127) dividing on the left by 2.

(d) 97 · 55x ≡ 97 · 13 (mod 127) using the result in Example 3.6.1.

(e) x ≡ 118 (mod 127) .

The conclusion is:

550x ≡ 130 (mod 635) ⇔ x ≡ 118 (mod 127) .

Example 3.6.3. Consider the system

x ≡ 4, 5, 6 (mod 7, 8, 9) .

Since 7, 8 and 9 are pairwise relatively prime, Proposition 3.5.2 can be used to solve the system.
We have:

n1 = 7, n2 = 8, n3 = 9, m = 7 · 8 · 9 = 504 .

The quotients specified in Proposition 3.5.2 are:

m

7
= 8 · 9 = 72,

m

8
= 63,

m

9
= 56 .

Before looking for inverses, it helps to reduce each
m

ni

modulo ni:

72 ≡ 2 (mod 7) , 63 ≡ 7 (mod 8) , 56 ≡ 2 (mod 9) .
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By inspection, the least positive inverses are:

4 modulo 7, 7 modulo 8, 5 modulo 9 .

By Proposition 3.5.3, one solution of the system is given by

c = 4 · 4 · 72 + 5 · 7 · 63 + 6 · 5 · 56 = 5037 .

This reduces to 501 modulo 504. By the Chinese Remainder Theorem,

x ≡ 4, 5, 6 (mod 7, 8, 9) ⇔ x ≡ 501 (mod 504) .

Example 3.6.4. Again consider the system in Example 3.6.3. One easily sees that x = −3 is
a solution. By the Chinese Remainder Theorem,

x ≡ 4, 5, 6 (mod 7, 8, 9) ⇔ x ≡ −3 (mod 504) .

3.7 Problems

Problem 3.7.1. Find a multiplicative inverse for 1488 modulo 3409.

Problem 3.7.2. Solve: 140x ≡ 126 (mod 301).

Problem 3.7.3. Reduce 56789 modulo 17.

Problem 3.7.4. Let c = 2100. Reduce c modulo both 8 and 9, and then reduce c modulo 72.

Problem 3.7.5. Show that a13 ≡ a (mod 35) for all integers a.

Problem 3.7.6. By convention, 234

equals 281 and not 84. Reduce 234
5
6
7
8
9

modulo 13.

Problem 3.7.7. Show that there does not exist an integer x such that x ≡ 5, 7 (mod 6, 15) .

Problem 3.7.8. Seventeen pirates tried to divide a bag of gold coins into equal parts, but 3
coins were left over. After a discussion, 16 pirates tried to divide the coins equally, but 10 were
left over. Further discussion allowed 15 pirates to divide the coins into equal parts. How many
coins were in the bag?

3.8 Projects

Project 3.8.1. Devise a Strong Rule of 99, similar to the Strong Rule of 6, that uses a linear
combination of s and t.

Project 3.8.2. Devise a Strong Rule of 37.

Project 3.8.3. For a composite integer n, reduce (n − 1)! modulo n.

Project 3.8.4. Let p be an odd prime. Reduce (p − 2)! and (p − 3)! modulo p.

Project 3.8.5. Devise a useful method for determining whether ax ≡ b (mod n) has a solution.

Project 3.8.6. Devise a useful method for determining whether the system

x ≡ a, b (mod m, n)

has a solution.
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3.9 Proofs and Suggestions

Proof of Proposition 3.1.3.

(1) Let n, a and b be integers.

(2) Let q1, q2, r1 and r2 be the integers specified in Proposition 1.4.1:

a = q1n + r1, b = q2n + r2, 0 ≤ r1 ≤ n − 1, 0 ≤ r2 ≤ n − 1.

(3) a − b = (q1 − q2)n + (r1 − r2).

(4) By (3), n|(a − b) ⇔ n|(r1 − r2).

(5) By (2) and (4), a ≡ b (mod n) ⇔ r1 = r2

Suggestion for Proposition 3.1.6. Notice that ac − bd = (a − b)c + b(c − d).

Proof of Proposition 3.1.8, Informal proof. Let a1, a2, . . . , ar and b1, b2, . . . , br be integers with
r > 1 and a1 ≡ bi (mod n) for all i. We shall deal with the sum first. By Proposition 3.1.5,
a1 +a2 ≡ b1 + b2 (mod n) . If r = 2, we are done. If r > 2, then a1 +a2 +a3 = (a1 +a2)+a3 and
b1+b2+b3 = (b1+b2)+b3 and, by Proposition 3.1.5 again, (a1+a2)+a3 ≡ (b1+b2)+b3 (mod n) .
This can continue until we have a1 + · · ·+ar ≡ b1 + · · ·+br (mod n) . The argument for product
is analogous, using Proposition 3.1.6.

Proof of Proposition 3.2.2.

(1) Let a be as in Definition 3.2.1.

(2) a = d0 + d110 + · · ·+ dr10r.

(3) u = d0

(4) By Proposition 3.1.8, a ≡ u + d10 + · · ·+ dr0
r (mod 10) .

(5) a ≡ u (mod 10) .

Proof of Proposition 3.3.4.

(1) Let h be positive integer.

(2) The following statements are equivalent:

(i) x ≡ y (mod n) .

(ii) n|(x − y).
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(iii) hn|h(x − y).

(iv) hn|(hx − hy).

(v) hx ≡ hy (mod hn) .

Proof of Proposition 3.4.2, Informal proof. Let p be a prime and let a be an integer not divisible
by p. Consider the integers a, 2a, . . . , (p − 1)a. By Proposition 3.4.1, they leave remainders, in
some order, of 1, 2, . . . , p − 1 when divided by p. By Proposition 3.1.8,

a · 2a · · · · · (p − 1)a ≡ 1 · 2 · · · · · (p − 1) (mod p) .

That is,
(p − 1)!ap−1 ≡ (p − 1)! (mod p) .

But (p − 1)! and p are relatively prime. By Proposition 3.3.5

ap−1 ≡ 1 (mod p) .

Suggestion for Proposition 3.4.3. Consider two cases: a is divisible by p, and a is not divisible
by p.

Suggestion for Proposition 3.4.4. Use Definition 3.3.1 to get an inverse c for a modulo p. Let b
be the remainder left by c when divided by p. Show that b does not equal 0, 1 or p − 1. Then
show that b 6= a.

Suggestion for Theorem 3.4.6. First, verify that the statement is true for p equal to 2 or 3.
Then, suppose that p ≥ 5. By Proposition 3.4.4, the numbers 2, 3, . . . , p − 2 can be grouped in
pairs of multiplicative inverses. Conclude that

1 · 2 · 3 · · · · · (p − 2) · (p − 1) ≡ 1 · (p − 1) (mod p) .

Proof of Proposition 3.4.7. Let k and m be positive integers and set p = k + m + 1. Suppose
that p is prime. Using the fact that k + 1 = p − m, we have:

(p − 1)! = 1 · 2 · · · · · k · (k + 1) · (k + 2) · · · (k + m)

= k!(p − m) · · · (p − 1)

= k!(p − 1)(p − 2) · · · (p − m)

= (−1)mk!(1 − p)(2 − p) · · · (m − p) .

Since p
∣

∣

(

m! − (1 − p)(2 − p) · · · (m − p)
)

we have

(p − 1)! ≡ (−1)mk!m! (mod p) .

By Wilson’s Theorem,
−1 ≡ (−1)mk!m! (mod p) .

Therefore, k!m! is congruent to 1 if m is odd and to −1 if m is even. Since p is a prime greater
than 2, it is odd, and so k + m is even, which implies that k and m have the same parity.
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Suggestion for Proposition 3.5.3. Let b be a common multiple of ni. Use Proposition 2.2.10 to
show that n1n2|b. If r > 2, use Proposition 2.2.9 to show that n1n2 and n3 are relatively prime,
and use Proposition 2.2.10 to show that n1n2n3|b.

Suggestion for Theorem 3.5.4. Use Propositions 3.3.2, 3.5.2 and 3.5.3.

Comments

1. Most of the results in this chapter were known before 1800, but were not expressed in the
notation of congruences. That notation was introduced by Gauss in 1801.

2. The Rule of 9 says that a is divisible by 9 if, and only if, s is divisible by 9. The Rule of 9
follows from Proposition 3.2.3, but does not imply Proposition 3.2.3.

3. Solving the congruence ax ≡ b (mod n) is essentially the same as solving the Diophantine
equation ax + ny = b.

4. There is such a thing as Fermat’s Big (or Last) Theorem:

Let n be an integer greater than 2. Then there do not exist positive integers x, y and z such
that

xn + yn = zn .

5. Problems such as Theorem 3.5.4, though stated in a different way, were considered by both
the Chinese and the Greeks nearly 2000 years ago.


