Proposition 2.1.5. Let a and b be integers, not both zero. Then any common divisor of a and
b is a divisor of ged(a, b).

Proof. The cast of characters in this proof:

e Integers o and b such that | a® + b2 >0 |,

e By Proposition 1.3.8 there exists a greatest common divisor of a and b. Set ¢ = ged(a, b).

e An integer ¢ such that | c|la | and | ¢|b |.

e The previous line gives rise to two more characters: The integers « and v such that

and | b = cv |. The previous line gives also more information about ¢: | ¢ # 0 |.

The quest in this proof is | ¢|g | Or, more specifically the quest is | ¢ # 0| and an integer z

such that | g = cz |.

Now we start with the proof. By | Theorem 2.1.3 | there exist integers = and y such that

ar +by =g |

This is a quite dramatic scene, and the characters © and v demand the stage:

(cu)x + (cv)y =g |

But, the associativity of multiplication yields

c(uz) +c(vy) = g |

and distributive low now gives

clur +vy) =g|.

At this point our quest is finished in a color coordinated solution

Z = ux + vy.

Since also | ¢ # 0 |, the quest is successfully completed. O




Proposition 2.1.7. Let a and b be positive integers. Then any common multiple of a and b is
a multiple of lem(a, b).

Proof. The cast of characters in this proof:

(I) | Positive | integers a and b.

(IT) By Proposition 1.3.9 there exists a | least positive common multiple | of a and b.
Set m = lem(a, b).

(III) The previous line, that is the phrase | common multiple | hides two more characters: the

integers j and /& such that | m = aj | and | m = bk |.

(IV) It is important to notice the following character feature of /m: It is the |least positive

common multiple of @ and b. What this means is the following

If an integer = is a common multiple of of @ and b and z < m, then x < 0.

(V) An integer ¢ which is a | common multiple | of @ and b.

(VI) The previous line gives rise to two more characters: The integers « and v such that

and | ¢ = bu |.

The quest in this proof is | m|c | Or, more specifically the quest is [ m # 0 | and an integer z

such that | ¢ = mz |.

Now we start with the proof. In fact we start with a brilliant idea to use | Proposition 1.4.1 |.

This proposition is applied to the integers ¢ and m > 0. By | Proposition 1.4.1 | there exist integers

¢ and r such that

c=mq-+r and 0<r<m-—1|

What we learn about r from the previous line is that . But, there is more action waiting
to be unfolded here. Follow the following two sequences of equalities (all the green equalities!):

= a(u — jq)

r=c—mq=au—mq=au— (aj)q
q = b(v — kq).

(aj
r=c—mq=>bv—mq=bv— (bk)

The conclusion is: | r is a common multiple of ¢ and b | But wait, also . Now the item
(IV) in the cast of characters (in fact the character feature of m) implies that | < 0| Since

also | r > 0|, we conclude . Going back to the equality | ¢ = mq + r |, we conclude that
. At this point our quest is completed in a color coordinated solution

z =q. U



Proposition 2.1.10. If a and b are positive integers, then ab = ged(a, b) - lem(a, b).

Proof. The cast of characters in this proof:

(VD)

The quest in this proof is simple

Positive

integers a and 0.

By Proposition 1.3.9 there exists a
Set 1m = lem(a, b).

The previous line, that is the phrase

and | m = bk |.

least positive common multiple

common multiple

integers ; and / such that | m = aj

It is important to notice the following character feature of

common multiple of a and b. What this means is the following

It is the | least positive

of a and b.

hides two more characters: the

If an integer x is a common multiple of of @ and b and > 0, then m < .

By Proposition 1.3.8 there exists a greatest common divisor of @ and b. Set ¢ = ged(a, b).

The previous line gives rise to two more characters: The integers « and v such that

and | b= gv |

Since |la >0/, |b>0

and | g > 0

, we conclude that |u >0 |and |v > 0|

ab = mg |.

Now we start with the proof. Consider a new green integer ¢ = guv. Clearly

Hence | c=av | and

the item (IV) in the cast of characters (in fact the character feature of m) implies that | m < ¢ |.

Hence

Hence

c=bu

m < guv

mg < ab |.

Theorem 2.1.3

c=guv=av and c¢= guv = bu.

. That is ¢ is a common multiple of a and b. Moreover, | ¢ > 0 |. Now

. Multiplying both sides of this inequality by g > 0 we get

mg < guvg = gugv = ab |.

This is in some sense one half of the quest. For the second half, we recall

ar +by =g |

Multiplying both sides of this equality by m > 0 we get

are demanding the scene:

and conclude that there exist integers = and i such that

mg = max + mby |. Now more characters

mg = max + mby = (bk)ax + (aj)by = ab(kzx) + ab(jy) = ab(kz + jy).

Since

mg > 0

and

ab > 0

, I conclude

kx + jy >0

half of the quest. So, the quest is completed.

. Therefore | mg > ab

. This is the second
O



