MATH 304 Final Examination August 19, 2010

GIVE DETAILED EXPLANATIONS FOR YOUR ANSWERS.

There are five problems. The best four count for 25 points each.

- 1. Let A be a 2×2 matrix with the eigenvalues $\lambda_1 = 2, \lambda_2 = 1/2$, and corresponding eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Let $\mathbf{x}_0 = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$ and define $\mathbf{x}_k = A^k \mathbf{x}_0$ for $k = 1, 2, 3, \ldots$
 - (a) Express \mathbf{x}_0 as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . Use this fact to compute \mathbf{x}_k . (Hint: Note that the entries of A are unknown and, in fact, they are not needed!)
 - (b) Describe what happens to \mathbf{x}_k as $k \to \infty$. Be specific, describe how both the norm and the direction of \mathbf{x}_k change as $k \to \infty$.
- 2. Find a QR-factorization of the matrix $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- 3. Let A be a symmetric matrix. Prove that all the eigenvalues of A are real.
- 4. Consider the vector space \mathbb{P}_2 with the inner product

$$\langle p, q \rangle = \int_{-1}^{1} p(t)q(t)dt.$$

Let

$$p_0(t) = 1,$$
 $p_1(t) = t,$ $p_2(t) = t^2.$

be the standard basis for \mathbb{P}_2 .

- (a) Calculate $\langle p_0, p_0 \rangle$, $\langle p_0, p_1 \rangle$, $\langle p_0, p_2 \rangle$, $\langle p_1, p_1 \rangle$, $\langle p_1, p_2 \rangle$.
- (b) Compute the orthogonal projection of p_2 onto the subspace spanned by p_0 and p_1 .
- (c) Find an orthogonal basis for this inner product space. Denote the polynomials in this orthogonal basis by q_0, q_1 and q_2 . Normalize these polynomials so that $q_0(1) = 1, q_1(1) = 1$ and $q_2(1) = 1$.
- 5. (a) For the symmetric matrix $S=\begin{bmatrix}5&1\\1&5\end{bmatrix}$ find a diagonal matrix D and an orthogonal matrix P such that $S=PDP^T$.
 - (b) Find a singular value decomposition of the matrix $A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \\ 1 & 1 \end{bmatrix}$. Notice that $A^T A = S$.
 - (c) Find a unit vector \mathbf{x} at which $A\mathbf{x}$ has maximum length. Find the vector $A\mathbf{x}$ and its length.

1. (a)
$$\begin{bmatrix} 7 \\ 1 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 3 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$= 2^{k} \begin{bmatrix} 7 \\ 4 \end{bmatrix} - (\frac{1}{2})^{k} \begin{bmatrix} -3 \\ 3 \end{bmatrix}$$

$$= 2^{k} \begin{bmatrix} 7 \\ 4 \end{bmatrix} - (\frac{1}{2})^{k} \begin{bmatrix} -3 \\ 3 \end{bmatrix}$$

Since $\begin{bmatrix} 1 \\ 2 \end{bmatrix}^{k} \rightarrow 0$ as $k \rightarrow +\infty$, we conclude other to becomes langer and closer to $2^{k} \begin{bmatrix} 7 \\ 4 \end{bmatrix}$.

2. We need $A = QR$ and closer to $2^{k} \begin{bmatrix} 7 \\ 4 \end{bmatrix}$.

2. We need $A = QR$ and consists in $2^{k} \begin{bmatrix} 7 \\ 4 \end{bmatrix}$.

$$= 2^{k} \begin{bmatrix} 1 \\ 4 \end{bmatrix} - 2^{k} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = 2^{k} \begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = 2^{k} \begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 \\ 4$$

A training of the normal support friagular 2 $\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/1/2 & -1/1/6 \\ 1/1/2 & 1/1/6 \\ 0 & 3/1/6 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 1/1/2 \\ 0 & 3/1/6 \end{bmatrix}$ $=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ $=\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$ $=\begin{bmatrix} 1 &$ I will write vectors without an arrow, and v means a complex conjugate Since A is real matrix A = A.

Since $V = \begin{bmatrix} v_i \\ v_n \end{bmatrix}$ real matrix A = A.

Since $V = \begin{bmatrix} v_i \\ v_n \end{bmatrix}$ real matrix A = A. we have $T_V = |V_1|^2 + \dots + |V_n|^2 > 0$ not all so components are 0.

Now we calculate VTAV in [3] two different ways:

\[\tau^T Av = \tau^T (\alpha v) = \alpha \tau^T v = \tau^T \tau^T \tau^T \tau^T \tau^T = \tau^T \tau^T \tau^T \tau^T \tau^T = \tau^T \tau^ = A (1412+...+ /Vn/2) $\nabla^T A V = \nabla A^T V = (A \nabla)^T V =$ $= (\overline{A}\overline{V})^T V = \overline{A}\overline{V}^T V$ = \(\frac{1\lambda 1^2 + \dots + |\lambda 1^3}{\lambda}\) (Here we need that AV = 2V and $A\overline{V} = \overline{A}V$ and $A\overline{V} = A$.) $2\left(\frac{|V_1|^2 + \dots + |V_n|^2}{50}\right) = 2\left(\frac{|V_1|^2 + \dots + |V_n|^2}{50}\right)$ $3\sigma = 2 \quad \text{is a real number.}$ Hence

$$\begin{array}{l}
\overrightarrow{P} \otimes \overrightarrow$$

20 = po fince po(1) = 1

$$2_{0} = p_{0}, \text{ mice } p_{0}(1) = 1$$

$$2_{1} = p_{1} \text{ fruce } p_{1}(1) = 1$$

$$p_{2}(1) - \frac{1}{3} \{ p_{0}(1) = 1 - \frac{1}{3} = \frac{2}{3} \}$$

$$2_{2} = \frac{3}{2} (p_{2} - \frac{1}{3} p_{0})$$
Hence
$$2_{0}(t) = 1, 2_{1}(t) = t, 2_{2}(t) = \frac{3}{2} (t^{2} - \frac{1}{3})$$

$$2_{2}(t) = \frac{3}{2} t^{2} - \frac{1}{2}$$

$$2_{2}(t) = \frac{3}{2} t^{2} - \frac{1}{2}$$

$$5_{3} = \frac{5}{4} \cdot \frac{1}{5} = \frac{5}{4} \cdot \frac{1}{5} = \frac{7}{4} \cdot$$

5. a
$$|5-2| = (5-2)^{2} - 1 = 1$$

 $|5-2| = (5-2)^{2} - 1 = 1$
 $|7-2| = 6$
 $|7-2| = 1$
 $|7-2| = 1$
 $|7-2| = 1$
 $|7-2| = 1$
 $|7-2| = 1$