
Winter 2019 Math 304 Topics for Final Exam

4.7 Change of bases (in fact: Change of coordinates).

➢ Know that the matrix M with the property [v]C = M [v]B is called the change-of-coordinate matrix
from B to C. It is denoted P

C←B
and it is calculated as

P
C←B

=
[
[b1]C · · · [bn]C

]
;

here B =
{
b, . . . ,bn

}
and C are two bases of an n-dimensional vector space V and [v]B ∈ R

n denotes
the coordinate vector of v ∈ V relative to the basis B.

➢
(

P
C←B

)−1
= P
B←C

➢ Know that there is a special basis of Rn, called the standard basis, which consists of the columns of
the identify matrix In. It is denoted by E . This notattion comes from the fact that the vectors in this
basis are commonly denoted by e1, · · · , en.

➢ Know that for a basis B =
{
b1, . . . ,bn

}
for Rn (this is a special case) we have

P
E←B

=
[
b1 · · · bn

]
= PB

(the matrix PB was introduced in Section 4.4); this basically says that P
E←B

is a very friendly matrix.

➢ Know P
C←B

=
(

P
C←E

) (
P
E←B

)
=

(
P
E←C

)−1
P
E←B

=
[
c1 · · · cn

]−1 [
b1 · · · bn

]

where C =
{
c1, . . . , cn

}
is another basis for Rn; this basically says that P

C←B
can be written as a product

of a very friendly matrix and the inverse of another very friendly matrix

➢ Know Exercises 4 - 10, 13, 14.

5.1 Eigenvectors and eigenvalues.

➢ Know the definition of an eigenvector and eigenvalue. It is a little tricky. Pay attention.

➢ Know the definition of an eigenspace and how to find an eigenspace corresponding to a given eigenvalue.

➢ Know that the eigenvalues of a triangular matrix are the entries on its main diagonal.

➢ Theorem. Eigenvectors corresponding to distinct eigenvalues are linearly independent. (Or, in a more
formal mathematical language: Let A be an n×n matrix, let v1,v2, . . . ,vm ∈ R

n and λ1, λ2, . . . , λm ∈ R.
If Avk = λkvk, vk 6= 0 and λj 6= λk for all j, k = 1, 2, . . . ,m, then v1,v2, . . . ,vm are linearly independent.

➢ Know the proof of the above theorem for m = 2 vectors.

5.2 The characteristic equation.

➢ Know that λ is an eigenvalue of an n×n matrix A if and only if det(A− λI) = 0

➢ Know how to calculate det(A− λI) for 2×2 matrices, how to find eigenvalues and corresponding eigen-
vectors. Exercises 1-8, but do more and find eigenvectors as well.

5.3 Diagonalization.

➢ Theorem. (The diagonalization theorem) An n×n matrix A is diagonalizable if and only if A has n

linearly independent eigenvectors.

➢ Know how to decide whether a given 2×2 and 3×3 matrix A, is diagonalizable or not; if it is diagonalizable,
how to find invertible matrix P and diagonal matrix D such that A = PDP−1.
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5.4 Eigenvectors and linear transformations.

➢ Know that the matrix M with the property [Tv]C = M [v]B is called the matrix of T relative to the
bases B and C and it is calculated as

M =
[
[Tb1]C · · · [Tbn]C

]
,

where T be a linear transformation from an m-dimensional vector space V to an n-dimensional vector
space W, B =

{
b, . . . ,bm

}
is a basis for V and C is a basis for W.

➢ Know that the matrix M with the property [Tv]B = M [v]B is called the matrix of T relative to the
basis B, it is denoted by [T ]B and it is calculated as

[T ]B =
[
[Tb1]B · · · [Tbn]B

]
,

where T : V → V is a linear transformation on an n-dimensional vector space V and B =
{
b, . . . ,bn

}
is

a basis for V.

➢ Theorem. (The diagonal matrix representation) Let A, D, P be n×n matrices, where P is invertible,
D is diagonal and A = PDP−1. If B is the basis for R

n which consists of the columns of P and if
T : Rn → R

n is given by Tv = Av for all v ∈ R
n, then [T ]B = D.

5.5 Complex eigenvalues.

➢ Know how to calculate complex eigenvalues and corresponding eigenvectors of 2×2 and 3×3 real matrices

➢ Know that the most important class of 2×2 matrices with complex eigenvalues are rotation matrices;
the matrix of the counterclockwise rotation about the origin by the angle θ measured in radians relative
to the standard basis for R2 is

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
;

the 2×2 matrix Rθ is called the rotation matrix.

➢ Theorem. (A “hiding rotation” theorem.) Let A be a real 2×2 matrix with a nonreal eigenvalue.
Then there exist an invertible 2×2 matrix P , a positive scalar α and a rotation matrix Rθ such that
A = αP RθP

−1.

6.1 Inner product, length, and orthogonality.

➢ Know the definition of the dot product in R
n, its basic properties and calculations involving it.

➢ Know the definition, the basic properties of the length of a vector in R
n, its properties and calculations

involving it.

➢ Know the definition of the distance in R
n and calculations involving it.

➢ Know the definition of orthogonality in R
n and calculations involving it.

➢ Know the statement and the proof of the linear algebra version of Pythagorean theorem.

➢ Know the definition and the basic properties of the orthogonal complement in R
n.

➢ Know that for a given m× n matrix A we have (RowA)⊥ = NulA and (ColA)⊥ = Nul(A⊤).

➢ Know the geometric interpretation of the dot product in R
2 and R

3:

u · v = ‖u‖ ‖v‖ cos ϑ, (1)

where u and v are vectors in R
2 or in R

3, ϑ is the angle at the vertex O in the triangle OAB with O

being the origin, A being the endpoint of u and B the endpoint of v. (You should know the proof of
formula (1).)
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6.2 Orthogonal sets.

➢ Know the definition of an orthogonal set of vectors.

➢ Theorem. (Linear independence of orthogonal sets.) Let S =
{
u1, . . . ,um

}
be a subset of Rn. If S is

an orthogonal set which consists of nonzero vectors, then S is linearly independent.

➢ Know the definition of an orthogonal bases.

➢ Theorem. (Easy expansions with orthogonal bases.) Let
{
u1, . . . ,um

}
be an orthogonal basis of a

subspace W of Rn. Then for every y ∈ W we have

y =
y · u1

u1 · u1

u1 +
y · u2

u2 · u2

u2 + · · ·+
y · um

um · um

um

➢ Know the definition of the orthogonal projection of a vector y onto a vector u: A vector ŷ = αu is
called the orthogonal projection of y onto u if the difference y − ŷ is orthogonal to u. (Convince
yourself that

ŷ =
y · u

u · u
u

is the orthogonal projection of y onto u.)

➢ Know how to do calculations with orthogonal projections.

➢ The definitions of orthonormal set of vectors, orthonormal basis, a matrix with orthonormal columns.

➢ Know the characterization of a matrix with orthonormal columns: The columns of n×m matrix U are
orthonormal if and only if U⊤U = Im. (Please make sure that you understand the order of the matrix
and its transpose in the previous identity.)

➢ Know the properties of matrices with orthonormal columns.

6.3 Orthogonal projections.

➢ Know the definition of the orthogonal projection of a vector y onto a subspace W: A vector ŷ ∈ W
is called the orthogonal projection of y onto W if the difference y − ŷ is orthogonal to W. The
orthogonal projection of the vector y onto a subspace W is denoted by ProjW y.

➢ Theorem. (The orthogonal decomposition theorem.) Let W be a subspace of Rn. Then each y in R
n

can be written uniquely in the form
y = ŷ + z

where ŷ ∈ W and z ∈ W⊥. We have that ŷ = ProjW y. If
{
u1, . . . ,um

}
is an orthogonal basis for W,

then
ProjW y = ŷ =

y · u1

u1 · u1

u1 +
y · u2

u2 · u2

u2 + · · ·+
y · um

um · um

um (2)

➢ Know that equation (2) simplifies if we assume that
{
u1, . . . ,um

}
is an orthonormal basis for W;

then
ProjW y = ŷ =

(
y · u1

)
u1 +

(
y · u2

)
u2 + · · ·+

(
y · um

)
um. (3)

➢ Know the amazing fact that equation (3) can be written as a matrix equation; let

U =
[
u1 · · · um

]

be a matrix with orthonormal columns, then

ProjColQ y = ŷ =
(
y · u1

)
u1 +

(
y · u2

)
u2 + · · ·+

(
y · um

)
um = U U⊤y.

The explanation for the last equality based on the definition of the matrix multiplication is as follows:

(
y · u1

)
u1 + · · ·+

(
y · um

)
um =

[
u1 · · · um

]


y · u1

...
y · um


 = U




(
u1

)⊤
y

...(
um

)⊤
y


 = U




(
u1

)⊤
...(

um

)⊤


y = U U⊤y.
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➢ Know how to prove the following fact: Let Q be a n×m matrix with orthonormal columns. Let y ∈ R
n.

Prove that the projection of y onto the column space of Q is given by the formula QQTy.

➢ Know how to solve Exercise 23. Given an m×n matrix A and a vector v ∈ R
n, know how to write v as

a sum of a vector in NulA and a vector in RowA.

6.4 The Gram-Schmidt orthogonalization.

➢ Know the Gram-Schmidt orthogonalization process: Let m and n be positive integers such that 2 ≤
m ≤ n. Let

{
x1, . . . ,xm

}
be a basis for a subspace W of Rn. The vectors v1, . . . ,vm recursively defined

by

v1 = x1,

v2 = x2 −
x2 · v1

v1 · v1

v1,

v3 = x3 −
x3 · v1

v1 · v1

v1 −
x3 · v2

v2 · v2

v2,

...

vm = xm −
xm · v1

v1 · v1

v1 −
xm · v2

v2 · v2

v2 − · · · −
xm · vm−1

vm−1 · vm−1

vm−1,

have the following properties

(i)
{
v1, . . . ,vm

}
is an orthogonal basis for W.

(ii) For all k ∈ {1, . . . ,m} we have Span
{
v1, . . . ,vk

}
= Span

{
x1, . . . ,xk

}
.

➢ Know the definition and how to construct a QR factorization of a matrix with linearly independent
columns.

6.5 Lest square problems.

➢ Know the definition of a least-squares solution of Ax = b.

➢ Know the theorem stating the connection between the set of least-squares solutions of Ax = b and the
set of solutions of the normal equations A⊤Ax = A⊤b.

➢ Know the necessary and sufficient condition for the uniqueness of the least-squares solution of Ax = b
(and its proof).

➢ Know how to find the least-squares solution of Ax = b using the QR factorization of A.

➢ Know how to prove the following statement: The matrices A and ATA have the same null space.

6.6 Applications to linear models.

➢ Know how to find the least-squares line for a set of data points.

➢ Know how to find the least-squares fitting for other curves.

➢ Know how to find the least-squares plane for a set of data points.

7.1 Diagonalization of symmetric matrices.

➢ Know the theorem about the orthogonality of eigenvectors corresponding to distinct eigenvalues of a
symmetric matrix and how to prove it.

➢ Know the definition of an orthogonally diagonalizable matrix.

➢ Know the relationship between the concepts of a symmetric and an orthogonally diagonalizable matrix
and how to prove the easier direction of this relationship.
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➢ Know how to prove that the eigenvalues of a symmetric 2×2 matrix are real.

➢ Know the spectral decomposition formula (and its meaning) for symmetric matrices: Let A = UDU⊤

be an orthogonal diagonalization of a symmetric matrix A. Then

A = UDU⊤ =
[
u1 u2 · · · un

]




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn







u⊤1
u⊤2
...

u⊤n




=
[
λ1u1 λ2u2 · · · λnun

]




u⊤1
u⊤2
...

u⊤n


 = λ1u1u

⊤
1 + λ2u2u

⊤
2 + · · ·+ λnunu

⊤
n

(Here, for k ∈ {1, . . . , n} the n×n matrix uku
⊤
k is the orthogonal projection matrix onto the unit vector

uk.)

7.2 Quadratic forms.

➢ Know the definition of a quadratic form.

➢ Know how to transform a quadratic form into a quadratic form with only square terms.

➢ Know how to classify quadratic forms, including positive semidefinite and negative semidefinite forms.

7.3 Constrained optimization.

➢ Know how to solve problems like Example 3 (also including the minimum value).

7.4 The singular value decomposition.

➢ Know the definition of the singular value decomposition of a real n×m matrix A: A singular value
decomposition of a real n×m matrix A is a factorization of the form

A = UΣV ⊤

where U is n×n orthogonal matrix, V is m×m orthogonal matrix and Σ is n×m matrix of the form

Σ =




σ1 · · · 0
...

. . .
...

0 · · · σr

0
r×(m − r)

0
(n − r)×r

0
(n − r)×(m − r)




where r = rankA,



σ1 · · · 0
...

. . .
...

0 · · · σr


 is r×r diagonal matrix with positive entries on the diagonal and

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and all the remaining entries of Σ are zeros. The values σ1, σ2, . . . , σr are called
the singular values of A. The columns of V are called right singular vectors of A and the columns
of U are called left singular vectors of A.

➢ Know the consequences of the definition of a singular value decomposition. (For example, A⊤ = V Σ⊤U⊤,
A⊤A = V Σ⊤ΣV ⊤, where Σ⊤Σ is m×m diagonal matrix with the eigenvalues of A⊤A on the diagonal
and the positive entries on the diagonal are equal to σ2

1 , . . . , σ
2
r .)

➢ Know how a singular value decomposition of A contains information about orthonormal bases for all
four fundamental subspaces associated with A. This is sumarized in Figure 4 on page 479.
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