
Winter 2020 Math 304 Topics for the Final Exam (version 20200311)

4.1 Vector spaces and subspaces

➢ Know the definition of a vector space and how to decide whether a given set is a vector space or
not.

➢ Know the definition of a subspace of a vector space and how to decide whether a given subset of
a vector space is a subspace or not.

➢ For given vectors v1,v2, . . . ,vm in a vector space V know the definition of a linear combination
and the span, denoted by Span{v1,v2, . . . ,vm}.

➢ Know that Span{v1,v2, . . . ,vm} is a subspace of V.

4.2 Null spaces, column spaces, and linear transformations

➢ For a given m×n matrix A know the definitions of NulA, ColA and RowA and how to find bases
for these subspaces. (See the post of January 17, Section 4.3 and Section 4.5.)

4.3 Linearly independent sets; bases

➢ Know the definition of linearly independent vectors and a basis for a subspace.

➢ Know how to decide whether given vectors from R
n are linearly independent or not.

➢ Know how to prove that the monomials q0(x) = 1, q1(x) = x, q2(x) = x2, are linearly indepen-
dent. This proof is presented in the post on January 10.

➢ Know how to find a basis of a given subspace of P2; see examples in the post on January 10.

4.4 Coordinate systems.

➢ Let V be a vector space and let B be a basis for V. Know: the unique representation theorem,
the definition of a coordinate mapping, the meaning of the symbol [v]B for a given vector v in V.

➢ Theorem 8: Given a basis B =
{
b1, . . . ,bn

}
of a vector space V, the coordinate mapping v 7→ [v]B

is a one-to-one linear transformation from V onto R
n. In other words, the coordinate mapping

v 7→ [v]B is a linear bijection from V to R
n.

➢ Know how a coordinate mapping for polynomials works, Examples 5 and 6. See also the post on
January 10.

➢ Know Exercises 10, 11, 13

4.5 The dimension of a vector space

➢ The definition of a finite dimensional vector space and the definition of the dimension of a finite
dimensional vector space

4.6 Rank

➢ Know the definition of the rank of a matrix, denoted by rankA.

➢ Let m and n be positive integers. For a given m×n matrix A know the relationship between the
following nonnegative integers:

dim(NulA), dim(ColA), dim(RowA), rankA, m, n

4.7 Change of bases (in fact: Change of coordinates).
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➢ Know that the matrix M with the property [v]C = M [v]B is called the change-of-coordinates
matrix from B to C. It is denoted P

C←B
and it is calculated as

P
C←B

=
[
[b1]C · · · [bn]C

]
;

here B =
{
b, . . . ,bn

}
and C are two bases of an n-dimensional vector space V and [v]B ∈ R

n

denotes the coordinate vector of v ∈ V relative to the basis B.
➢

(
P
C←B

)−1
= P
B←C

➢ The post on February 1 has a graphical example of change-of-coordinates matrix.

➢ Know that there is a special basis of Rn, called the standard basis, which consists of the columns
of the identify matrix In. It is denoted by E . This notattion comes from the fact that the vectors
in this basis are commonly denoted by e1, · · · , en.

➢ Know that for a basis B =
{
b1, . . . ,bn

}
for Rn (this is a special case) we have

P
E←B

=
[
b1 · · · bn

]
= PB

(the matrix PB was introduced in Section 4.4); this basically says that P
E←B

is a very friendly

matrix.

➢ The post on January 17 has important examples of change-of-coordinates matrices in the context
of the column space ColA and the row space RowA of a given matrix.

➢ Know Exercises 4 - 10, 13, 14.

5.1 Eigenvectors and eigenvalues.

➢ Know the definition of an eigenvector and eigenvalue. It is a little tricky. Pay attention.

➢ Know the definition of an eigenspace and how to find an eigenspace corresponding to a given
eigenvalue.

➢ Know that the eigenvalues of a triangular matrix are the entries on its main diagonal.

➢ Theorem. Eigenvectors corresponding to distinct eigenvalues are linearly independent. (Or,
in a more formal mathematical language: Let A be an n×n matrix, let v1,v2, . . . ,vm ∈ R

n

and λ1, λ2, . . . , λm ∈ R. If Avk = λkvk, vk 6= 0 and λj 6= λk for all j, k = 1, 2, . . . ,m, then
v1,v2, . . . ,vm are linearly independent.

5.2 The characteristic equation.

➢ Know that λ is an eigenvalue of an n×n matrix A if and only if det(A − λI) = 0 (this is the
characteristic equation for A)

➢ Know how to calculate det(A − λI) for 2×2 and 3×3 matrices, how to find eigenvalues and
corresponding eigenvectors. Exercises 1-8, but do more and find eigenvectors as well. See the
post of January 24.

5.3 Diagonalization.

➢ Theorem. (The diagonalization theorem) An n×n matrix A is diagonalizable if and only if A
has n linearly independent eigenvectors.

➢ Know how to decide whether a given 2×2 and 3×3 matrix A, is diagonalizable or not; if it is
diagonalizable, how to find invertible matrix P and diagonal matrix D such that A = PDP−1.
See the post of January 24.

➢ Know how to decide whether a triangular matrix is diagonalizable or not. Consider the matrix
A in Exercise 18 in Section 5.2 and find h such that the matrix A is diagonalizable.
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5.4 Eigenvectors and linear transformations.

➢ Know that the matrix M with the property [Tv]C = M [v]B is called the matrix of T relative
to the bases B and C and it is calculated as

M =
[
[Tb1]C · · · [Tbn]C

]
,

where T be a linear transformation from an m-dimensional vector space V to an n-dimensional
vector space W, B =

{
b, . . . ,bm

}
is a basis for V and C is a basis for W.

➢ Know that the matrix M with the property [Tv]B = M [v]B is called the matrix of T relative
to the basis B, it is denoted by [T ]B and it is calculated as

[T ]B =
[
[Tb1]B · · · [Tbn]B

]
,

where T : V → V is a linear transformation on an n-dimensional vector space V and B ={
b, . . . ,bn

}
is a basis for V.

➢ Theorem. (The diagonal matrix representation) Let A, D, P be n×n matrices, where P is
invertible, D is diagonal and A = PDP−1. If B is the basis for Rn which consists of the columns
of P and if T : Rn → R

n is given by Tv = Av for all v ∈ R
n, then [T ]B = D.

➢ See the relevant examples on January 28 and January 30.

5.5 Complex eigenvalues.

➢ Know how to calculate complex eigenvalues and corresponding eigenvectors of 2×2 real matrices

➢ Know that the most important class of 2×2 matrices with complex eigenvalues are rotation
matrices; the matrix of the counterclockwise rotation about the origin by the angle θ measured
in radians relative to the standard basis for R2 is

Rθ =

[
cos θ − sin θ

sin θ cos θ

]
;

the 2×2 matrix Rθ is called the rotation matrix.

➢ Theorem. (A “hidden rotation-dilation” theorem.) Let A be a real 2×2 matrix with a nonreal
eigenvalue a − ib and a corresponding eigenvector u + iv. Here a, b ∈ R, b 6= 0 and u,v ∈ R

2.

Then the 2×2 matrix
P =

[
u v

]

is invertible and

A = αP

[
cos θ − sin θ

sin θ cos θ

]
P−1,

where α =
√
a2 + b2 and θ ∈ [0, 2π) is such that

cos θ =
a√

a2 + b2
, sin θ =

b√
a2 + b2

.

➢ In relation to the previous item see the post on January 31.

6.1 Inner product, length, and orthogonality.

➢ Know the definition of the dot product in R
n, its basic properties and calculations involving it.

For

u =




u1
u2
...
un


 ∈ R

n, v =




v1
v2
...
vn


 ∈ R

n, u · v =
n∑

k=1

uk vk = u⊤v = v⊤u.
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➢ Know the definition and the basic properties of the length of a vector in R
n, its properties and

calculations involving it.

➢ Know the definition of the distance in R
n and calculations involving it.

➢ Know the definition of orthogonality in R
n and calculations involving it.

➢ Know the statement and the proof of the linear algebra version of the Pythagorean theorem.

➢ Know the definition and the basic properties of the orthogonal complement in R
n.

➢ Know that for a given m × n matrix A we have (RowA)⊥ = NulA, (ColA)⊥ = Nul(A⊤),
(NulA)⊥ = RowA, and (Nul(A⊤))⊥ = ColA.

➢ Know the geometric interpretation of the dot product in R
2 and R

3:

u · v = ‖u‖ ‖v‖ cos ϑ, (1)

where u and v are vectors in R
2 or in R

3, ϑ is the angle at the vertex O in the triangle OAB

with O being the origin, A being the endpoint of u and B the endpoint of v.

6.2 Orthogonal sets.

➢ Know the definition of an orthogonal set of vectors.

➢ Theorem. (Linear independence of orthogonal sets.) Let S =
{
u1, . . . ,um

}
be a subset of Rn.

If S is an orthogonal set which consists of nonzero vectors, then S is linearly independent. You
should know the proof of this statement.

➢ Know the definition of an orthogonal bases.

➢ Theorem. (Easy expansions with orthogonal bases.) Let
{
u1, . . . ,um

}
be an orthogonal basis

of a subspace W of Rn. Then for every y ∈ W we have

y =
y · u1

u1 · u1

u1 +
y · u2

u2 · u2

u2 + · · ·+ y · um

um · um

um

➢ Know the definition of the orthogonal projection of a vector y onto a nonzero vector u: A vector
ŷ = αu is called the orthogonal projection of y onto u if the difference y − ŷ is orthogonal
to u. (Convince yourself that

ŷ =
y · u
u · u u

is the orthogonal projection of y onto u.)

➢ Know how to do calculations with orthogonal projections.

➢ The definitions of orthonormal set of vectors, orthonormal basis, a matrix with orthonormal
columns.

➢ Know the characterization of a matrix with orthonormal columns: The columns of n×m matrix
U are orthonormal if and only if U⊤U = Im. (Please make sure that you understand the order of
the matrix and its transpose in the previous identity.)

➢ Know the properties of matrices with orthonormal columns.

6.3 Orthogonal projections.

➢ Know the definition of the orthogonal projection of a vector y onto a subspace W: A vector
ŷ ∈ W is called the orthogonal projection of y onto W if the difference y − ŷ is orthogonal
to W. The orthogonal projection of the vector y onto a subspace W is denoted by ProjW y.

➢ Theorem. (The orthogonal decomposition theorem.) Let W be a subspace of Rn. Then each y
in R

n can be written uniquely in the form

y = ŷ + z

where ŷ ∈ W and z ∈ W⊥. We have that ŷ = ProjW y. If
{
u1, . . . ,um

}
is an orthogonal basis

for W, then

ProjW y = ŷ =
y · u1

u1 · u1

u1 +
y · u2

u2 · u2

u2 + · · ·+ y · um

um · um

um (2)
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➢ Know that equation (2) simplifies if we assume that
{
u1, . . . ,um

}
is an orthonormal basis for

W; then
ProjW y = ŷ =

(
y · u1

)
u1 +

(
y · u2

)
u2 + · · ·+

(
y · um

)
um. (3)

➢ Know the amazing fact that equation (3) can be written as a matrix equation: Let

U =
[
u1 · · · um

]

be a matrix with orthonormal columns, then

ProjColQ y = ŷ =
(
y · u1

)
u1 +

(
y · u2

)
u2 + · · ·+

(
y · um

)
um = U U⊤y.

The explanation for the last equality based on the definition of the matrix multiplication is as
follows:

(
y·u1

)
u1+· · ·+

(
y·um

)
um =

[
u1 · · · um

]


y · u1

...
y · um


 = U




(
u1

)⊤
y

...(
um

)⊤
y


 = U




(
u1

)⊤
...(

um

)⊤


y = U U⊤y.

➢ Know how to prove the following fact: Let Q be a n×m matrix with orthonormal columns. Let
y ∈ R

n. Prove that the projection of y onto the column space of Q is given by the formula QQTy.

➢ Know how to solve Exercise 23. Given an m×n matrix A and a vector v ∈ R
n, know how to

write v as a sum of a vector in NulA and a vector in RowA.

➢ This probelm is related to Exercse 23 in Section 6.3. Given

A =




1 2 2 3
2 1 1 0
3 4 4 5


 and y =




1
2
3
4


 ,

find a vector v ∈ NulA and a vector w ∈ RowA such that

y = v+w.

6.4 The Gram-Schmidt orthogonalization.

➢ Know the Gram-Schmidt orthogonalization process: Let m and n be positive integers such that
2 ≤ m ≤ n. Let

{
x1, . . . ,xm

}
be a basis for a subspace W of R

n. The vectors v1, . . . ,vm

recursively defined by

v1 = x1,

v2 = x2 −
x2 · v1

v1 · v1

v1,

v3 = x3 −
x3 · v1

v1 · v1

v1 −
x3 · v2

v2 · v2

v2,

...

vm = xm − xm · v1

v1 · v1

v1 −
xm · v2

v2 · v2

v2 − · · · − xm · vm−1

vm−1 · vm−1

vm−1,

have the following properties

(i)
{
v1, . . . ,vm

}
is an orthogonal basis for W.

(ii) For all k ∈ {1, . . . ,m} we have Span
{
v1, . . . ,vk

}
= Span

{
x1, . . . ,xk

}
.
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➢ Know the definition and how to construct aQR factorization of a matrix with linearly independent
columns.

6.5 Lest square problems.

➢ Know the definition of a least-squares solution of Ax = b.

➢ Know the theorem stating the connection between the set of least-squares solutions of Ax = b
and the set of solutions of the normal equations A⊤Ax = A⊤b.

➢ Know the necessary and sufficient condition for the uniqueness of the least-squares solution of
Ax = b (and its proof).

➢ Know how to find the least-squares solution of Ax = b using the QR factorization of A.

➢ Know how to prove the following statement: The matrices A and ATA have the same null space.

6.6 Applications to linear models.

➢ Know how to find the least-squares line for a set of data points.

➢ Know how to find the least-squares fitting for other curves.

➢ Know how to find the least-squares plane for a set of data points.

➢ Know how to solve Exercise 14.

6.7 Inner product spaces.

➢ Know the definition of an (abstract) inner product.

➢ Know the definitions of length, distance and orthogonality in an inner product space.

➢ Know the statement and the proof of the abstract Pythagorean theorem.

➢ Know how to find the best approximation in an inner product space.

➢ The Gram–Schmidt orthogonalization algorithm in a vector space of polynomials with an inner
product defined by an integral; Exercise 25 which is done in detail on the class website on
February 24.

➢ Know the statement and the proof of the Cauchy-Schwarz inequality (also known as the Cauchy–Bunyakovsky–Sc
inequality). Know applications of the Cauchy–Bunyakovsky–Schwarz inequality, like in Exer-
cises 19 and 20 (the inequality of arithmetic and geometric means).

7.1 Diagonalization of symmetric matrices.

➢ Know the theorem about the orthogonality of eigenspaces corresponding to distinct eigenvalues
of a symmetric matrix and how to prove it.

➢ Know how to prove that all the eigenvalues of a symmetric matrix are real.

➢ Know the definition of an orthogonally diagonalizable matrix.

➢ Know the relationship between the concepts of a symmetric and an orthogonally diagonalizable
matrix and how to prove the easier direction of this relationship.

➢ Know how to prove that a symmetric 2×2 is orthogonally diagonalizable.
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➢ Know the spectral decomposition formula (and its meaning) for symmetric matrices: Let A =
UDU⊤ be an orthogonal diagonalization of a symmetric matrix A. Then

A = UDU⊤ =
[
u1 u2 · · · un

]




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn







u⊤1
u⊤2
...

u⊤n




=
[
λ1u1 λ2u2 · · · λnun

]




u⊤1
u⊤2
...

u⊤n


 = λ1u1u

⊤
1 + λ2u2u

⊤
2 + · · ·+ λnunu

⊤
n

(Here, for k ∈ {1, . . . , n} the n×n matrix uku
⊤
k is the orthogonal projection matrix onto the unit

vector uk.)

7.2 Quadratic forms.

➢ Know the definition of a quadratic form.

➢ Know how to transform a quadratic form into a quadratic form with only square terms.

➢ Know how to classify quadratic forms, including positive semidefinite and negative semidefinite
forms.

7.3 Constrained optimization.

➢ Know how to solve problems like Example 1 and Example 3 (also including the minimum value).

7.4 The singular value decomposition.

➢ Know the definition of the singular value decomposition of a real m×n matrix A: A singular
value decomposition of a real m×n matrix A is a factorization of the form

A = UΣV ⊤

where U is m×m orthogonal matrix, V is n×n orthogonal matrix and Σ is m×n matrix of the
form

Σ =




σ1 · · · 0
...

. . .
...

0 · · · σr

0
r×(n − r)

0
(m − r)×r

0
(m − r)×(n − r)




where r = rankA,



σ1 · · · 0
...

. . .
...

0 · · · σr


 is r×r diagonal matrix with positive entries on the diagonal

and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and all the remaining entries of Σ are zeros. The values σ1, σ2, . . . , σr
are called the singular values of A. The columns of V are called right singular vectors of A
and the columns of U are called left singular vectors of A.

➢ Know the consequences of the definition of a singular value decomposition. (For example, A⊤ =
V Σ⊤U⊤, A⊤A = V Σ⊤ΣV ⊤, where Σ⊤Σ is n×n diagonal matrix with the eigenvalues of A⊤A on
the diagonal and the positive entries on the diagonal are equal to σ2

1, . . . , σ
2
r .)
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➢ Know how a singular value decomposition of A contains orthonormal bases for all four fundamental
subspaces associated with A. This is summarized in Figure 4 on page 423:

❇ the columns of V form an orthonormal basis for Rn,

❇ the first r columns of V form an orthonormal basis for RowA,

❇ the last n− r columns of V form an orthonormal basis for NulA,

❇ the columns of U form an orthonormal basis for Rm,

❇ the first r columns of U form an orthonormal basis for ColA,

❇ the last m− r columns of U form an orthonormal basis for Nul(A⊤).

➢ Review the singular value decomposition of the matrix we found on Wikipedia which we did in
our first online class; see the post on March 11.
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