Examination 2
MATH 312 November 24, 2009 Name

Problem 1. Prove that the set of all functions f : N — {0, 1} is not countable. (This set
of functions is denoted by {0, 1}".)

Problem 2. (a) Prove that the set N is not bounded.

(b) Let a an b be real numbers such that a < b. Prove that there exist m € Z and n € N
such that

m
a< — <b
n

Problem 3. Prove that there exists a positive real number « such that o? = 2.

Problem 4. (a) Let {s,} be a non-decreasing sequence which is bounded above. Prove
that the sequence {s,} converges.

(b) Let A be a nonempty and bounded above subset of R. Set a = sup A. Prove that there
exists a sequence {z,} with the following properties:

e o, AforallneN.
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The end of the proof of Problem 2(b) is wrong. Here is a correct proof.

Since N is not bounded above there exists n € N such that < n.

—a
Since b — a > 0 we then have 1 < nb — na. That is na < nb — 1. We will use
the following property of the ceiling function:

u<ful <u+1 foral zeR.
Applied to u = nb we get
nb < [nb] < nb+ 1,

or
nb—1<[nb] —1 < nb.

Since na < nb — 1, we have
na <nb—1<[nb] — 1< nb,

and consequently
b] — 1
< L < b.
n
Since [nb] —1 € Z and n € N the proof is complete.
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