CHAPTER 4

Continuous functions

In this chapter I will always denote a non-empty subset of R.

4.1. The ¢-§ definition of a continuous function

Definition 4.1.1. A function f : I — R is continuous at a point xo € I if for each
€ > 0 there exists d(¢) > 0 such that

(4.1.1) z€ (vo—6(e),zo+6(e)) NI = |f(z)— flzo)| <e
The function f is continuous on I if it is continuous at each point of I.

Note that the implication in (IT]) can be restated as
xel and |z —xo| <d(e) = |f(z)— flzo)| <e.
Next we restate Definition .T Tlusing the terminology introduced in Section 214
For a function f : I — R and a subset A C I we will use the notation f(A4) to
denote the set {y € R : Iz € Ast. f(x) =y} ={f(z) : z € A}.
A function f: I — R is continuous at a point x¢ € I if for each neighborhood
V of f(zo) there exists a neighborhood U of xy such that

fInu)cv.

4.2. Finding §(e) for a given function at a given point

In this and the next section we will prove that some familiar functions are
continuous.
A general strategy for proving that a given function f is continuous at a given
point zq is as follows:
Step 1. Simplify the expression |f(x) — f(z¢)| and try to establish a simple connec-
tion with the expression |z — zp|. The simplest connection is to discover
positive constants dp and K such that

(421) zel and zp—dp<x<zo+0d0 = |f(x)— flzo)| <K |x—x0]

Formulate your discovery as a lemma.

Step 2. Let € > 0 be given. Use the result in Step 1 to define your d(e). For
example, if (ZZI)) holds, then §(e) = min{e/K, oo }.

Step 3. Use the definition of d(€) from Step 2 and the lemma from Step 1 to prove

implication ([@II)).

Example 4.2.1. We will show that the function f(x) = 22 is continuous at g = 3.
Here I = R and we do not need to worry about the domain of f.
Step 1. First simplify

(4.2.2) |f(x) = f(xo)| = |2* = 3| = |(z + 3)(x — 3)| = |z + 3| |z — 3|.
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66 4. CONTINUOUS FUNCTIONS

Now we notice that if 2 < 2 < 4 we have |z 4+ 3| =z +3 < 7. Thus @ZI) holds
with 09 = 1 and K = 7. We formulate this result as a lemma.

Lemma. Let f(z) = 2% and o = 3. Then

(4.2.3) lz—3/<1 = |2* =3 <7z-3]

PROOF. Let |z — 3] < 1. Then 2 < 2 < 4. Therefore z +3 > 0 and |z + 3| =
z+3 < 7. By @ZZ) we now have |2? — 3% < 7|z — 3|. O

Step 2. Now we define §(€) = min{e/7,1}.

Step 3. It remains to prove @II). To this end, assume |z — 3| < min{e/7,1}.
Then |z — 3| < 1. Therefore, by Lemma we have |2? — 3?| < 7|z — 3|. Since by the
assumption |x — 3| < ¢/7, we have 7|z — 3| < e. Now the inequalities

|2® —=3*| < 7|z —3| and 7z —3|<e

imply that ‘x2 — 32| < e. This proves ([III) and completes the proof that the
function f(x) = 2? is continuous at z¢ = 3.

Exercise 4.2.2. Let f : R — R be defined by f(x) = 5z — 8. Prove that f is
continuous at rg = —3.

1

Exercise 4.2.3. Prove that the reciprocal function x — —, z # 0, is continuous
x

at xg =1/2.

Exercise 4.2.4. Let

1
flz) ==z {—J for 2 #0 and f(0)=1.
x
Prove that the function f is continuous at xo = 0.

Exercise 4.2.5. State carefully what it means for a function f not to be continuous
at a point xg in its domain. (Express this as a formal mathematical statement.)

Exercise 4.2.6. Consider the function f defined in Exercise [£2.4l Find a point
o at which the function f is not continuous. Provide a formal proof. Provide a
detailed sketch of the graph of f near the point xy.

Exercise 4.2.7. Show that the function of Exercise £.2.2]is continuous on R.
Exercise 4.2.8. Prove that the function ¢(z) = 322 + 5 is continuous at z = 2.

Exercise 4.2.9. Prove that ¢(z) = 322 4 5 is continuous on R.

4.3. Familiar continuous functions

Exercise 4.3.1. Let m,k € R and m # 0. Prove that the linear function ¢(x) =
mx + k is continuous on R.

Exercise 4.3.2. Let a,b,c € R and a # 0. Prove that the quadratic function
q(r) = ax® + bx + c is continuous on R.

Exercise 4.3.3. Let n € N and let z,z9 € R be such that g — 1 < x < zg + 1.
Prove the following inequality

" — xg‘ < n(|x0| + l)nil‘x - xo‘.
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4.4. VARIOUS PROPERTIES OF CONTINUOUS FUNCTIONS 67

HinT: First notice that the assumption g — 1 < x < x¢ + 1 implies that
|z| < |zo| + 1. Then use the Mathematical Induction and the identity
" — gt = 2 —waf +aal — 2.
Exercise 4.3.4. Let n € N. Prove that the power function x — z", x € R, is
continuous on R.

Exercise 4.3.5. Let n € N and let ag, a1, ...,a, € R with a,, # 0. Prove that the
n-th order polynomial

px)=ap+arz+- - +an_ 12" +a,z"
is a continuous function on R.
1
Exercise 4.3.6. Prove that the reciprocal function x — —, z # 0, is continuous
x
on its domain.

Exercise 4.3.7. Prove that the square root function z — /x, = > 0, is continuous
on its domain.

Exercise 4.3.8. Let n € N and let x and a be positive real numbers. Prove that

V- val < L2 el
HiINT: Notice that the given inequality is equivalent to
prt |y — b} < }y” — b”|, y,b> 0.
This inequality can be proved using Exercise 27717 (with a = 1 and o = y/b).

Exercise 4.3.9. Let n € N. Prove that the n-th root function z — ¥z, x > 0, is
continuous on its domain.

4.4. Various properties of continuous functions

Exercise 4.4.1. Let f : I — R be continuous at x¢ € I and let y be a real number
such that f(z¢) <y. Then there exists o > 0 such that
zeln(xo—a,z0+a) = f(z)<vy.
Tllustrate with a diagram.
Exercise 4.4.2. Let f : I — R be a continuous function on I. Let S be a non-

empty bounded above subset of I such that w = sup S belongs to I. Let y € R.
Prove: If f(z) <y for each x € S, then f(u) <.

The following exercise establishes a connection between continuous functions
and convergent sequences.

Exercise 4.4.3. Let f : I — R be continuous at zg € I. Let {t,} be a sequence
in I that converges to zg € I. Then f (t,) — f(x0) as n — oc.

Exercise 4.4.4. Let f : I — R be continuous at xg € I. Let {t,} be a sequence
in I that converges to o € I. Assume that there is a real number y such that
f(tn) <y for all n € N. Then f(z¢) <y.

Exercise 4.4.5. Let f: I — R be continuous at xg € I. Let {z,,} be a sequence
in I that converges to zg € I. Assume that there is a real number y such that
f(tn) >y for all n € N. Then f(x¢) > y.
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68 4. CONTINUOUS FUNCTIONS

4.5. Algebra of continuous functions

All exercises in this section have the same structure. With the exception of
Exercise £5.3] there are three functions in each exercise: f, g and h. The function
h is always related in a simple (green) way to the functions f and g. Based on the
given (green) information about f and g you are asked to prove a claim (red) about
the function h.

Exercise 4.5.1. Let f: I =+ R and g : I — R be given functions with a common
domain. Define the function i : I — R by

h(z) = f(x) +g(x), xel.

(a) If f and g are continuous at z¢ € I, then h is continuous at x.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.2. Let f: ] — R and ¢ : I — R be given functions with a common
domain. Define the function i : I — R by

W) = f(z)g(x), =€l

(a) If f and g are continuous at z¢ € I, then h is continuous at x.
b) If f and g are continuous on I, then A is continuous on 1.
g

Exercise 4.5.3. Let g : I — R be a given functions such that g(x) # 0 for all
x € I. Define the function h : I — R by

(a) If g is continuous at zg € I, then h is continuous at .
(b) If g is continuous on I, then & is continuous on I.

Exercise 4.5.4. Let f: I — R and g : I — R be given functions with a common
domain. Assume that g(x) # 0 for all € I. Define the function h: I — R by

(a) If f and g are continuous at z¢ € I, then h is continuous at x.
(b) If f and ¢ are continuous on I, then h is continuous on I.

Exercise 4.5.5. Let [ and J be non-empty subsets of R. Let f : I — R and
g : J — R be given functions. Assume that the range of f is contained in J. Define
the function h: I — R by

W) =g(f(x), wel
(a) If f is continuous at xy € I and g¢ is continuous at f(zg) € J, then h is
continuous at xg.
(b) If f is continuous on I and g is continuous on J, then h is continuous on I.
4.6. Continuous functions on a closed bounded interval [a, b]
In this section we assume that a,b € R and a < b.

Exercise 4.6.1. Let «, 3,7 € R. If a8 < 0, then ay < 0 or gy < 0.
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4.6. CONTINUOUS FUNCTIONS ON A CLOSED BOUNDED INTERVAL [a, b] 69

Exercise 4.6.2. Let f : [a,b] — R be a continuous function. If f(a)f(b) < 0, then
there exists z € [a, b] such that f(z) = 0.

HiNT 1: Use Cantor’s intersection theorem. Define a sequence of closed inter-
vals [an, by, n € N, such that

[ana bn] g [au b]u [an-i-la bn-i—l] g [ana bn]7 bn — Qp = (b - a)/2n717

and, most importantly, f(an)f(bn) <0 for all n € N.
HINT 2: Assume that f(a) < 0 and f(b) > 0 and consider the set

W ={wela,b) : f(z) <0Vzx € [a,w]}.

Exercise 4.6.3. Let f : D — R be a function defined on a nonempty set D. If
D = AU B, then one of the following two statements hold:

(a) For each x € D there exists y € A such that f(x) < f(y).
(b) For each = € D there exists y € B such that f(z) < f(y).

Exercise 4.6.4. Let f : [a,b] — R be a function defined on [a,b]. Then for each
1 > 0 there exists ¢, d € [a,b] such that 0 < d — ¢ < n and for each z € [a, b] there
exists y € [c, d] such that f(z) < f(y).

HINT: Use a part of the hint for Exercise and Exercise

Exercise 4.6.5. Let f : [a,b] — R be a continuous function. Then there exists
w € [a,b] such that f(z) < f(w) for all x € [a, b].

HINT 1: Use Cantor’s intersection theorem, a part of the hint for Exercise [£.6.2]
and Exercise

HinT 2: Consider the set

W = {w € la,b) : 3z € (w,b] suchthat f(z)< f(z) Vz € [a,w] }

Here [a, a] denotes the set {a}. Prove that the set W has the following property:
If [a,v) € W, with a < v, and if there exists ¢ € [a, b] such that f(¢) > f(v), then
veW.

Exercise 4.6.6. Let f : [a,b] — R be a continuous function. Then there exists
v € [a,b] such that f(v) < f(z) for all x € [a, b].

HINT: Use Exercise .65
Exercise 4.6.7. Let f : [a,b] — R be a continuous function. Then the range of f
is a closed bounded interval.

HINT: Use Exercises 4.6.5] [1.6.6] and 1.6.2)
Exercise 4.6.8. Consider the function f(r) = 2° — z, v € R.
(a) Prove that 1 is in the range of f.
(b) Prove that the range of f equals R.
Definition 4.6.9. A function f is increasing on an interval I if x,y € I with
x < yimply f(x) < f(y). A function f is decreasing if x,y € I with < y imply
f(z) > f(y). A function which is increasing or decreasing is said to be strictly
monotonic.

Exercise 4.6.10. If f is continuous and increasing on [a,b] or continuous and
decreasing on [a,b], then for each y between f(a) and f(b) there is exactly one
x € [a, b] such that f(z) =v.

Exercise 4.6.11. Let f(z) = 2% + 2, z € R. Prove that f has an inverse. That is,
prove that for each y € R there exists unique 2 € R such that f(z) = y.
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