
CHAPTER 4

Continuous functions

In this chapter I will always denote a non-empty subset of R.

4.1. The ǫ-δ definition of a continuous function

Definition 4.1.1. A function f : I → R is continuous at a point x0 ∈ I if for each
ǫ > 0 there exists δ(ǫ) > 0 such that

(4.1.1) x ∈
(
x0 − δ(ǫ), x0 + δ(ǫ)

)
∩ I ⇒ |f(x)− f(x0)| < ǫ.

The function f is continuous on I if it is continuous at each point of I.

Note that the implication in (4.1.1) can be restated as

x ∈ I and |x− x0| < δ(ǫ) ⇒ |f(x)− f(x0)| < ǫ.

Next we restate Definition 4.1.1 using the terminology introduced in Section 2.14.
For a function f : I → R and a subset A ⊆ I we will use the notation f(A) to
denote the set

{
y ∈ R : ∃x ∈ A s.t. f(x) = y

}
=
{
f(x) : x ∈ A

}
.

A function f : I → R is continuous at a point x0 ∈ I if for each neighborhood
V of f(x0) there exists a neighborhood U of x0 such that

f
(
I ∩ U

)
⊆ V.

4.2. Finding δ(ǫ) for a given function at a given point

In this and the next section we will prove that some familiar functions are
continuous.

A general strategy for proving that a given function f is continuous at a given
point x0 is as follows:

Step 1. Simplify the expression |f(x)−f(x0)| and try to establish a simple connec-
tion with the expression |x − x0|. The simplest connection is to discover
positive constants δ0 and K such that

(4.2.1) x ∈ I and x0 − δ0 < x < x0 + δ0 ⇒ |f(x)− f(x0)| ≤ K |x− x0|.
Formulate your discovery as a lemma.

Step 2. Let ǫ > 0 be given. Use the result in Step 1 to define your δ(ǫ). For
example, if (4.2.1) holds, then δ(ǫ) = min

{
ǫ/K, δ0

}
.

Step 3. Use the definition of δ(ǫ) from Step 2 and the lemma from Step 1 to prove
implication (4.1.1).

Example 4.2.1. We will show that the function f(x) = x2 is continuous at x0 = 3.
Here I = R and we do not need to worry about the domain of f .
Step 1. First simplify

(4.2.2)
∣
∣f(x)− f(x0)

∣
∣ =

∣
∣x2 − 32

∣
∣ =

∣
∣(x+ 3)(x− 3)

∣
∣ =

∣
∣x+ 3

∣
∣
∣
∣x− 3

∣
∣.
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66 4. CONTINUOUS FUNCTIONS

Now we notice that if 2 < x < 4 we have
∣
∣x + 3

∣
∣ = x + 3 ≤ 7. Thus (4.2.1) holds

with δ0 = 1 and K = 7. We formulate this result as a lemma.

Lemma. Let f(x) = x2 and x0 = 3. Then

(4.2.3) |x− 3| < 1 ⇒
∣
∣x2 − 32

∣
∣ < 7|x− 3|.

Proof. Let |x − 3| < 1. Then 2 < x < 4. Therefore x + 3 > 0 and |x + 3| =
x+ 3 < 7. By (4.2.2) we now have

∣
∣x2 − 32

∣
∣ < 7|x− 3|. �

Step 2. Now we define δ(ǫ) = min
{
ǫ/7, 1

}
.

Step 3. It remains to prove (4.1.1). To this end, assume |x − 3| < min
{
ǫ/7, 1

}
.

Then |x− 3| < 1. Therefore, by Lemma we have
∣
∣x2 − 32

∣
∣ < 7|x− 3|. Since by the

assumption |x− 3| < ǫ/7, we have 7|x− 3| < ǫ. Now the inequalities
∣
∣x2 − 32

∣
∣ < 7|x− 3| and 7|x− 3| < ǫ

imply that
∣
∣x2 − 32

∣
∣ < ǫ. This proves (4.1.1) and completes the proof that the

function f(x) = x2 is continuous at x0 = 3.

Exercise 4.2.2. Let f : R → R be defined by f(x) = 5x − 8. Prove that f is
continuous at x0 = −3.

Exercise 4.2.3. Prove that the reciprocal function x 7→ 1

x
, x 6= 0, is continuous

at x0 = 1/2.

Exercise 4.2.4. Let

f(x) = x

⌊
1

x

⌋

for x 6= 0 and f(0) = 1.

Prove that the function f is continuous at x0 = 0.

Exercise 4.2.5. State carefully what it means for a function f not to be continuous
at a point x0 in its domain. (Express this as a formal mathematical statement.)

Exercise 4.2.6. Consider the function f defined in Exercise 4.2.4. Find a point
x0 at which the function f is not continuous. Provide a formal proof. Provide a
detailed sketch of the graph of f near the point x0.

Exercise 4.2.7. Show that the function of Exercise 4.2.2 is continuous on R.

Exercise 4.2.8. Prove that the function q(x) = 3x2 + 5 is continuous at x = 2.

Exercise 4.2.9. Prove that q(x) = 3x2 + 5 is continuous on R.

4.3. Familiar continuous functions

Exercise 4.3.1. Let m, k ∈ R and m 6= 0. Prove that the linear function ℓ(x) =
mx+ k is continuous on R.

Exercise 4.3.2. Let a, b, c ∈ R and a 6= 0. Prove that the quadratic function
q(x) = a x2 + b x+ c is continuous on R.

Exercise 4.3.3. Let n ∈ N and let x, x0 ∈ R be such that x0 − 1 ≤ x ≤ x0 + 1.
Prove the following inequality

∣
∣xn − xn

0

∣
∣ ≤ n

(
|x0|+ 1

)n−1∣
∣x− x0

∣
∣.

November 16, 2009



4.4. VARIOUS PROPERTIES OF CONTINUOUS FUNCTIONS 67

Hint: First notice that the assumption x0 − 1 ≤ x ≤ x0 + 1 implies that
|x| < |x0|+ 1. Then use the Mathematical Induction and the identity

∣
∣xn+1 − xn+1

0

∣
∣ =

∣
∣xn+1 − xxn

0 + xxn
0 − xn+1

0

∣
∣.

Exercise 4.3.4. Let n ∈ N. Prove that the power function x 7→ xn, x ∈ R, is
continuous on R.

Exercise 4.3.5. Let n ∈ N and let a0, a1, . . . , an ∈ R with an 6= 0. Prove that the
n-th order polynomial

p(x) = a0 + a1 x+ · · ·+ an−1 x
n−1 + an x

n

is a continuous function on R.

Exercise 4.3.6. Prove that the reciprocal function x 7→ 1

x
, x 6= 0, is continuous

on its domain.

Exercise 4.3.7. Prove that the square root function x 7→ √
x, x ≥ 0, is continuous

on its domain.

Exercise 4.3.8. Let n ∈ N and let x and a be positive real numbers. Prove that

∣
∣ n
√
x− n

√
a
∣
∣ ≤

n
√
a

a

∣
∣x− a

∣
∣.

Hint: Notice that the given inequality is equivalent to

bn−1
∣
∣y − b

∣
∣ ≤

∣
∣yn − bn

∣
∣, y, b > 0.

This inequality can be proved using Exercise 2.7.7 (with a = 1 and x = y/b).

Exercise 4.3.9. Let n ∈ N. Prove that the n-th root function x 7→ n
√
x, x ≥ 0, is

continuous on its domain.

4.4. Various properties of continuous functions

Exercise 4.4.1. Let f : I → R be continuous at x0 ∈ I and let y be a real number
such that f(x0) < y. Then there exists α > 0 such that

x ∈ I ∩ (x0 − α, x0 + α) ⇒ f(x) < y.

Illustrate with a diagram.

Exercise 4.4.2. Let f : I → R be a continuous function on I. Let S be a non-
empty bounded above subset of I such that u = supS belongs to I. Let y ∈ R.
Prove: If f(x) ≤ y for each x ∈ S, then f(u) ≤ y.

The following exercise establishes a connection between continuous functions
and convergent sequences.

Exercise 4.4.3. Let f : I → R be continuous at x0 ∈ I. Let {tn} be a sequence
in I that converges to x0 ∈ I. Then f (tn) → f(x0) as n → ∞.

Exercise 4.4.4. Let f : I → R be continuous at x0 ∈ I. Let {tn} be a sequence
in I that converges to x0 ∈ I. Assume that there is a real number y such that
f(tn) ≤ y for all n ∈ N. Then f(x0) ≤ y.

Exercise 4.4.5. Let f : I → R be continuous at x0 ∈ I. Let {xn} be a sequence
in I that converges to x0 ∈ I. Assume that there is a real number y such that
f(tn) ≥ y for all n ∈ N. Then f(x0) ≥ y.
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68 4. CONTINUOUS FUNCTIONS

4.5. Algebra of continuous functions

All exercises in this section have the same structure. With the exception of
Exercise 4.5.3, there are three functions in each exercise: f , g and h. The function
h is always related in a simple (green) way to the functions f and g. Based on the
given (green) information about f and g you are asked to prove a claim (red) about
the function h.

Exercise 4.5.1. Let f : I → R and g : I → R be given functions with a common
domain. Define the function h : I → R by

h(x) = f(x) + g(x), x ∈ I.

(a) If f and g are continuous at x0 ∈ I, then h is continuous at x0.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.2. Let f : I → R and g : I → R be given functions with a common
domain. Define the function h : I → R by

h(x) = f(x)g(x), x ∈ I.

(a) If f and g are continuous at x0 ∈ I, then h is continuous at x0.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.3. Let g : I → R be a given functions such that g(x) 6= 0 for all
x ∈ I. Define the function h : I → R by

h(x) =
1

g(x)
, x ∈ I.

(a) If g is continuous at x0 ∈ I, then h is continuous at x0.
(b) If g is continuous on I, then h is continuous on I.

Exercise 4.5.4. Let f : I → R and g : I → R be given functions with a common
domain. Assume that g(x) 6= 0 for all x ∈ I. Define the function h : I → R by

h(x) =
f(x)

g(x)
, x ∈ I.

(a) If f and g are continuous at x0 ∈ I, then h is continuous at x0.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.5. Let I and J be non-empty subsets of R. Let f : I → R and
g : J → R be given functions. Assume that the range of f is contained in J . Define
the function h : I → R by

h(x) = g(f(x)), x ∈ I.

(a) If f is continuous at x0 ∈ I and g is continuous at f(x0) ∈ J , then h is
continuous at x0.

(b) If f is continuous on I and g is continuous on J , then h is continuous on I.

4.6. Continuous functions on a closed bounded interval [a, b]

In this section we assume that a, b ∈ R and a < b.

Exercise 4.6.1. Let α, β, γ ∈ R. If αβ ≤ 0, then αγ ≤ 0 or βγ ≤ 0.
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4.6. CONTINUOUS FUNCTIONS ON A CLOSED BOUNDED INTERVAL [a, b] 69

Exercise 4.6.2. Let f : [a, b] → R be a continuous function. If f(a)f(b) ≤ 0, then
there exists z ∈ [a, b] such that f(z) = 0.

Hint 1: Use Cantor’s intersection theorem. Define a sequence of closed inter-
vals [an, bn], n ∈ N, such that

[an, bn] ⊆ [a, b], [an+1, bn+1] ⊆ [an, bn], bn − an = (b− a)/2n−1,

and, most importantly, f
(
an
)
f
(
bn
)
≤ 0 for all n ∈ N.

Hint 2: Assume that f(a) < 0 and f(b) > 0 and consider the set

W =
{
w ∈ [a, b) : f(x) < 0 ∀x ∈ [a, w]

}
.

Exercise 4.6.3. Let f : D → R be a function defined on a nonempty set D. If
D = A ∪B, then one of the following two statements hold:

(a) For each x ∈ D there exists y ∈ A such that f(x) ≤ f(y).
(b) For each x ∈ D there exists y ∈ B such that f(x) ≤ f(y).

Exercise 4.6.4. Let f : [a, b] → R be a function defined on [a, b]. Then for each
η > 0 there exists c, d ∈ [a, b] such that 0 < d− c < η and for each x ∈ [a, b] there
exists y ∈ [c, d] such that f(x) ≤ f(y).

Hint: Use a part of the hint for Exercise 4.6.2 and Exercise 4.6.3.

Exercise 4.6.5. Let f : [a, b] → R be a continuous function. Then there exists
w ∈ [a, b] such that f(x) ≤ f(w) for all x ∈ [a, b].

Hint 1: Use Cantor’s intersection theorem, a part of the hint for Exercise 4.6.2
and Exercise 4.6.3.

Hint 2: Consider the set

W =
{

w ∈ [a, b) : ∃ z ∈ (w, b] such that f(x) < f(z) ∀ x ∈ [a, w]
}

.

Here [a, a] denotes the set {a}. Prove that the set W has the following property:
If [a, v) ⊆ W , with a < v, and if there exists t ∈ [a, b] such that f(t) > f(v), then
v ∈ W .

Exercise 4.6.6. Let f : [a, b] → R be a continuous function. Then there exists
v ∈ [a, b] such that f(v) ≤ f(x) for all x ∈ [a, b].

Hint: Use Exercise 4.6.5.

Exercise 4.6.7. Let f : [a, b] → R be a continuous function. Then the range of f
is a closed bounded interval.

Hint: Use Exercises 4.6.5, 4.6.6, and 4.6.2.

Exercise 4.6.8. Consider the function f(x) = x5 − x, x ∈ R.

(a) Prove that 1 is in the range of f .
(b) Prove that the range of f equals R.

Definition 4.6.9. A function f is increasing on an interval I if x, y ∈ I with
x < y imply f(x) < f(y). A function f is decreasing if x, y ∈ I with x < y imply
f(x) > f(y). A function which is increasing or decreasing is said to be strictly

monotonic.

Exercise 4.6.10. If f is continuous and increasing on [a, b] or continuous and
decreasing on [a, b], then for each y between f(a) and f(b) there is exactly one
x ∈ [a, b] such that f(x) = y.

Exercise 4.6.11. Let f(x) = x3 + x, x ∈ R. Prove that f has an inverse. That is,
prove that for each y ∈ R there exists unique x ∈ R such that f(x) = y.
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