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CHAPTER 1

Introductory Material

1.1. Goals

• To provide a systematic foundation of some basic concepts encountered
in calculus, particularly those associated with the structure of the real
numbers and notions of limit and continuity for real-valued functions.

• To introduce students to the nature and role of proofs in mathematics.
Specifically we assert that the only way to understand proofs is to con-
struct proofs on your own.

• To develop ability to critically read and judge the correctness and the
completeness of mathematical reasoning.

• To develop a skill in the clear and precise presentation of mathematical
reasoning.

1.2. Strategies

How to get started towards a solution of a problem?

(1) Illustrate the problem with several examples.
(2) Make sure that you understand the terminology used in the problem.

Review all relevant definitions.
(3) Can you restate the problem as an implication? (Clearly identify the

assumptions and the conclusion of the implication.)
(4) Identify problems done in class that are in some sense related to the

problem that you are working on. Review proofs of those problems.
(5) Try to identify tools that can be used in the solution of the problem.
(6) If you can not solve the given problem, try to formulate a related simpler

problem that you can solve. For example, try to solve a special case.
(7) Be flexible. Have in mind that there are many ways to approach each

problem.
(8) Keep a detailed written record of your work.

How to avoid mistakes?

(1) Write your solution out carefully. Include justifications for all arguments
that you use.

(2) Read your solution critically after a day or two. Is everything that you
use in your proof justified.

(3) Imagine that a skeptic is reading your proof. Can you answer all sceptic’s
question?

5
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1.3. Mathematics and logic

Proofs in mathematics are logical arguments. The purpose of this section is to
remind you briefly of some of the common strategies of proof, and of the facts of
logical equivalence of certain kinds of statements on which these strategies depend.

1.3.1. Implications. Most theorems in mathematics can be stated as impli-

cations (or conditional statements). An implication is a statement of the form “If
P , then Q.” Here P an Q are simple statements that can be either true or false.
The statement “If P , then Q.” is symbolically written as P ⇒ Q.

The implication P ⇒ Q is false when P is true and
Q is false, and true otherwise. This is summarized in
the truth table on the right.

In the implication P ⇒ Q, P is called the hypoth-

esis (or premise) and Q is called the conclusion (or
consequence).

P Q P ⇒ Q
F F T
F T T
T F F
T T T

To make mathematical language more colorful we use a great variety of different
ways of saying: “If P , then Q.” Here are some of the most common:

Q when P . Q follows from P . P is sufficient for Q.

Q if P . Q whenever P . Q is necessary for P .

Q by P . P only if Q. A sufficient condition for Q is P .

When P , Q. P implies Q. A necessary condition for P is Q.

If P , Q. By P , Q. Q provided that P .

Try constructing different ways of saying “If P , then Q.” using some everyday
statements P and Q, and some mathematical statements P and Q suggested below.

P Q

It rains. WWU’s Red Square is wet.

You get 100% on the final. You will get an A.

It is sunny today. We will go to the beach.

I get to the camp first. I will raise the flag.

n is a positive integer. 2n2 is not a square number.

An integer n is divisible by 9. The sum of the digits in n is divisible by 9.

n is a positive integer. n(n+ 1) is even.

x2 < x x > 0 and x < 1.

Starting with an implication “If P , then Q.” it is possible to produce three more
implications by shuffling the order and possibly introducing some “nots”. These
are

(a) The contrapositive of the statement: If not Q, then not P .
(b) The converse of the statement: If Q, then P .
(c) The inverse of the statement: If not P , then not Q.
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The contrapositive of a statement is logically equivalent to it,
that is, the contrapositive is true if and only if the original impli-
cation is true. This is a useful fact in constructing proofs. (See an example
below.)

The truth of the converse and inverse, on the other hand, is not related to that
of the original statement, though they are equivalent to one another. (Why?)

Exercise 1.3.1. Write the contrapositive, converse, and inverse of each of the
following true statements. Do you agree that the contrapositive is true in each
case? What about the converse and inverse?

(a) If 2n is an odd integer, then n is not an integer.
(b) If m > 0, then m2 > 0.

1.3.2. If and only if. In mathematics we often encounter situations that both
P ⇒ Q and Q ⇒ P are true. Then we write P ⇔ Q and say that P and Q are
equivalent. As before, there are several different ways of saying this in English.
A popular one is to say: “P if and only if Q” or “P is necessary and sufficient
condition for Q.”

1.3.3. Quantifiers. Mathematical statements usually involve quantifiers, al-
though they are not always made explicit. We write things like: “For every integer
n, n(n+ 1) is even.” or “n(n+ 1) is even whenever n is an integer.”

Some statements may involve several nested quantifiers: “For every cubic poly-
nomial p with real coefficients there exists a real number x such that p(x) = 0.”

Notice that the order of quantifiers is important.

Exercise 1.3.2. Explain the difference in meaning between the statement just
given and this one: “There exists a real number x such that for every cubic poly-
nomial f , f(x) = 0.”

There are a number of different ways to express in English both the universal

quantifier (for every, for each, for all...) and the existential quantifier (there exists,
there is at least one...). We will regard each of these phrases as having exactly
the same meaning as each of the others in its category. The logical symbol for the
universal quantifier is ∀ and for the existential quantifier ∃.

1.3.4. Negations. It is often necessary to form the negation of a given state-
ment. This is the statement that is true if and only if the original statement is false.
(Thus the negation of the negation is the original statement.) Forming the negation
is straightforward, but can demand careful attention if the original statement has
many parts. Here are some examples.

Statement: If today is Tuesday, then the Western Front is published today.
Negation: Today is Tuesday, and the Western Front is not published today.

Recall that an implication is false only when the “if part” is true and the “then
part” is false. Thus the negation must be true exactly under those conditions.

Statement: Bob and Bill are Western students.
Negation: Bob is not a Western student or Bill is not a Western student.

Notice that the original statement becomes false as soon as one man fails to
be a Western student. Notice also that the second statement is still true if neither
Bob nor Bill is a Western student. “Or” is always used in this way in mathematics.
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Statement: Bob or Bill is a Western student.
Negation: Bob and Bill are not Western students.

In the same way, “for every” and “there exists” are interchanged when forming
a negation.

Statement: For every x in A, f(x) > 5.
Negation: There exists an x in A such that f(x) ≤ 5.

Statement: There is a rational number r such that r2 = 2.
Negation: For every rational number r, r2 6= 2.

Here are some more complicated examples.

Statement: For every cubic polynomial f , there exists a real number x such
that f(x) = 0.

Negation: There exists a cubic polynomial f such that for every real number
x, f(x) 6= 0.

Statement: There exists a real number x such that for every cubic polynomial
f , f(x) = 0.

Negation: For every real number x there exists a cubic polynomial f such
that f(x) 6= 0.

Statement: For every n ≥ N and every x in E, |fn(x) − f(x)| < 1.
Negation: There exists an n ≥ N and an x in E such that |fn(x)− f(x)| ≥ 1.

Think carefully about what each statement means before deciding that you
agree that the negations are correct.

Exercise 1.3.3. Form the negation of each statement. Express the negation so
that the word “not” or “no” does not occur.

(a) For every x > 1, there exists a real number y such that 1 < y < x.
(b) For every x > 0 there exists y > 0 such that xy < 1.
(c) For every x > 0 there exists y > 0 such that xy > 1.
(d) There exists y > 0 such that for every x > 0 we have xy > 1.
(e) There exists x > 0 such that for all y > 0 we have xy ≤ 1.
(f) For every y > 0 there exists x > 0 such that xy ≤ 1.

1.4. Proofs

Most of the time in this class we will be constructing proofs. Here are some
simple examples illustrating different styles of proof.

The first is a direct proof. Here one simply begins with the hypotheses and any
other usable facts and reasons until one reaches the conclusion.

Theorem 1.4.1. The square of an odd integer has the form 8k+1 for some integer

k.

Remark 1.4.2. Note that this is really an implication and could be rephrased: If
n is an odd integer, then there is an integer k such that n2 = 8k + 1.

Proof. First we need to rewrite the hypothesis in a more useful form. “n is
odd” means that n is not divisible by 2, that is, if we try to do the division we’ll
get a quotient q and a remainder of 1. Equivalently, n = 2q + 1. Thus

n2 = (2q + 1)2 = 4q2 + 4q + 1 = 4q(q + 1) + 1.
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Now either q is even, q = 2r for some integer r, or q is odd, q = 2s+1 for some
integer s. In the first case,

n2 = 8r(q + 1) + 1.

In the second case q + 1 = 2s+ 2 = 2(s+ 1) so that

n2 = 8q(s+ 1) + 1.

Thus, we do have n2 = 8k + 1 in either case; k = r(q + 1) or k = q(s + 1) as
appropriate. �

The second very useful strategy to prove the implication P ⇒ Q (P implies
Q) is to prove its contrapositive ¬Q ⇒ ¬P (not Q implies not P ). As we noted
earlier:

The contrapositive of a statement is logically equivalent to it,
that is, the contrapositive is true if and only if the original implica-
tion is true. (This can be shown using truth tables.)

Remark 1.4.3. Whenever you work with an implication it is very useful to state
its contrapositive as well. In fact, you should always write both direct implication
and its contrapositive and then decide which one is easier to prove.

Theorem 1.4.4. If n2 is even, then n is even.

Proof. The contrapositive of this statement is (using the fact that every in-
teger is either even or odd): if n is odd, then n2 is odd. This has just been proved,
since an integer of the form 8k + 1 is certainly odd. �

The third strategy to prove an implication is a proof by contradiction. In a
proof of P ⇒ Q by contradiction one assumes both P and ¬Q (not Q) and derives
a contradiction. This establishes that P ⇒ Q is true because the only way for this
implication to be false is for P to be true and Q to be false.

Theorem 1.4.5.
√
2 is irrational.

Proof. We can rephrase the theorem as the following implication: If x2 = 2,
then x is irrational.

Suppose that x is rational. Then x = a/b for some integers a and b. We may
assume that this fraction is in lowest terms, that is, that a and b have no common
factor. Then 2 = x2 = (a/b)2 or 2b2 = a2. Thus a2 is even. By the previous
theorem, a is even, i.e., a = 2c for some integer c. But then

2b2 = (2c)2 = 4c2 or b2 = 2c2.

Thus b is also even. But this contradicts our choice of a and b as having no
common factor. Thus assuming that x is rational has led to a contradiction and we
can conclude that x must be irrational. �

The proof above is an example of a proof by contradiction. Very often proofs
by contradiction are in fact direct proofs of the contrapositive in disguise.

The direct proof of the contrapositive. We will prove the following
implication: If x is rational, then x2 6= 2.
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Let x be a rational number. Then there exist integers p and q which are not both

even, such that x = p/q. Now we need to prove that
(
p/q
)2 6= 2, or equivalently

p2 6= 2q2.
Consider two cases: Case 1: p is odd, and Case 2: p is even.

Case 1. Assume that p is odd. By Theorem 1.4.4, p2 is odd. Since 2q2 is even we
have p2 6= 2q2.
Case 2. Assume that p is even. Then there exists an integer r such that p = 2r.
Since not both q and p are even, q must be odd. Then q2 is odd as well. Since
2r2 is even we have 2r2 6= q2. Consequently 4r2 6= 2q2. Since 4r2 = (2r)2 = p2, it
follows that p2 6= 2q2. �

Very often proofs by contradiction are disguised proofs of the
contrapositive. Before you do a proof by contradiction you should
try to prove the contrapositive first.

1.5. Sets

By a set A we mean a well-defined collection of objects such that it can be
determined whether or not any particular object is an element of A. If a is an
object in the set A we say that a is an element of A and write a ∈ A. The negation
of x ∈ A is x /∈ A.

The empty set is the unique set which contains no elements. The empty set is
denoted by the symbol ∅.

Generally, capital letters will be used to denote sets of objects and lower case
letters to denote objects themselves. However, watch for deviations of this rule. We
will be concerned mainly with sets of real numbers. The specially designed letters
N, Z, Q, and R denote the following important sets of real numbers:

N denotes the set of all natural numbers (or positive integers),
Z denotes the set of all integers,
Q denotes the set of all rational numbers,
R denotes the set of all real numbers.

A set can be described by:

• a statement such as “Let A be the set of real solutions of the equation
x2 − x = 0.”

• a listing of all the elements; for example A = {0, 1}.
• notation such as A =

{
x ∈ R : x2 = x

}
.

Notice the usage of the braces (or curly brackets) { and } in the above exam-
ples. They are used to delimit the sets. The number 0 is an important real number.
However, {0} is the set whose only element is 0.

The expression
{
x ∈ R : x2 = x

}
is read as “the set of all real numbers x such

that x2 = x”. Here the colon (:) is used as an abbreviation for the phrase “such
that”.

Definition 1.5.1. A set B is a subset of a set A if every element of B is also an
element of A. In this case we write B ⊆ A or A ⊇ B. Formally, B ⊆ A if and only
if x ∈ B implies x ∈ A.

Since the implication x ∈ ∅ ⇒ x ∈ A is always true, the empty set is a subset
of each set. Below is the set of all subsets of the set {−1, 0, 1}.

{
∅, {−1}, {0}, {1}, {−1, 0}, {−1, 1}, {0, 1}, {−1, 0, 1}

}
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Definition 1.5.2. Two sets A and B are equal, denoted A = B, if they contain
precisely the same elements, that is, if A ⊆ B and B ⊆ A.

Notice that the elements are not repeated in a set; for example {0, 1, 0} = {0, 1}.
Also, the order in which elements are listed is not important: {3, 2, 1} = {1, 2, 3}.
Remark 1.5.3. Equality is allowed in the definition of a subset, that is, a set is a
subset of itself. If we wish to exclude this possibility we say B is a proper subset of
A and we write B ( A or B ⊂ A. Formally, B ( A if and only if x ∈ B implies
x ∈ A and there exists a ∈ A such that a /∈ B.

The negation of B ⊆ A is denoted by B 6⊆ A. Formally, B 6⊆ A if and only if
there exists b ∈ B such that b /∈ A.

Definition 1.5.4. The union of A and B is the set of all x such that x is an element
of A or x is an element of B. It is denoted A ∪B. Thus

A ∪B =
{
x : x ∈ A or x ∈ B

}
.

Remark 1.5.5. The conjunction “or” in mathematics is always in an inclusive
sense, that is, it is allowed in the definition that x belong to both A and B. For
example, {0, 1, 2, 3} ∪ {2, 3, 4, 5} = {0, 1, 2, 3, 4, 5}.
Definition 1.5.6. The intersection of A and B is the set of all x such that x is an
element of A and x is an element of B. It is denoted A ∩B. Thus

A ∩B =
{
x : x ∈ A and x ∈ B

}
.

Two sets A and B are said to be disjoint if their intersection is the empty set, i.e.
if A ∩B = ∅.
Definition 1.5.7. The difference between the sets A and B is the set of all x such
that x is an element of A and x is not an element of B. It is denoted A \B. Thus

A\B =
{
x : x ∈ A and x /∈ B

}
.

Definition 1.5.8. An ordered pair is a collection of two not necessarily distinct
elements, one of which is distinguished as the first coordinate (or first entry) and
the other as the second coordinate (second entry). The common notation for an
ordered pair with first coordinate a and second coordinate b is (a, b).

Remark 1.5.9. The ordered pairs (0, 1) and (1, 0) are different since their first
entries are different. The ordered pairs (0, 0) and (0, 1) are different since their
second entries are different. In general, (a, b) = (x, y) if and only if a = x and
b = y.

Notice the usage of the round brackets ( and ) in the definition of an ordered
pair. Please distinguish between {0, 1} and (0, 1): {0, 1} is a set with two elements,
(0, 1) is an ordered pair, an object defined by Definition 1.5.8.

Definition 1.5.10. The Cartesian product (or direct product) of two sets A and B,
denoted A×B, is the set of all possible ordered pairs whose first entry is a member
of A and whose second entry is a member of B:

A×B =
{
(a, b) : a ∈ A and b ∈ B

}
.

The main example of a Cartesian product is R×R which provides a coordinate
system for the plane.
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Example 1.5.11. Let A = {1, 2, 3, 4} and let C = {R, G, B} be the set of primary
colors where R stands for red, G for green, and B for blue. Then

A× C =
{
(1, R), (1, G), (1, B), (2, R), (2, G), (2, B),

(3, R), (3, G), (3, B), (4, R), (4, G), (4, B)
}
.

Ideally, mathematical terminology and notation should be com-
pletely free of ambiguities. We strive for the absolute certainty.
However, very soon we will introduce the concept of an open inter-
val and for this concept we will use the same notation as for an
ordered pair. It should be clear from the context what is meant.
Whenever you are uncertain look for the resolution of the uncer-
tainty.

We conclude this section with a remark about families of sets. In this class we
mostly talk about sets of real numbers. Sometimes we will talk about sets whose
elements are also sets. It is customary to use the word “family” instead of “set”
when we talk about sets of sets; see examples in Section 2.3.

For any nonempty family of sets we can define the concepts of union and in-
tersection. Let A be a nonempty family of sets. We define the intersection of the
family A to be

⋂{
A : A ∈ A

}
:=
{
x : x ∈ A for all A ∈ A

}
.

We define the union of the family A to be
⋃{

A : A ∈ A
}
:=
{
x : x ∈ A for some A ∈ A

}

1.6. Functions

Let A and B be nonempty sets. A function from A to B is a rule f which
assigns a unique element of B to each element of A.

The set A is called the domain of the function. We denote by f(x) the element
of B which is assigned to a particular x ∈ A. This element is called a value of f at
x, or image of x under f .

As a simple example we can define the identity function on a set A, idA : A → A,
by idA(x) = x for all x ∈ A.

A weakness of the above definition of a function is that it relies on the undefined
concept of a “rule”. It is not clear what constitutes a valid rule defining a function.
To overcome this weakness we identify a function f with its graph Gf which is a
subset of the cartesian product A×B:

Gf =
{(

x, f(x)
)
: x ∈ A

}
.

and we require that for each x in A there is at most one pair (x, y) in this subset.
The formal definition of a function from A to B is given in terms of subsets of
A×B.

Definition 1.6.1. A function from A into B is a subset Gf of the Cartesian product
A×B such that

(i) for every x ∈ A there exists y ∈ B such that (x, y) ∈ Gf ;
(ii) if (x, y), (x, z) ∈ Gf , then y = z.
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Consider the sets A and C given in Example 1.5.11. The subset
{
(1, G), (2, R), (3, G), (4, B)

}
.

of A × C is a function in the sense of Definition 1.6.1. In the traditional notation
this function is given by f(1) = G, f(2) = R, f(3) = G, f(4) = B. In contrast, the
subset

{
(1, B), (2, G), (2, R), (3, R), (4, G)

}

is not a function since (2, G), (2, R) are in the set and G 6= R. Hence (ii) in Defini-
tion 1.6.1 does not hold for this set.

For small sets A and B we can list all the functions from A to B.

Example 1.6.2. Let A = {0, 1} and let C = {R, G, B}. The following is the list of
all functions from A to C.
{
(0, R), (1, R)

}
,
{
(0, R), (1, G)

}
,
{
(0, R), (1, B)

}
,
{
(0, G), (1, R)

}
,
{
(0, G), (1, G)

}

{
(0, G), (1, B)

}
,
{
(0, B), (1, R)

}
,
{
(0, B), (1, G)

}
,
{
(0, B), (1, B)

}
.

In the rest of these notes we will use the informal definition of a function. The
symbol f : A → B stands for a function from A to B. If we want to emphasize the
rule that defines f we write f : x 7→ f(x), x ∈ A. For example, x 7→ x2, x ∈ R,
denotes the square function defined on R without giving this function a specific
name.

The set
{
f(x) : x ∈ A

}
is the range of f . Formally, y is in the range of f if

and only if there exists x ∈ A such that y = f(x).

A function f : A → B is one-to-one (or an injection) if distinct elements of A
have distinct images in B, i.e., if for all x, y ∈ A, x 6= y implies f(x) 6= f(y). Notice
that the contrapositive of the last implication is: for all x, y ∈ A, f(x) = f(y)
implies x = y. To prove that a function f : A → B is not one-to-one we have to
find x1, x2 ∈ A such that x1 6= x2 and f(x1) = f(x2).

There are only three functions listed in Example 1.6.2 which are not one-to-one.
Find them!

The function x 7→ x2, x ∈ R, is not one-to-one since −1 and 1 are in the domain
of this function and −1 6= 1 and 1 = (−1)2 = 12. However, with A = {x ∈ R :
x ≥ 0}, the function x 7→ x2, x ∈ A, is one-to-one. This will be proved in the next
chapter.

A function f : A → B is onto (or a surjection) if for every point y ∈ B there is
at least one point x ∈ A such that f(x) = y. Another way of saying that f : A → B
is onto B is to say that the range of f is the whole of B. To prove that f : A → B
is not onto we have to prove that there exists b ∈ B such that for all x ∈ A we have
f(x) 6= b.

Let A = {x ∈ R : x ≥ 0} and s(x) = x2, x ∈ R. Then s : R → A is a surjection.
To prove this we have to prove that for every a ≥ 0 there exists x ∈ R such that
x2 = a. The case a = 0 is easy; we can take x = 0. The case a > 0 will be discussed
at the end of the next section.

It is interesting to note that with B = {x ∈ Q : x ≥ 0} the function s : Q → B
is not a surjection. This was essentially proved in Theorem 1.4.5. In the direct
proof of the contrapositive of this theorem we proved that x2 6= 2 for every x ∈ Q.
Since 2 ∈ B, this proves that s : Q → B is not a surjection.
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A function f : A → B which is both one-to-one and onto is called bijection.

Let f : A → B and g : C → D be given functions. Assume that the range of f
is contained in the domain of g. Then we can define the function h : A → D by

h(x) = g
(
f(x)

)
, x ∈ A.

The function h is called a composition of f and g and it is denoted by g ◦ f .
Exercise 1.6.3. Let A and B be nonempty sets. Let f : A → B be a given
function. Prove f is a bijection if and only if there exists a function h : B → A
such that h ◦ f = idA and f ◦ h = idB.

Solution. Assume that f : A → B is a bijection. Then for every b ∈ B there
exists unique a ∈ A such that f(a) = b. Define the function h : B → A by h(y) = x.
Let x ∈ A be arbitrary and let y = f(x). Then, by the definition of h, h(y) = x and
h(f(x)) = x. Since x ∈ A was arbitrary we proved that h ◦ f = idA. Let v ∈ B be
arbitrary and let v = f(u). Then, by the definition of h, h(v) = u and f(h(v)) = v.
Since v ∈ B was arbitrary we proved that f ◦ h = idB.

To prove the converse, assume that there exists a function h : B → A such that
h ◦ f = idA and f ◦h = idB . To prove that f is a surjection, let b ∈ B be arbitrary.
Set a = h(b). Than f(a) = f(h(b)) = idB(b) = b. Hence f is a surjection. To prove
that f is an injection let a1, a2 ∈ A and f(a1) = f(a2). Since f(a1) = f(a2) ∈ B
and since h : B → A is a function, we have h(f(a1)) = h(f(a2)). Since h ◦ f = idA
we have h(f(a1)) = idA(a1) = a1 and h(f(a2)) = idA(a2) = a2. Thus a1 = a2.
This proves that f is an injection. �

Let f : A → B be a function. The function h : B → A such that h ◦ f = idA
and f ◦ h = idB is called the inverse function of f . It is denoted by f−1. Thus
f ◦ f−1 = idB and f−1 ◦ f = idA. A function f which possesses an inverse is said
to be invertible. By Exercise 1.6.3 a function f is invertible if and only if it is a
bijection.

Exercise 1.6.4. Let A, B and C be nonempty sets. Let f : A → B and g : B → C
be injections. Prove that g ◦ f : A → C is an injection.

Exercise 1.6.5. Let A, B and C be nonempty sets. Let f : A → B and g : B → C
be surjections. Prove that g ◦ f : A → C is a surjection.

Solution. To prove that g ◦ f : A → C is a surjection we have to prove that
for each c ∈ C there exists a ∈ A such that g(f(a)) = c. Let c ∈ C be arbitrary.
Then, since g : B → C is a surjection, there exists b ∈ B such that g(b) = c. Since
b ∈ B and since f : A → B is a surjection, there exists a ∈ A such that f(a) = b.
Now it is easy to show that g(f(a)) = g(b) = c. �

Exercise 1.6.6. Let A, B and C be nonempty sets. Let f : A → B and g : B → C
be bijections. Prove that g ◦ f : A → C is a bijection. Prove that (g ◦ f)−1 =
f−1 ◦ g−1.

We conclude this section with a negation exercise.

Exercise 1.6.7. Formulate the negation of the following statement.

Statement. Let A and B be nonempty sets. There exists a surjection f : A → B.
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Solution. The negation is: For an arbitrary function g : A → B, g is not
a surjection. But the statement “g is not a surjection” is itself a negation which
means: There exists b ∈ B such that for all x ∈ A we have g(x) 6= b. Hence the
negation of the given claim is:

For an arbitrary function g : A → B there exists b ∈ B such that for all x ∈ A
we have g(x) 6= b. Symbolically this can be written as

∀ g : A → B ∃ b ∈ B such that ∀ x ∈ A g(x) 6= b.

Sometimes the set of all functions defined on A with the values in B is denoted by
BA. With this notation the last statement can be written nicer as

∀ g ∈ BA ∃ b ∈ B such that ∀ x ∈ A g(x) 6= b.

It is important to note that b in this statement depends on g. In a proof the last
statement one would start from an arbitrary g and then try to construct b ∈ B
with the desired property. �

1.7. Four basic ingredients of a Proof

Since in this course you will be writing your own proofs and studying proofs of
others, we conclude this chapter with four basic ingredients of a Proof.

A proof should contain ingredients which answer the fol-

lowing four questions:

• What is being assumed?

• What is being proved?

• What are the tools that are being used?

• Why is it legitimate to use those tools?

Sometimes the presence of these ingredients in a proof

is implicit. But, it should always be easy to identify them.

These four questions are a good starting point when you critically evaluate your
own proofs or when you comment on the proofs of others.





CHAPTER 2

The Set R of real numbers

All concepts that we will study in this course have their roots in the set of real
numbers. We assume that you are familiar with some basic properties of the real
numbers R and of the subsets N, Z, and Q of R. However, in order to clarify exactly
what we need to know about R, we set down its basic properties (called axioms)
and some of their consequences.

2.1. Axioms of a field

The following are the basic properties (axioms) of R that relate to addition and
multiplication in R:

Axiom 1 (A0). If a, b ∈ R, then the sum a + b is uniquely defined element in R.
That is, there exists a function + (called “plus”) defined on R × R and with the
values in R.

Axiom 2 (A1). a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R.

Axiom 3 (A2). a+ b = b + a for all a, b ∈ R.

Axiom 4 (A3). There exists an element 0 in R such that 0+ a = a+ 0 = a for all
a ∈ R.

Axiom 5 (A4). If a ∈ R, then the equation a+ x = 0 has a solution −a ∈ R.

Axiom 6 (M0). If a, b ∈ R, then the product a · b (usually denoted by ab) is
uniquely defined number in R. That is, there exists a function · (called “times”)
defined on R× R and with the values in R.

Axiom 7 (M1). a(bc) = (ab)c for all a, b, c ∈ R.

Axiom 8 (M2). ab = ba for all a, b ∈ R.

Axiom 9 (M3). There exists an element 1 in R such that 1 6= 0 and 1 ·a = a ·1 = a
for all a ∈ R.

Axiom 10 (M4). If a ∈ R and a 6= 0, then the equation a · x = 1 has a solution

a−1 =
1

a
in R.

Axiom 11 (DL). a(b+ c) = ab+ ac for all a, b, c ∈ R.

Remark 2.1.1. Notice that the only specific real numbers mentioned in the axioms
are 0 and 1. You can verify that the set {0, 1} with the functions ⊕ (a special
addition instead of +) and ⊙ (a special multiplication instead of ·) defined by

0⊕ 0 = 1⊕ 1 = 0, 0⊕ 1 = 1⊕ 0 = 1 and 0⊙ 0 = 0⊙ 1 = 1⊙ 0 = 0, 1⊙ 1 = 1.

satisfy all Axioms 1 through 11. Hence, we need more axioms to describe the set
of real numbers.

17
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Axioms A1 and M1 are called associative laws and Axioms A2 and M2 are com-

mutative laws. Axiom DL is the distributive law; this law justifies “factorization”
and “multiplying out” in algebra. A triple of a set, “plus” and “times” functions
which satisfies Axioms 1 through 11 is called a field. The basic algebraic properties
of R can be proved solely on the basis of the field axioms. We illustrate this claim
by the following exercise.

Exercise 2.1.2. Let a, b, c ∈ R. Prove the following statements.

(a) If a+ c = b+ c, then a = b.
(b) a · 0 = 0 for all a ∈ R.
(c) −a = a if and only if a = 0.
(d) −(−a) = a for all a ∈ R.
(e) (−a)b = −(ab) for all a, b ∈ R.
(f) (−a)(−b) = ab for all a, b ∈ R.

(g) If a 6= 0, then
(
a−1

)−1
= a.

(h) If ac = bc and c 6= 0, then a = b.
(i) ab = 0 if and only if a = 0 or b = 0.
(j) If a 6= 0 and b 6= 0, then (ab)−1 = a−1b−1.

Remark 2.1.3. We will prove (a), (e) and a part of (i) below. Others you can
do as exercise. One of the statements in Exercise 2.1.2 cannot be proved using
Axioms 1 through 11. To prove that particular property we will need results from
Section 2.2.

Solution. (a) Assume that a+c = b+c. By Axiom 1 adding any number x to
both sides of the equality leads to (a+ c)+x = (b+ c)+x. It follows from Axiom 2
that a+(c+x) = b+(c+x). By Axiom 5 there exists an element −c ∈ R such that
c+ (−c) = 0. Choose x = −c. Then a = a+ 0 = a+ (c+ (−c)) = b + (c+ (−c)) =
b+ 0 = b.

(e) Let a, b ∈ R. Then, by Axiom 5 there exists −a ∈ R such that a+(−a) = 0.
By Axiom 6 it follows that

(
a + (−a)

)
b = 0 · b. By Axiom 11 and part (b) of

this exercise, it follows that ab + (−a)b = 0. Since ab ∈ R, by Axiom 5 there
exists −(ab) ∈ R such that ab + (−(ab)) = 0. Using Axiom 3 we conclude that
(−a)b+ab = −(ab)+ab. By part (a) of this proof we conclude that (−a)b = −(ab).

We prove “only if” part of (i). That is, we prove the implication:

(2.1.1) ab = 0 implies a = 0 or b = 0.

Assume that ab = 0. Consider two cases: Case 1: a = 0 and Case 2: a 6= 0.
Case 1. In this case the implication (2.1.1) is true and there is nothing to prove.
Case 2. Since in this case we assume that a 6= 0, by Axiom 10 there exists an
element a−1 ∈ R such that aa−1 = 1. Multiplying both sides of ab = 0 by a−1 we
get (ab)a−1 = 0 · a−1. Therefore

b = b · 1 = b(aa−1) = (ba)a−1 = (ab)a−1 = 0 · a−1 = 0. �

Remark 2.1.4. Let a, b ∈ R. Instead of a + (−b) we write a − b and we write
a

b
or a/b instead of ab−1.

2.2. Axioms of order in a field

The set R also has an order structure < satisfying the following axioms.



2.2. AXIOMS OF ORDER IN A FIELD 19

Axiom 12 (O1). Given any a, b ∈ R, exactly one of the following three statements
is true: a < b, a = b, or b < a.

Axiom 13 (O2). Given any a, b, c ∈ R, if a < b and b < c, then a < c.

Axiom 14 (O3). Given any a, b, c ∈ R, if a < b then a+ c < b+ c.

Axiom 15 (O4). Given any a, b, c ∈ R, if a < b and 0 < c, then ac < bc.

Axiom O2 is called the transitive law. A field with an order satisfying Ax-
ioms O1 through O4 is called an ordered field.

The notation a ≤ b stands for the statement: a < b or a = b.

Definition 2.2.1. A number x ∈ R is positive if x > 0. A number x ∈ R is negative
if x < 0.

Exercise 2.2.2. Prove the following statements for a, b, c ∈ R.

(a) If a < b then −b < −a.
(b) If a < b and c < 0, then b c < a c.
(c) Assume a > 0 and b 6= 0. Prove that b > 0 if and only if ab > 0.
(d) If a 6= 0, then 0 < aa.
(e) 0 < 1.

(f) If a > 0, then
1

a
> 0.

(g) If 0 < a < b, then 0 <
1

b
<

1

a
.

Solution. (a) Assume a < b. By Axiom 14 we have a+(−b) < b+(−b). Thus
(−b)+a < 0. Using Axiom 14 again, we conclude that

(
(−b)+a

)
+(−a) < 0+(−a),

and consequently −b < −a.
Do (b) as an exercise.
Now we prove (c). Assume a > 0 and b 6= 0. This assumption is used through-

out this part of the proof. Since a 6= 0 and b 6= 0, by Exercise 2.1.2 (i) it follows that
ab 6= 0. The implication: “If b > 0, then ab > 0.” is a special case of Axiom 15.
Next we deal with the implication “If ab > 0, then b > 0.” It turns out that the
contrapositive is easier to prove. The negation of b > 0 is b ≤ 0. But, it is assumed
that b 6= 0. Thus, with this assumption, the negation of b > 0 is b < 0. Similarly,
the negation of ab > 0 is ab < 0. Hence the contrapositive of “If ab > 0, then
b > 0.” is “If b < 0, then ab < 0.” The last implication follows directly from part
(b). This completes the proof of (c).

(d) Consider two cases: a > 0 and a < 0. If a > 0, then (c) implies that a2 > 0.
If a < 0, then, by (a), −0 < −a, and since −0 = 0 we have −a > 0. By the first
part of this proof, we conclude that (−a)(−a) > 0. By part (f) of Exercise 2.1.2 we
have (−a)(−a) = a a. Therefore aa > 0 for all a 6= 0.

Do (e) as an exercise.

To prove (f) we assume a > 0. By Axiom 10, a
1

a
= 1. By Axiom 9, 1 6= 0.

Hence, a
1

a
6= 0. By Exercise 2.1.2 (i)

1

a
6= 0 and by (e) 1 > 0. Now we can apply

the “if” part of (c). (Take b = 1/a in (c).) We conclude that a
1

a
= 1 > 0 implies

1

a
> 0. This proves (f).

Do (g) as an exercise. �
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Definition 2.2.3. We define the following eight numbers

2 = 1 + 1, 3 = 2 + 1, 4 = 3 + 1, 5 = 4 + 1,

6 = 5 + 1, 7 = 6 + 1, 8 = 7 + 1, 9 = 8 + 1.

The numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are called digits.

In the preceding definition we implied that the digits are distinct numbers. The
next exercise justifies this claim.

Exercise 2.2.4. Prove the inequalities:

0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

Exercise 2.2.5. Let a, b ∈ R. If a < b, then there exists c ∈ R such that a < c < b.

The following four exercises deal with squares of real numbers. As usual, for
a ∈ R, a product aa is called a square and it is denoted by a2.

Exercise 2.2.6. Let a ∈ R. Prove that the equation x2 = a, has at most two
solutions in R.

Solution. Consider the set

S =
{
x ∈ R : x2 = a

}
.

If S = ∅, then the statement is true. Now assume that S 6= ∅ and let b ∈ S. From
b ∈ S, we deduce that b ∈ R and b2 = a. Since b ∈ R, −b ∈ R. Next we will prove

(2.2.1) S =
{
b,−b

}
.

Let c ∈ S. Then c2 = a, and therefore c2 = b2. Consequently, c2 − b2 = 0.
Using Axioms 2 through 11 and properties in Exercise 2.1.2 we can prove that
(c − b)(c + b) = c2 − b2. Therefore (c − b)(c + b) = c2 − b2 = 0. Exercise 2.1.2 (i)
implies that c− b = 0 or c+ b = 0. Thus c = b or c = −b. This proves

(2.2.2) S ⊆ {b,−b}.
Next we prove {b,−b} ⊆ S. By assumption b ∈ S. Since (−b)2 = b2, we have
(−b)2 = a. Hence −b ∈ S. Therefore

(2.2.3) {b,−b} ⊆ S.

Relations (2.2.2) and (2.2.3) imply equality (2.2.1). Since the set {b,−b} has at
most two elements the statement is proved. �

Exercise 2.2.7. Let 0 ≤ x, y. Prove that x < y if and only if x2 < y2.

Exercise 2.2.8. If α > 1 and α > x2, then α > x.

Exercise 2.2.9. If s 6= t, then (s+ t)2 > 4st.

Exercise 2.2.10. Let a, b, c, d ∈ R.

(i) Prove or disprove the statement: If a < b and c < d, then a− c < b− d.
(ii) If you disproved the statement in (i), change the assumptions about c and d

to make a correct statement. Prove your new statement.

Exercise 2.2.11. Let α ∈ R. Prove that α < x, ∀x > 0, implies α ≤ 0.
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The properties of real numbers proved in this and the previous
section are essential. Many of them are truly elementary (although
sometimes hard to prove) and you can (and I will) use such proper-
ties in proofs without any justification. But, when you are using
more subtle properties (like ones in Exercises 2.2.7, 2.2.8, or 2.2.10)
you should state explicitly which property you are using and explain
informally why it is true.

2.3. Intervals

Exercise 2.2.5 justifies the following definition.

Definition 2.3.1. Let a and b be real numbers such that a < b. We will use the
following notation and terminology:

[a, b] :=
{
x ∈ R : a ≤ x ≤ b

}
is called a closed interval,

(a, b) :=
{
x ∈ R : a < x < b

}
is called an open interval,

[a, b) :=
{
x ∈ R : a ≤ x < b

}
is called a half-open interval,

(a, b] :=
{
x ∈ R : a < x ≤ b

}
is called a half-open interval.

We also define four types of unbounded intervals:

[a,+∞) :=
{
x ∈ R : a ≤ x

}
is called a closed unbounded interval,

(a,+∞) :=
{
x ∈ R : a < x

}
is called an open unbounded interval

(−∞, b] :=
{
x ∈ R : x ≤ b

}
is called an unbounded closed interval,

(−∞, b) :=
{
x ∈ R : x < b

}
is called an unbounded open interval,

Geometric illustrations of these intervals are given below.

a b
Figure 1. A closed interval

a b
Figure 2. An open interval

a b
Figure 3. A half-open interval

a b
Figure 4. A half-open interval

a
Figure 5. A closed infinite interval

a
Figure 6. An open infinite interval

b
Figure 7. An infinite closed interval

b
Figure 8. An infinite open interval

Remark 2.3.2. The infinity symbols −∞ and +∞ are used to indicate that the set
is unbounded in the negative (−∞) or positive (+∞) direction of the real number
line. The symbols −∞ and +∞ are just symbols; they are not real numbers.
Therefore we always exclude them as endpoints by using parentheses.
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We conclude this section with few exercises about families of intervals.

Exercise 2.3.3. Let a ∈ R. Prove that
⋂{

(a− u, a+ u) : u > 0
}
= {a}.

Exercise 2.3.4. Let a, b ∈ R and a < b. Prove that
⋂{

(a, b+ u) : u > 0
}
= (a, b].

Exercise 2.3.5. Let a, b ∈ R and a < b. Prove that
⋂{

(a− u, b+ u) : u > 0
}

= [a, b].

Solution. Denote by A the intersection in the equality and assume x ∈ A.
Then, by the definition of intersection, x ∈ (a − u, b + u) for all u > 0. By the
definition of an open interval, a − u < x and x < b + u for all u > 0. Hence,
a− x < u and x − b < u for all u > 0. By Exercise 2.2.11 we have a − x ≤ 0 and
x− b ≤ 0, that is, a ≤ x and x ≤ b. By the definition of a closed interval x ∈ [a, b].
This proves A ⊆ [a, b].

Now assume that x ∈ [a, b]. Then, a − x ≤ 0 and x − b ≤ 0. Let u > 0 be
arbitrary. By the transitivity of the order in R, a − x < u and x − b < u for all
u > 0. Hence, a−u < x and x < b+u for all u > 0. Consequently, x ∈ (a−u, b+u)
for all u > 0. Therefore, x ∈ A. This proves [a, b] ⊆ A.

Since we proved both A ⊆ [a, b] and [a, b] ⊆ A, the equality A = [a, b] is
proved. �

Exercise 2.3.6. Let a, b ∈ R and a < b. Prove that
⋃{

[a+ u, b) : 0 < u < b− a
}

= (a, b).

Exercise 2.3.7. Let a, b ∈ R and a < b. Prove that
⋃{

[a+ u, b− u] : 0 < u <
b− a

2

}

= (a, b).

2.4. Bounded sets. Minimum and Maximum

Definition 2.4.1. Let A be a nonempty subset of R. If there exists b ∈ R such
that

(2.4.1) x ≤ b for all x ∈ A,

then A is said to be bounded above. A number b satisfying (2.4.1) is called an upper

bound of A.

Similarly we define:

Definition 2.4.2. Let A be a nonempty subset of R. If there exists a ∈ R such
that

(2.4.2) a ≤ x for all x ∈ A,

then A is said to be bounded below. A number a satisfying (2.4.2) is called a lower

bound of A.

Definition 2.4.3. A nonempty subset of R which is both bounded above and
bounded below is said to be bounded.
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Exercise 2.4.4. Let A be a nonempty subset of R. Prove that A is bounded if
and only if there exists K > 0 such that −K ≤ x ≤ K for all x ∈ A.

Exercise 2.4.5. Let A be a nonempty subset of R. Prove that A is bounded if
and only if there exist a, b ∈ R, such that a < b and A ⊆ [a, b].

Exercise 2.4.6. Prove that
{
x ∈ R : x2 < 2

}
is a bounded set.

Exercise 2.4.7. Let A and B be bounded above subsets of R. Prove that A ∪ B
is bounded above.

Next we introduce the definitions of the minimum and the maximum.

Definition 2.4.8. Let A be a nonempty subset of R. A number a ∈ R is aminimum

of A if it has the following two properties:
(i) a ≤ x for all x ∈ A; (ii) a ∈ A.

The minimum of A (if it exists) is denoted by minA.

Definition 2.4.9. Let A be a nonempty subset of R. A number b ∈ R is amaximum

of A if it has the following two properties:
(i) x ≤ b for all x ∈ A; (ii) b ∈ A.

The maximum of A (if it exists) is denoted by maxA.

Exercise 2.4.10. Let x, y ∈ R. Prove that the set A = {x, y} has a minimum and
a maximum.

Remark 2.4.11. What does it mean for a nonempty subset of R not to have a
minimum? To answer this question we first restate Definition 2.4.8 as follows. A
nonempty set A has a minimum if

(2.4.3) ∃ a ∈ A such that ∀x ∈ A we have x ≥ a.

Next we formulate the negation of the statement (2.4.3):

(2.4.4) ∀ a ∈ A ∃x ∈ A such that x < a.

Notice that the number x in (2.4.4) depends on a. Sometimes it is useful to em-
phasize this dependence by writing x(a). A more precise version of the negation
is:

∀ a ∈ A ∃x(a) ∈ A such that x(a) < a.

Exercise 2.4.12. Prove that the set of all positive numbers does not have a min-
imum.

Exercise 2.4.13. Give examples of subsets of R such that:

(a) A set has neither a minimum nor a maximum.

(b) A set has a minimum but not a maximum.

(c) A set has a minimum and a maximum.

2.5. Three functions: the unit step, the sign and the absolute value

There are only two specific numbers mentioned in Axioms 2 through 15. These
are 0 and 1. The number −1 is implicitly mentioned in Axiom 5. Therefore the
following two functions are of interest.
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Definition 2.5.1. We define the following two functions:

us(x) :=

{

0 if x < 0,

1 if x ≥ 0,
and sgn(x) :=







−1 if x < 0,

0 if x = 0,

1 if x > 0.

-2 -1 1 2

-1

1

0

Figure 9. The unit step function

-2 -1 1 2

1

-1

0

Figure 10. The sign function

Definition 2.5.2. The absolute

value function is defined as

abs(x) = x sgn(x)
(
∀x ∈ R

)
.

We will also use the standard no-
tation abs(x) = |x|. The number
|x| is called the absolute value of
the number x.

-2 -1 1 2

1

2

0

Figure 11. The absolute value function

The first function is called the unit step (or the Heaviside step) function. The
second one is called the sign function. The definition and the notation for the
sign function are standard. However, some authors define the value of the unit
step function at 0 to be 1/2. Also, the notation for the unit step function is not
standardized; H is often used instead of us. I decided to use two letter notation
since it is more in the spirit of sgn and other familiar functions sin, cos, ln, exp, . . ..
Although these two functions are not part of the standard calculus course, I hope
that you will agree that they are very simple.

Exercise 2.5.3. Prove the identity: sgn(x) = us(x)− us(−x).

Exercise 2.5.4. Prove the identity: us(x) = 1−
(
sgn(x)− 1

)(
sgn(x)

)
/2.

Exercise 2.5.5. Let x, y ∈ R. Prove the following equalities:

max{x, y} = x+ (y − x) us(y − x),

min{x, y} = y + (x− y) us(y − x).

In the plots above we used a geometric representation of real numbers as points
on a straight line. Such representation is obtained by choosing a point on a line to
represent 0 and another point to represent 1. Then, every real number corresponds
to a point on the line (called the number line), and every point on the number line
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corresponds to a real number. This geometric representation is often very useful in
doing the problems.

Geometrically, the absolute value of a represents the distance between 0 and a,
or, generally |a− b| is the distance between a and b on the number line.

The basic properties of the absolute value are given in the exercises below. All
of the exercises can be proved by considering all possible cases for the numbers
involved. This is not difficult when an exercise involves only one number. It gets
harder when an exercise involves two or more numbers. Proofs that avoid cases
are more elegant and easier to comprehend. Therefore you should always seek such
proofs; see Exercise 2.5.9.

Exercise 2.5.6. Prove the following identities.

(a) |x| = max
{
x,−x

} (
∀x ∈ R

)
.

(b) |x| = x
(
2 us(x)− 1

) (
∀x ∈ R

)
.

Exercise 2.5.7. Prove the following statements.

(i) |a| ≥ 0 for all a ∈ R.
(ii) | − a| = |a| for all a ∈ R.
(iii) |ab| = |a||b| for all a, b ∈ R.

Exercise 2.5.8. Let x, a ∈ R and a ≥ 0. Prove the following equivalences.

(a) |x| ≤ a if and only if −a ≤ x and x ≤ a .
(b) |x| ≥ a if and only if x ≤ −a or x ≥ a.

Exercise 2.5.9. For all a, b ∈ R we have

|a+ b| ≤ |a|+ |b|.
Solution. By Exercise 2.5.6 (a), a ≤ |a| and b ≤ |b|. Therefore, a + b ≤

|a| + |b|. Similarly, −a ≤ |a| and −b ≤ |b|. Therefore, −a − b ≤ |a| + |b|. Since
−a−b = −(a+b), we have−(a+b) ≤ |a|+|b|. Hence, we proved both a+b ≤ |a|+|b|
and −(a+ b) ≤ |a|+ |b|. Therefore,

max{a+ b,−(a+ b)} ≤ |a|+ |b|. �

Exercise 2.5.10. Find specific a, b ∈ R such that |a+b| = |a|+|b|. Next, formulate
a general statement by completing the following equivalence

|a+ b| = |a|+ |b| if and only if .

Prove your statement.

Exercise 2.5.11. Formulate a general statement by completing the following equiv-
alence

|a+ b| < |a|+ |b| if and only if .

Prove your statement.

Exercise 2.5.12. Let x, y, z ∈ R. Interpret the numbers |x− y|, |y− z| and |x− z|
as distances and discover an inequality that they must satisfy. (It might help to
think of x, y and z as towns on I-5.) Prove your inequality.

Exercise 2.5.13. For all a, b ∈ R we have
∣
∣|a| − |b|

∣
∣ ≤ |a− b|.
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The inequalities in Exercises 2.5.9, 2.5.12 and 2.5.13 are often called with one
name, the triangle inequality.

Exercise 2.5.14. Let x, a ∈ R. If |x− a| ≤ 1, then |x| ≤ 1 + |a|.
Exercise 2.5.15. Let x, a ∈ R. If |x− a| ≤ 1, then |x+ a| ≤ 1 + 2|a|.
Exercise 2.5.16. Let x, a, u ∈ R and let u > 0. If |x − a| < u and |x − a| ≤ 1,
then

∣
∣x2 − a2

∣
∣ < u(1 + 2|a|).

Exercise 2.5.17. Let x, a ∈ R and let a 6= 0. If |x− a| < |a|
2
, then |x| > |a|

2
.

Exercise 2.5.18. Let a ∈ R and ǫ > 0. Then
{
x ∈ R : |x− a| < ǫ

}
= (a− ǫ, a+ ǫ).

2.6. The set N

We mentioned natural numbers and integers informally in the course of our
discussion of the fundamental properties of R. Notice again that the only numbers
that are specifically mentioned in Axioms 1 through 15 are 0 and 1. But, in Sec-
tion 2.2 Exercise 2.2.4 we proved that there are other numbers in R, and we defined
the numbers 2, 3, 4, 5, 6, 7, 8 and 9. The reason that we stopped at 9 is the fact that
the number 9+1 plays a special role in our culture. We could continue this process
further, but it would not lead to a rigorous definition of the set of natural numbers.
Therefore we chose a different route.

Consider the following two properties of a subset S of R:

1 ∈ S,(2.6.1)

n ∈ S ⇒ n+ 1 ∈ S.(2.6.2)

There are many subsets of R that have these two properties. For example, one
such set is the set of positive real numbers, that is the open infinite interval,

(0,+∞).

Another such set is the closed infinite interval

[1,+∞),

and also the union
{1} ∪ [2,+∞).

There are many such sets. Next we form the family of all subsets of R with the
properties (2.6.1) and (2.6.2):

N :=
{

S ⊆ R : 1 ∈ S and n ∈ S ⇒ n+ 1 ∈ S
}

Intuitively, the set of natural numbers is the smallest set in N .

Definition 2.6.1. We define N to be the intersection of the family N :

N :=
⋂ {

S : S ∈ N
}
.

That is, k ∈ N if and only if k ∈ S for all S ∈ N . The elements of the set N are
called natural numbers.

With this definition and Axioms 1 through 15 we should be able to prove all
familiar properties of natural numbers.



2.6. THE SET N 27

Theorem 2.6.2. (N 1) 1 ∈ N.

(N 2) The formula σ(n) = n+ 1 defines a function σ : N → N.

(N 3) If σ(m) = σ(n), then n = m; that is σ, is one-to-one.

(N 4) For all n ∈ N, σ(n) 6= 1.
(N 5) If K ⊆ N has the following two properties

1 ∈ K,
(
∀n ∈ N

)
n ∈ K ⇒ n+ 1 ∈ K,

then K = N.

Proof. Since 1 ∈ S for all S ∈ N , we have 1 ∈ N. This proves (N 1). To
prove (N 2), let n ∈ N be arbitrary. Then n ∈ S for all S ∈ N . Since (2.6.2) holds
for each S ∈ N , we conclude that n + 1 ∈ S for all S ∈ N . Hence n + 1 ∈ N for
all n ∈ N. Property (N 3) follows from Exercise 2.1.2 (a). To prove (N 5) assume
that K ⊆ N and K has properties (2.6.1) and (2.6.2). Then K ∈ N . Consequently,
N =∩{S : S ∈ N} ⊆ K. Thus, K = N. �

Remark 2.6.3. The five properties of N proved in Theorem 2.6.2 are known as
Peano’s axioms. Italian mathematician Giuseppe Peano (1858-1932) used these
five properties for an axiomatic foundation of natural numbers. All other familiar
properties of the natural numbers can be proved using these axioms. The theory
of natural numbers developed from Peano’s axioms is called Peano’s arithmetic.

An important consequence of the property (N 5) in Theorem 2.6.2 is the Prin-

ciple of Mathematical Induction. It is stated and proved in the next theorem. This
principle is the main tool in dealing with statements involving natural numbers.

Theorem 2.6.4. Let P (n), n ∈ N, be a family of statements such that

(I) P (1) is true,

(II) For all n ∈ N, P (n) implies P (n+ 1).

Then the statement P (n) is true for each n ∈ N.

Proof. Consider the set

S =
{
n ∈ N : P (n) is true

}
.

By (I), 1 ∈ S. By (II), for all n ∈ N, if n ∈ S, then n+ 1 ∈ S. Hence, S has both
properties from Theorem 2.6.2 (5). Consequently, S = N. This means that for all
n ∈ N the statement P (n) is true. �

Remark 2.6.5. The step (II) of the mathematical induction requires you to reach
the conclusion that P (n+1) is true by using the assumption that P (n) is true, i.e.,
you have to prove the implication P (n) ⇒ P (n+ 1) for all n ∈ N.

The following theorem can be proved using the properties from Theorem 2.6.2
and the principle of mathematical induction.

Theorem 2.6.6. (i) 1 = minN; that is, 1 ∈ N and 1 ≤ n for all n ∈ N.

(ii) For every n ∈ N\{1}, we have n− 1 ∈ N.

(iii) For all m,n ∈ N, we have m+ n ∈ N.
(iv) For all m,n ∈ N we have mn ∈ N.
(v) For all m,n ∈ N such that m < n, we have n−m ∈ N.
(vi) If m,n ∈ N and m < n, then m+ 1 ≤ n.
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Proof. (i) As we mentioned before the closed infinite interval [1,+∞) belongs
to the family N . Therefore N ⊆ [1,+∞). Therefore n ≥ 1 for all n ∈ N. Since
1 ∈ N was proved in Theorem 2.6.2, (i) is proved.

(ii) Consider the following set S = {1}∪
{
m ∈ N : m− 1 ∈ N

}
. Clearly S ⊆ N

and 1 ∈ S. Notice also that 2 ∈ S, since 2− 1 = 1 ∈ N. Next we will prove

(2.6.3) n ∈ S ⇒ n+ 1 ∈ S.

Assume n ∈ S. We distinguish two cases: n = 1 and n ∈
{
m ∈ N : m − 1 ∈ N

}
.

If n = 1, then n + 1 = 2 ∈ S. Hence (2.6.3) holds in this case. If n ∈
{
m ∈ N :

m− 1 ∈ N
}
, then n ∈ N and n− 1 ∈ N. By Theorem 2.6.2 (N 2), n+ 1 ∈ N and,

obviously, (n + 1)− 1 = n ∈ N. Therefore n + 1 ∈
{
m ∈ N : m − 1 ∈ N

}
. Hence

n + 1 ∈ S. Thus (2.6.3) holds. Now, by Theorem 2.6.2 (5), S = N. This proves
N\{1} =

{
m ∈ N : m− 1 ∈ N

}
.

Remaining properties are proved similarly. �

The Principle of Mathematical Induction is also used to define functions on N.
The process described in the next proposition is called the Principle of Inductive

Definition.

Proposition 2.6.7. If a function f has the following two properties

(I) f(1) is defined,

(II)
(
∀n ∈ N

)
f(n+ 1) is defined in terms of f(1), . . . , f(n),

then f is defined on N.

Proof. Denote the domain of f by D. Let k ∈ N and set the statement P (k)
to be: 1, . . . , k ∈ D. Clearly P (1) is true by (I). Now, let n ∈ N be arbitrary and
assume that P (n) is true. That is assume that 1, . . . , n ∈ D. By (II) f(n+1) is de-
fined in terms of f(1), . . . , f(n). Since by the inductive hypothesis all f(1), . . . , f(n)
are defined, we conclude that f(n+1) is defined. Thus n+1 ∈ D. Since we assume
that 1, . . . , n ∈ D, we have proved that 1, . . . , n, n + 1 ∈ D. Hence P (n + 1) is
proved. By the Principle of Mathematical induction P (n) is true for all n ∈ N.
Therefore 1, . . . , n ∈ D for all n ∈ N. Consequently, n ∈ D for all n ∈ N. �

A definition of a function with properties (I) and (II) in Proposition 2.6.7 is
called recursive or inductive definition.

Definition 2.6.8. A function whose domain equals N and whose range is in R is
called a sequence in R.

Remark 2.6.9. Traditionally, if f : A → B is a function and if x ∈ A, then
the value of f at x is denoted by f(x). In addition to this traditional notation,
for a sequence f : N → R we will often write fn instead of f(n), n ∈ N. When
convenient we will use both notations for the same sequence. The reason for this

is purely typographical. For example if n =
m(m+ 1)

2
+ 1, then it is awkward to

write fm(m+1)
2 +1

. In such a case, the expression f
(m(m+1)

2 + 1
)
is preferable since

it is easier to read and understand.
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2.7. Examples and Exercises related to N

The following two examples deal with two familiar functions: the factorial and
the power function. Let n ∈ N. The factorial is informally “defined” as

n! = 1 · 2 · . . . · (n− 1) · n.
Let a ∈ R. The n-th power of a is informally expressed as

an = a · a · . . . · a · a
︸ ︷︷ ︸

n times

.

Next we give the rigorous definitions of the factorial and the power function as
examples of recursive definitions.

Example 2.7.1. The function f : N → N defined by

(i) f(1) = 1,
(ii)

(
∀n ∈ N

)
f(n+ 1) = (n+ 1) f(n),

is called the factorial.
The standard notation for the factorial is f(n) = n!. The definition of factorial

is extended to 0 by setting 0! = 1.

Example 2.7.2. Let a ∈ R. Define the function g : N → R by

(i) g(1) = a,
(ii)

(
∀n ∈ N

)
g(n+ 1) = a g(n).

The standard notation for the function g is g(n) = an. The expression an is
called the n-th power of a. For a 6= 0, the definition of the power is extended to 0
by setting a0 = 1. The expression 00 is not defined.

Exercise 2.7.3. Let a, b ∈ R be such that a, b ≥ 0. Let n ∈ N. Prove that a < b if
and only if an < bn.

Use the Principle of Mathematical Induction to do the following exercises.

Exercise 2.7.4. Consider the function f : N → N defined by

(i) f(1) = 1,
(ii)

(
∀n ∈ N

)
f(n+ 1) = f(n) + (2n+ 1).

Evaluate the values f(2), f(3), f(4), f(5). Based on the numbers that you get,
guess a simple formula for f(n) and prove it.

Exercise 2.7.5. Consider the function T : N → N defined by

(i) T (1) = 1,
(ii)

(
∀n ∈ N

)
T (n+ 1) = T (n) + (n+ 1).

Evaluate the values T (2), T (3), T (4), T (5), T (6). Based on these numbers guess a
simple formula for T (n) in terms of n and prove it.

Remark 2.7.6. The numbers T (n), n ∈ N, are called triangular numbers. For
n ∈ N, the triangular number

T (n) = 1 + 2 + · · ·+ (n− 1) + n

is the additive analog of the factorial (see Example 2.7.1)

n! = 1 · 2 · · · · · (n− 1) · n.
For completeness we set T (0) = 0.
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Exercise 2.7.7. Let a, x ∈ R. Consider the function g : N → R defined by

(i) g(1) = a,
(ii)

(
∀n ∈ N

)
g(n+ 1) = g(n) + a xn.

Another way of writing g(n) is

g(n) =

n−1∑

k=0

a xk.

Informally this sum is sometimes written as

g(n) = a+ a x+ · · ·+ a xn−1.

This sum is called the geometric sum.
Prove that

g(n) =







a
1− xn

1− x
if x 6= 1,

n a if x = 1.

Exercise 2.7.8 (Bernoulli’s inequality). Let n ∈ N and x > −1. Then

(1 + x)n ≥ 1 + nx.

Exercise 2.7.9. Let n ∈ N and let x ∈ R be such that 0 ≤ x ≤ 1. Then

(1 + x)n ≤ 1 +
(
2n − 1

)
x.

Exercise 2.7.10 (Binomial theorem). Let n ∈ N and x, y ∈ R. Then

(x+ y)n =

n∑

k=0

(
n

k

)

xn−k yk.

Here

(
n

k

)

denotes the binomial coefficient which is defined by

(
n

k

)

:=
n!

k! (n− k)!
, n ∈ N, k = 0, 1, . . . , n.

The most important property of binomial coefficients is given by the following
equality

(
n

k − 1

)

+

(
n

k

)

=

(
n+ 1

k

)

, n ∈ N, k = 1, . . . , n.

This formula is proved by using the definition of the binomial coefficients and the
rules for adding fractions.

2.8. Finite sets, infinite sets, countable sets

One of the most important applications of the natural numbers is counting.
The following special subsets of N are used for counting

[[1, n]]N :=
{
k ∈ N : k ≤ n

}
, n ∈ N.
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Since this notation will be used often in this section, we will, for simplicity of
notation drop the subscript N in [[1, n]]N and simply write [[1, n]]. For example

[[1, 1]] = {1}
[[1, 2]] = {1, 2}
[[1, 3]] = {1, 2, 3}
[[1, 4]] = {1, 2, 3, 4}
[[1, 5]] = {1, 2, 3, 4, 5}
[[1, 6]] = {1, 2, 3, 4, 5, 6}

...

Next we give a formal mathematical definition of the counting process.

Definition 2.8.1. A set A is finite if there exists a natural number n and a bijection
f : [[1, n]] → A. In this case we say that A has n elements. We use the notation #A
for the number of elements of A.

Exercise 2.8.2. If A is finite and b 6∈ A, then A∪{b} is finite and and #
(
A∪{b}

)
=

#A+ 1.

Exercise 2.8.3. A nonempty set A is finite if and only if there exists n ∈ N and a
surjection f : [[1, n]] → A. In this case #A ≤ n. Hint: One direction here is trivial.
The other direction is a statement involving a natural number, so it can be proved by
mathematical induction. True for n = 1. Assume true for n and f : [[1, n+ 1]] → A
surjection. Set B = f

(
[[1, n]]

)
. Then by the inductive hypothesis B is finite and

#B ≤ n. Two cases B = A. Then, A finite and #A ≤ n ≤ n+ 1. If B ⊂ A. Then
A = B ∪ {f(n+ 1)}. By Exercise 2.8.2 A is finite and #A = 1 +#B ≤ n+ 1.

Finite sets are often informally written as A = {a1, a2, . . . , an}. However, this
way of writing does not imply that the mapping k 7→ ak, k ∈ [[1, n]], is a bijection,
but it does imply that this mapping is a surjection.

Exercise 2.8.4. A nonempty subset B of a finite set A is finite. We have #B ≤
#A. Hint: Let f : [[1, n]] → A be a bijection. Since B is not empty there exists

b ∈ B. Define the function g : A → B by g(x) =

{

x if x ∈ B

b if x ∈ A \B . Clearly the

range of g is B. Therefore g ◦ f : [[1, n]] → B is a surjection. By Exercise 2.8.3 B is
finite.

Exercise 2.8.5. Let B is a nonempty proper subset of a finite set A. Then #B <
#A. Hint: Let c ∈ A \B. Then

#B ≤ #
(
A \ {c}

)
= #A− 1 < #A.

Exercise 2.8.6. If A is a finite subset of R, then A has a minimum and a maximum.

Definition 2.8.7. A nonempty set which is not finite is said to be infinite.

Remark 2.8.8. The previous definition of an infinite set is certainly logically
correct, but it is not “constructive”.

Therefore it is desirable to give a formal negation of the definition of finite set.
Before doing that I will restate the definition of a finite set as:
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“A set A is finite if (and only if) there exists n ∈ N and there exists an bijection
f : [[1, n]] → A.”

The negation of the last statement (and thus a characterization of an infinite
set) is the following

“For every n ∈ N and for every f : [[1, n]] → A we have that f is not a bijection.”

Remark 2.8.9. The importance of Exercise 2.8.6 is twofold. First, it states the
most important property of finite sets of real numbers. Second, its contrapositive
provides a simple way of proving that a set is infinite: If a nonempty subset of R
does not have a minimum or it does not have a maximum, then it is infinite.

The fact that infinite sets might not have a minimum and/or maximum makes
dealing with such sets more difficult. The following proposition states that not
having a minimum and/or maximum is to some extend a universal property of an
infinite subset of R.

Proposition 2.8.10. Let A ⊂ R. If A is infinite, then there exists a nonempty

subset B of A such that B does not have a minimum or there exists a nonempty

subset C of A such that C does not have a maximum.

Proof. We will prove the equivalent implication: If A is an infinite subset of
R and each nonempty subset of A has a minimum, then there exist a nonempty
subset C of A such that C does not have a maximum.

So, assume that A is an infinite subset of R and each nonempty subset of A has
a minimum. Then, in particular, minA exists. Let W be the set of all minimums
of infinite subsets of A. Formally,

W =
{

x ∈ A : x = minE where E ⊂ A and E is infinite
}

.

Clearly minA is an element in W . Hence W 6= ∅.
Next we will prove that W does not have a maximum. Let y ∈ W be arbitrary.

Then there exists an infinite subset F of A such that y = minF . Since F is
infinite, the set F \ {y} is also infinite. Since F \ {y} ⊂ A, by the assumption
z = min

(
F \ {y}

)
exists. Therefore, z ∈ W . Since z ∈ F \ {y}, we have z 6= y.

Since z ∈ F and y = minF , we have z ≥ y. Hence z > y. Thus, for each y ∈ W
there exists z ∈ W such that z > y. This proves that W is a nonempty subset of
A which does not have a maximum. �

Remark 2.8.11. The above proposition is an implication of the form: P ⇒ Q∨R.
This implication is equivalent to the implication P ∧ ¬Q ⇒ R. One way to see
this is to consider the negations of both implications. The negation of P ⇒ Q∨R
is P ∧ (¬Q∧¬R), while the negation of P ∧¬Q ⇒ R is (P ∧¬Q)∧¬R. Since the
negations are clearly equivalent, the implications are also equivalent.

Exercise 2.8.12. Prove that N does not have a maximum.

Exercise 2.8.13. Prove that a nonempty subset of N is finite if and only if it has
a maximum.

Exercise 2.8.14. Prove that the set N is infinite.

Exercise 2.8.15. Let A be a nonempty subset of N. Then A has a minimum.
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Remark 2.8.16. Subsets of N can be infinite. As I mentioned in Remark 2.8.9 a
problem with infinite sets is a possible absence of minimum and maximum. Exer-
cise 2.8.15 tells us that a subset of natural numbers must at least have a minimum.
Consequently, infinite subsets of N are not as bad as infinite subsets of R.

Solution of Exercise 2.8.15. This proof uses the following two facts:

(1) Each finite set has a minimum. (Proved in Exercise 2.8.6.)
(2) For each n ∈ N each subset of the set {1, 2, . . . , n} = [[1, n]] is finite.

(Proved in Exercise 2.8.4.)

Since A 6= ∅, there exists n ∈ A. Consider the set B = {x ∈ A : x ≤ n}. Then
B ⊆ [[1, n]]. By fact (2) B is finite. Now, by fact (1) B has a minimum; denote it
by m = minB. Then m is also the minimum of A. (Here is a proof: If a ∈ A, then
either a ≤ n, or n < a. In the first case a ∈ B, and therefore m ≤ a. If n < a, then
m ≤ n < a, and therefore m ≤ a for each a ∈ A.) �

Definition 2.8.17. A set A is countable if there exists a bijection f : N → A.

Exercise 2.8.18. Prove that the set of even natural numbers is countable.

Exercise 2.8.19. If S is an infinite subset of N, then S is countable.

Solution. (This is an extended Hint.) Let S be an infinite subset of N. Let
s ∈ S be arbitrary. Then the set S ∩ [[1, s]] is finite, since it is a nonempty subset of
the finite set [[1, s]]. Define the function:

f(s) := #
(
S ∩ [[1, s]]

)
, s ∈ S.

Clearly f : S → N. The function f has the following three properties:

(I) If s, t ∈ S and s < t, then f(s) < f(t).
(II) If s = minS, then f(s) = 1.
(III) If s ∈ S and t = min

(
S \ [[1, s]]

)
, then f(t) = f(s) + 1.

Property (I) follows from Exercise 2.8.5. Property (II) follows from the fact that,
s = minS implies S ∩ [[1, s]] = {s}. Property (III) follows from Exercise 2.8.2.

Property (I) implies that f is an injection. Properties (II) and (III) imply that
the range of f , call it T , has the following properties: 1 ∈ T and n ∈ T ⇒ n+1 ∈ T .
Since T ⊆ N, this, by Theorem 2.6.2 (5), implies T = N. Thus f is a surjection.
Hence, f is a bijection. �

It will be proved in Section 2.10 that the set of integers and the set of rational
numbers are countable sets.

A difficulty in proving that a particular set is countable is in the fact that we
have to construct a bijection between N and that set. It turns out that a surjection
suffices. That is the content of the next proposition. It states that it is sufficient
to construct a surjection of N onto that set. This will be used to prove that the set
of rational numbers is countable.

Proposition 2.8.20. Let A be an infinite set and let g : N → A be a surjection.

Then A is countable. That is, there exists a bijection φ : N → A.

Proof. Assume that A is an infinite set and that g : N → A is a surjection.
Since g is a surjection the set

{
k ∈ N : g(k) = a

}
is nonempty for each a ∈ A. By

Exercise 2.8.15 this set has a minimum. Define the function

h(a) := min
{
k ∈ N : g(k) = a

}
, a ∈ A.
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Clearly h : A → N. As an exercise the reader can prove that h is one-to-one.
Denote by S ⊆ N the range of h. Then h is a bijection between A and S. Since A is
infinite, S is also infinite. (Prove this as an exercise.) Therefore, by Exercise 2.8.19,
there exists a bijection f : S → N. Now, h : A → S is a bijection and f : S → N.
Hence the composition f ◦ h is also a bijection. Since f ◦ h : A → N the proof is
complete. �

We conclude with a simpler exercise in the same spirit.

Exercise 2.8.21. If A is an infinite set and there is an injection f : A → N, then
A is countable.

2.9. More on countable sets

In Exercise 2.7.5 we defined the sequence of triangular numbers: T1 = 1, T2 =
3, T3 = 6, T4 = 10, . . .. In the following example we give a definition of the sequence
indicated by the following table. The triangular numbers are in bold face.

T1 T2 T3 T4 T5 T6

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Rn 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 7

Example 2.9.1. Define the sequence R : N → N by

Rn = min
{
k ∈ N : Tk ≥ n

}
, n ∈ N.

Remark 2.9.2. Clearly n(n + 1) ≥ 2n for all n ∈ N. Therefore, Tn ≥ n for all
n ∈ N. Consequently the set in the definition of Rn is not empty. By Exercise 2.8.15
every nonempty subset of N has a minimum, so Rn is well defined.

Next we will prove that the sequence {Rn} really does what is indicated in the
table at the beginning of this section.

Exercise 2.9.3. Let n,m ∈ N. Then Rn = m if and only if

(2.9.1)
(m− 1)m

2
+ 1 ≤ n ≤ m(m+ 1)

2
.

Solution. Assume that Rn = m. Then m = min
{
k ∈ N : Tk ≥ n

}
. In

particular Tm ≥ n and Tm−1 < n. This proves (2.9.1). Now assume (2.9.1). If
m = 1, then n = 1 and R1 = 1 is true. Next assume m > 1. Then, n ≤ Tm, so
Rn ≤ m. Since it is easy to prove that Tj ≤ Tm−1 for all j ∈ {1, . . . ,m − 1}, we
have Tk < n for all k ∈ {1, . . . ,m− 1}. Hence Rn ≥ m. �

Remark 2.9.4. There are several other formulas for the sequence R. For example
for n ∈ N,

Rn =

⌊
1

2
+
√
2n

⌋

or Rn =

⌈

−1

2
+
√
2n

⌉

.

Here ⌊ · ⌋ is the floor function, ⌈ · ⌉ is the ceiling function and
√ · is the square root

function. These functions will be introduced in Sections 2.12 and 2.13.
An alternative way to define the sequence R is the following recursive definition.

(i) R1 = 1,

(ii)
(
∀n ∈ N

)
Rn+1 = 1 +R(n+ 1−Rn).
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The following exercise deals with the Cartesian square of the set N; that is the
set N× N. Recall that this is the set of all ordered pairs of positive integers:

N× N :=
{
(s, t) : s, t ∈ N

}
.

The set N× N is illustrated by the following infinite table:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) . . .

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) . . .

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) . . .

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) . . .

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) . . .

...
...

...
...

...
. . .

Exercise 2.9.5. Prove that the function A : N× N → N defined by

A(s, t) =
(s+ t− 2)(s+ t− 1)

2
+ s, s, t ∈ N,

is a bijection.
A long Hint: Prove that the inverse of A is given by

B(n) =

(

n−
(
Rn − 1

)
Rn

2
,
Rn

(
Rn + 1

)

2
− n+ 1

)

, n ∈ N.

Here R is the sequence recursively defined in Example 2.9.1. Notice also that by
Exercise 2.7.5 the formulas for A and B can be written as

A(s, t) = T (s+ t− 2) + s, s, t ∈ N,

B(n) =
(

n− T
(
Rn − 1

)
, T
(
Rn

)
− n+ 1

)

, n ∈ N.

Let s, t ∈ N. To evaluate B
(
A(s, t)

)
you will need to evaluate R

(
T (s+ t− 2) + s

)

first. For this, use Exercise 2.9.3 and the following inequalities

T (s+ t− 2) + 1 ≤ T (s+ t− 2) + s ≤ T (s+ t− 2) + s+ t− 1 = T (s+ t− 1),

to conclude that

R
(
T (s+ t− 2) + s

)
= s+ t− 1.

Hence, R
(
A(s, t)

)
= s+ t− 1. With this identity calculating B

(
A(s, t)

)
should be

easier. This is the end of Hint.

To visualize the action of the function A on N × N we rearrange the table
preceding Exercise 2.9.5 in a triangular shape and place the value of A in a circle
next to the corresponding ordered pair. As a result we get the following table.
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(1, 1)
h1

-
(1, 2)

h2

?
(1, 3)

h4

?
(1, 4)

h7

?
(1, 5)

h11

?
(1, 6)

h16

?
. . .

(2, 1)
h3

���

(2, 2)
h5

?
(2, 3)

h8

?
(2, 4)

h12

?
(2, 5)

h17

?
. . .

(3, 1)
h6

���

(3, 2)
h9

?
(3, 3)

h13

?
(3, 4)

h18

?
. . .

(4, 1)
h10

���

(4, 2)
h14

?
(4, 3)

h19

?
. . .

(5, 1)
h15

���

(5, 2)
h20

?
. . .

(6, 1)
h21

���

. . .

. . .

Exercise 2.9.6. Let A be countable family of sets. Assume that each set in A is
countable. Prove that

⋃{
A : A ∈ A

}
is also countable.

Exercise 2.9.7. Prove that the set of all functions f : N → {0, 1} is not countable.
(As mentioned in Section 1.6 this set of functions is denoted by {0, 1}N.)

Solution. To prove the claim we will take an arbitrary function Φ : N →
{0, 1}N and prove that Φ is not a surjection. This will be proved by constructing
a specific element f ∈ {0, 1}N, that is f : N → {0, 1}, such that f 6= Φn for all
n ∈ N. To construct f let us analyze Φn, n ∈ N. Clearly Φ1 : N → {0, 1}, that is
Φ1(n) ∈ {0, 1} for all n ∈ N. We can indicate the action of Φ1 on N by listing its
first 7 values:

Φ1(1) Φ1(2) Φ1(3) Φ1(4) Φ1(5) Φ1(6) Φ1(7) . . .

We can do the same for Φ2,Φ3,Φ4,Φ5,Φ6, . . . to get

Φ1(1) Φ1(2) Φ1(3) Φ1(4) Φ1(5) Φ1(6) Φ1(7) . . .

Φ2(1) Φ2(2) Φ2(3) Φ2(4) Φ2(5) Φ2(6) Φ2(7) . . .

Φ3(1) Φ3(2) Φ3(3) Φ3(4) Φ3(5) Φ3(6) Φ3(7) . . .

Φ4(1) Φ4(2) Φ4(3) Φ4(4) Φ4(5) Φ4(6) Φ4(7) . . .

Φ5(1) Φ5(2) Φ5(3) Φ5(4) Φ5(5) Φ5(6) Φ5(7) . . .

Φ6(1) Φ6(2) Φ6(3) Φ6(4) Φ6(5) Φ6(6) Φ6(7) . . .

Φ7(1) Φ7(2) Φ7(3) Φ7(4) Φ7(5) Φ7(6) Φ7(7) . . .

...
...

...
...

...
...

...
. . .

Now we are ready to define f : N → {0, 1}which will differ from each Φn, n ∈ N.
Set

f(n) := 1− Φn(n), n ∈ N.

Since Φn(n) ∈ {0, 1} we have that f(n) = 1 − Φn(n) 6= Φn(n) for all n ∈ N.
Therefore

f 6= Φn for all n ∈ N.
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Hence Φ : N → {0, 1}N is not a surjection. Since Φ : N → {0, 1}N was arbitrary
function, we conclude that there does not exist a bijection between N and {0, 1}N.

�

2.10. The sets Z and Q

We define an integer to be a real number x such that either x = 0 or x is a
natural number or −x is a natural number. The set of all integers is denoted by Z.
Hence

Z =
{
x ∈ R : x ∈ N or x = 0 or − x ∈ N

}
.

Exercise 2.10.1. Prove that Z is countable.

Exercise 2.10.2. Prove that Z× N is countable.

Now we define a rational number to be a real number of the form m · 1
n where

m ∈ Z and n ∈ N. (We write shortly m/n or m
n instead of m · 1

n .) The set of all
rational numbers we denote by Q, that is

Q =
{

x ∈ R : ∃m ∈ Z and ∃n ∈ N such that x =
m

n

}

.

Exercise 2.10.3. Denote by Q+ the set of all positive rational numbers. Prove
that Q+ is countable.

Exercise 2.10.4. Prove that there exists a bijection between Q+ and Q.

Exercise 2.10.5. Prove that the set Q is countable.

Exercise 2.10.6. Prove that r2 6= 2 for all r ∈ Q.

Solution. Now that we have a definition of Q we can prove that for each
r ∈ Q there exist p ∈ Z and q ∈ N which are not both even such that r = p/q. Let
r ∈ Q be arbitrary. Set

S =
{

n ∈ N : ∃ m ∈ Z such that r =
m

n

}

.

Since r ∈ Q the set S is not empty. Since S is a nonempty subset of N, by
Exercise 2.8.15 S has a minimum. Set q = minS. Since q ∈ S, there exists p ∈ Z

such that r = p/q. Next we will prove that p and q are not both even. That is we
will prove the following implication: If q = minS, p ∈ Z, and r = p/q, then p and
q are not both even.

It is easier to prove a partial contrapositive of the last implication. If n ∈ S,
m ∈ Z, r = m/n and both m and n are even, then n is not a minimum of S. So,
assume n ∈ S, m ∈ Z are both even and r = m/n. Then there exist k ∈ Z and
j ∈ N such that m = 2k and n = 2j. Clearly j < n. Also,

r =
m

n
=

2 k

2 j
=

k

j
.

Hence j ∈ S and therefore n is not a minimum of S.
In Chapter 1 we indicated how to prove that 2 q2 6= p2. Hence r2 6= 2 is

proved. �

There are many basic properties on N, Z and Q that are not stated so far. For
example:

• The set N is not bounded.
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• There exists α ∈ R such that α2 = 2.
• The set Q is a proper subset of R.
• The set R is not countable.

In Exercise 2.10.6 we proved that the fact that there is no rational number
x such that x2 = 2. Since the set Q of rational numbers satisfies all Axioms 1
through 15 we cannot expect that based only on Axioms 1 through 15 we can prove
that there exists a real number number α such that α2 = 2. Therefore we need an
extra axiom for the set of real numbers; an axiom that will not be satisfied by the
set of rational numbers. This is the Completeness Axiom which we introduce in
Section 2.11. It turns out that proofs of the four statements listed above use the
Completeness Axiom.

2.11. The Completeness axiom

Recall Exercise 2.2.5: If a and b are real numbers such that a < b, then there
exists a real number c such that a < c < b.

This statement assures that there are no big holes in R; between any two real
numbers there is another real number. A natural question to ask is whether the
same is true for sets. If we are given two sets which are in some sense separated,
does there exists a real number between them? Somewhat surprisingly this has to
be postulated as the last axiom of the real numbers:

Axiom 16 (CA: Completeness Axiom). If A and B are nonempty subsets of R
such that for every a ∈ A and for every b ∈ B we have a ≤ b, then there exists
c ∈ R such that a ≤ c ≤ b for all a ∈ A and all b ∈ B.

Visually this corresponds to the picture

A B

c
d

Since we perceive the real number line to have no holes, the place marked by
the open circle must correspond to a real the number c.

Now we have 16 axioms of R. It is remarkable that all statements about
real numbers that are studied in beginning mathematical analysis courses can be
deduced from these sixteen axioms and basic properties of sets.

The formulation of the Completeness Axiom given as Axiom 16 above is not
standard. This formulation I found in the book Mathematical analysis by Vladimir
Zorich, published by Springer in 2004. The standard formulation of the Complete-
ness Axiom is given in Exercise 2.13.5 below. In that exercise you will prove that
Zorich’s Completeness Axiom is equivalent to the standard one.

Now we have a powerful tool. Let us use it to prove some important statements.
We start with the proof that N is not bounded.

Exercise 2.11.1 (Archimedean Property). For every b ∈ R there exists n ∈ N such
that n > b.

Solution. We will prove the statement by contradiction. Assume that the
negation of the statement is true. That is, assume that there exists β ∈ R such
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that β ≥ n for all n ∈ N. Set

A = N and B =
{
b ∈ R : b ≥ n ∀n ∈ N

}
.

Since 1 ∈ N and β ∈ B, the sets A and B are nonempty subsets of R. By the
definition of the set B we have a ≤ b for all a ∈ A and all b ∈ B. By Completeness
Axiom there exists c ∈ R such that a ≤ c ≤ b for all a ∈ A and all b ∈ B. In other
words, n ≤ c ≤ b for all n ∈ N and all b ∈ B. Since c ≤ b for all b ∈ B, we conclude
that c− 1/2 6∈ B. Thus, there exists m ∈ N such that c− 1/2 < m. Since n ≤ c for
all n ∈ N we conclude that m+ 1 ≤ c. Hence,

c− 1/2 < m < m+ 1 ≤ c.

Using the above inequalities we get

1 = (m+ 1)−m < c−
(
c− 1/2

)
= 1/2,

that is 2 < 1. Wrong! (by Exercise 2.2.4) This proves the statement. �

Exercise 2.11.2. Prove that there exists a unique positive real number α such
that α2 = 2.

Solution. Set

A =
{
x ∈ R : x > 0 and x2 < 2

}
, B =

{
y ∈ R : y > 0 and y2 > 2

}
.

Since 1 ∈ A and 2 ∈ B, A and B are nonempty subsets of R. By Exercise 2.2.7,
x < y for all x ∈ A and all y ∈ B. The Completeness axiom implies that there
exists c ∈ R such that x ≤ c ≤ y for all x ∈ A and all y ∈ B.

Next we will prove that B does not have minimum and A does not have max-
imum. The idea for these proofs comes from Exercise 2.2.9 which states that
(s + t)2 > 4st whenever s 6= t. Thus for arbitrary s > 0 such that s2 6= 2 we
have

(2.11.1)

(
s

2
+

1

s

)2

> 2.

That is (s/2 + 1/s) ∈ B. Taking reciprocal and multiplying by 4 in (2.11.1) yields

(2.11.2)
4

(
s
2 + 1

s

)2 < 2.

Hence 2/(s/2 + 1/s) ∈ A.
A proof that B does not have a minimum follows. Let y ∈ B. Then y2 > 2

and y > 0. Set

v =
y

2
+

1

y
.

Clearly v > 0. Since y2 > 2 we have y/2 > 1/y. Hence y > y/2 + 1/y, that is
y > v. Since by (2.11.1), v ∈ B this proves that B does not have a minimum.

A proof that A does not have a maximum follows. Let x ∈ A. Then x2 < 2
and x > 0. Set

u =
2

x
2 + 1

x

.

Clearly u > 0. Since x2 < 2 we have x/2 < 1/x. Therefore, x/2 + 1/x < 2/x and
consequently u > x. Since by (2.11.2), u ∈ A this proves that A does not have a
maximum.
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As A does not have a maximum c /∈ A; that is c2 < 2 is not true. As B does
not have a minimum c /∈ B; that is c2 > 2 is not true. Consequently, by Axiom 12,
c2 = 2. �

Exercise 2.11.3. Prove that Q is a proper subset of R.

Theorem 2.11.4. Let a, b ∈ R be such that a < b. Let f : N → (a, b) be a function.

Then f is not a surjection.

Proof. We first prove a lemma.
Lema. If u, v ∈ R and u < v, then

u <
2

3
u+

1

3
v <

1

3
u+

2

3
v < v.

Proof of the Lemma. By OA, u < v, implies the following three inequalities,
2u+ u < 2u+ v, u+(u+ v) < v+(u+ v), and u+2v < v+2v. Simplifying yields,
3u < 2u+v, 2u+v < u+2v, u+2v < 3v. Now OT and OM with 1/3 > 0, produce
the displayed inequalities.

Proof of Theorem. Let φ : N → (a, b) be an arbitrary function. We will prove
that φ is not a surjection.

First we define recursively two sequences α : N → (a, b) and β : N → (a, b).
Here is the recursive definition:

Base step: Define

α1 =
2

3
φ1 +

1

3
b and β1 =

2

3
φ1 +

2

3
b.

Recursive step: Let n ∈ N and assume that αn and βn are defined. Define

αn+1 =

{
2
3αn + 1

3βn if φn+1 6∈ (αn, βn),
2
3φn+1 +

1
3βn if φn+1 ∈ (αn, βn),

and

βn+1 =

{
1
3αn + 2

3βn if φn+1 6∈ (αn, βn),
1
3φn+1 +

2
3βn if φn+1 ∈ (αn, βn).

Using Mathematical induction we can prove that the sequences α and β have
the following five properties:

(1) For all n ∈ N we have a < αn < αn+1 < βn+1 < βn < b.
(2) αk < αm for all k,m ∈ N such that k < m.
(3) βm < βk for all k,m ∈ N such that k < m.
(4) αk < βm for all k,m ∈ N.
(5) φn 6∈

[
αn, βn

]
for all n ∈ N.

Proof of (1): Let n ∈ N. The statement P (n) is the lats part of the sentence
in (1). Since a < φ1 < b, Lemma implies a < φ1 < α1 < β1 < b. This proves P (1).

Now prove the Inductive step. Let n ∈ N. Assume that P (n) is true. That is
assume a < αn < βn < b. In each case in the definition of αn+1 and βn+1 Lemma
implies that P (n+ 1) is true. (The details are easy to check.)

The formal proofs of (2) and (3) require two inductions since the statements
involve two natural numbers. But, (2) and (3) are intuitively clear consequences of
(1). The statement (4) follows from OT and (1), (2) and (3).

The formal proof of (5) is an easy consequence of Lemma.
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Now we are ready to use the Completeness Axiom and complete the proof that
φ is not a surjection. Define two sets

A =
{
αn : n ∈ N

}
and B =

{
βn : n ∈ N

}
.

Clearly A and B are nonempty subsets of R. By (4) x ≤ y for all x ∈ A and all
y ∈ B. By CA there exists c ∈ R such that αk ≤ c ≤ βm for all k,m ∈ N. In
particular c ∈ (a, b) and c ∈

[
αn, βn

]
for all n ∈ N. The last fact and (5) imply

c ∈
[
αn, βn

]
and φn 6∈

[
αn, βn

]
∀n ∈ N.

The last displayed statement yields c 6= φn for all n ∈ N. Thus, φ is not a surjection.
�

2.12. More on the sets N, Z and Q

Exercise 2.12.1. If b > 0, then there exists a natural number n such that
1

n
< b.

Exercise 2.12.2. If c ∈ R and − 1

n
< c <

1

n
for all n ∈ N, then c = 0.

Exercise 2.12.3. If a and b are positive real numbers, then there exists a natural
number n such that b < na. This tells us that, even if a is quite small and b quite
large, some integer multiple of a will exceed b.

Remark 2.12.4. Note that if we set b = 1 we obtain the statement in Exer-
cise 2.12.1 and if we set a = 1, we obtain the Archimedean property.

Exercise 2.12.5. If α, β ∈ R. 0 ≤ α < β and β − α > 1, then there exists m ∈ N

such that α < m < β (that is, there exists m ∈ (α, β) ∩ N).

Solution. Consider the set A = {k ∈ N : α < k}. By Exercise 2.11.1 the set A
is not empty. Clearly A ⊆ N. By Exercise 2.8.15 the set A has a minimum element.
Put m = minA. Now we have to prove that α < m < β. Since m ∈ A, we have
α < m. In order to prove that m < β we consider the following two cases: Case 1:
m = 1 and Case 2: m ∈ N\{1}.
Case 1. Assume that m = 1. Since 1 < β − α < β we see that m < β.
Case 2. Assume that m ∈ N\{1}. By Theorem 2.6.6 (ii), j = m − 1 ∈ N. Clearly
j < m. Is j ∈ A? NO: j is not in A since j < m = minA. Since j ∈ N and j /∈ A, we
have j ≤ α. Add 1 to both sides of this inequality and we get m = j+1 ≤ α+1 < β.
Therefore m < β. �

Remark 2.12.6. The goal of Exercise 2.12.5 is to prove the existence of a natural
number with a certain property. In other words, given α and β we must construct
a natural number m with the given property. What are possible tools for this
construction? The proof above uses a remarkable idea how to do “constructions”
of numbers:

Step 1: Identify a set of candidates for the desired number.
Step 2: The set of candidates is nice enough that it has an extreme element.

(In this case it is a minimum.)
Step 3: Where else could our special number be hiding?

Exercise 2.12.7. If a, b ∈ R and a < b, then there exists a rational number r ∈ Q

such that a < r < b. Hint. Consider three cases: 0 ≤ a < b, a < 0 < b and
a < b ≤ 0. Use 2.12.5 and 2.12.3 for the first case. The other two cases are easy.
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Exercise 2.12.8. Let a, b ∈ R and a < b. Prove that
{
x ∈ Q : a < x < b

}
is an

infinite set.

Exercise 2.12.9. Let A ⊂ N be a nonempty and bounded subset of N. Prove that
A is finite.

Exercise 2.12.10. A nonempty bounded below subset of Z has a minimum.

Exercise 2.12.11. A nonempty bounded above subset of Z has a maximum.

Exercise 2.12.12. Let x ∈ R be arbitrary. Prove that the set
{
k ∈ Z : k ≤ x

}

has a maximum.

Exercise 2.12.13. Let x ∈ R be arbitrary. Prove that the set
{
k ∈ Z : k ≥ x

}

has a minimum.

Based on the last two exercises we define the following two functions which
relate real numbers to integers.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

0

Figure 12. The floor function

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

0

Figure 13. The ceiling function

Definition 2.12.14. The floor function is defined by

flr(x) = ⌊x⌋ := max
{
k ∈ Z : k ≤ x

}
, x ∈ R.

The ceiling function is defined by

clg(x) = ⌈x⌉ := min
{
k ∈ Z : x ≤ k

}
, x ∈ R.

Exercise 2.12.15. Prove x− 1 < ⌊x⌋ ≤ x for all x ∈ R.

Exercise 2.12.16. Prove x ≤ ⌈x⌉ < x+ 1 for all x ∈ R.

Exercise 2.12.17. Prove x

⌈
1

x

⌉

≥ 1 for all x > 0.

Exercise 2.12.18. Let a, b ∈ R and assume b− a ≥ 1. Prove a <
⌈a⌉+ ⌊b⌋

2
< b.
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Exercise 2.12.19. Let a, b ∈ R and assume a < b. Prove

a <

⌈⌈
1

b − a

⌉

a

⌉

+

⌊⌈
1

b− a

⌉

b

⌋

2

⌈
1

b− a

⌉ < b.

Exercise 2.12.20. If a, b ∈ R and a < b, then there exists a rational number r ∈ Q

such that a < r < b

Exercise 2.12.21. Let a, b ∈ R and a < b. Prove that
{
x ∈ Q : a < x < b

}
is an

infinite set.

2.13. Infimums and supremums

Definition 2.13.1. Let A be a nonempty subset of R. A number w ∈ R is a
supremum (or a least upper bound) of A if

(i) w is an upper bound for A, and
(ii) if v is an upper bound for A and w 6= v, then w < v.

Definition 2.13.2. Let A be a nonempty subset of R. A number u ∈ R is an
infimum (or greatest lower bound) of A if

(i) u is a lower bound for A, and
(ii) if v is a lower bound for A and v 6= u, then v < u.

If u and w are as in Definitions 2.13.1 and 2.13.2, we write

w = supA ( = lubA ) and u = inf A ( = glbA).

Exercise 2.13.3. If (supA) ∈ A, then supA = maxA. State and prove the analo-
gous statement for inf A.

Exercise 2.13.4. Let A be a nonempty and bounded above subset of R. Prove
that the set of all upper bounds of A has a minimum.

The following exercise gives the standard form of the Completeness axiom.

Exercise 2.13.5. A nonempty subset of R that is bounded above has a supremum.
In other words, if a set A ⊂ R is nonempty and bounded above, then supA exists
and it is a real number.

Exercise 2.13.6. A nonempty and bounded below subset of R has an infimum.

Exercise 2.13.7. Let A ⊂ R, A 6= ∅ and A is bounded below. Prove that a = inf A
if and only if

(a) a is a lower bound of A, that is, a ≤ x, for all x ∈ A;
(b) for each ǫ > 0 there exists x ∈ A such that x < a+ ǫ.

Notice that x in (b) depends on ǫ. Sometimes it is useful to indicate this dependence
by writing xǫ or x(ǫ) instead of x.

Exercise 2.13.8. State and prove a characterization of supA which is analogous
to the characterization of inf A given in Exercise 2.13.7.
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Exercise 2.13.9. Find sup and inf for the sets A =

{
1

n
: n ∈ N

}

and B =
{

n

n+ 1
: n ∈ N

}

. Formal proofs are required. (By a formal proof I mean a rigorous

mathematical proof of properties (i) and (ii) in Definitions 2.13.1 and 2.13.2.)

Exercise 2.13.10. Find sup and inf for the set

{
n(−1)n

n+ 1
: n ∈ N

}

.

Exercise 2.13.11. Let A be a nonempty and bounded above subset of R. If B is
a nonempty subset of A, then B is bounded above and supB ≤ supA. Formulate
the corresponding statement for the infimums.

Exercise 2.13.12. Let A and B be nonempty bounded above subsets of R. Prove

sup(A ∪B) = max
{
supA, supB

}
.

Exercise 2.13.13. Let A and B be nonempty subsets of R such that for all x ∈ A
and for all y ∈ B we have x ≤ y. Prove that supA ≤ inf B.

If the condition x ≤ y is replaced by the condition x < y, can we conclude that
supA < inf B?

Exercise 2.13.14. Suppose that A and B are nonempty subsets of R such that
for all x ∈ A and for all y ∈ B we have x ≤ y. Prove that supA = inf B if and only
if for each δ > 0 there exist x ∈ A and y ∈ B such that x+ δ > y.

Exercise 2.13.15. Let A be a nonempty and bounded above subset of R, and let
F be a finite subset of A. If (supA) /∈ A, then sup(A\F ) = supA.

State and prove an analogous statement for inf A?

Exercise 2.13.16. Consider the set

A =
{
x ∈ R : x > 0 and x2 < 2

}
.

Prove that A is nonempty and bounded. Put α = supA. Prove that α2 = 2.
Note: Do this exercise using only the properties of the supremum. Do not use

the existence of
√
2 proved in Exercise 2.11.2.

Exercise 2.13.17. Let a > 0. Consider the set

A =
{
x ∈ R : x > 0 and x2 < a

}
.

Prove that A is nonempty and bounded. Put α = supA. Prove that α2 = a.

Exercise 2.13.18. Let a > 0 and n ∈ N. Consider the set

A =
{
x ∈ R : x > 0 and xn < a

}
.

Prove that A is nonempty and bounded. Put α = supA. Prove that αn = a.

Exercise 2.13.19. Let n ∈ N. Prove that the function f : [0,+∞) → [0,+∞)
defined by f(x) = xn, x ≥ 0, is a bijection.

Definition 2.13.20. The inverse of the bijection f : [0,+∞) → [0,+∞) from
Exercise 2.13.19 is called the n-th root function. For x ≥ 0 the value of the n-th
root function at x is denoted by n

√
x and it is called the n-th root of x.
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Exercise 2.13.21. Let A be a nonempty subset of R. Define the difference set Ad

of A to be

Ad :=
{
b− a : a, b ∈ A and a < b

}

If A is infinite and bounded, then inf Ad = 0.

Remark 2.13.22. A partial contrapositive of the last exercise is as follows. If A is
infinite and inf Ad > 0, thenA is not bounded. Since we proved that N is infinite and
clearly Nd = N and hence inf Nd = 1, the contrapositive of Exercise 2.13.21 implies
that N is not bounded. This provides an alternative proof of the Archimedean
property proved in Exercise 2.11.1. Notice that the existence of the floor and the
ceiling function and the fact that there are rational numbers in any open interval
all depend on the Archimedean property, and via the Archimedean property these
properties depend on the Completeness Axiom.

In conclusion, the set R is completely described by Axioms 1 through 15 and
the Completeness Axiom. All claims about real numbers can be proved using these
16 axioms and their consequences. As you probably already noticed in proofs we
also use elementary properties of sets and operations with sets.

2.14. The topology of R

The terminology that we introduce in the next definition provides the essential
vocabulary of the modern analysis.

Definition 2.14.1. All points in this definition are elements of R and all sets are
subsets of R.

(a) Let ǫ > 0. A neighborhood (or ǫ-neighborhood) of a point a is the set

N(a, ǫ) =
{
x ∈ R : |x− a| < ǫ

}
= (a− ǫ, a+ ǫ)

The number ǫ is called the radius of N(a, ǫ).
(b) A point a is an accumulation point of a set E if every neighborhood of a contains

a point x 6= a such that x ∈ E. That is, a is an accumulation point of the set
E if

E∩ (N(a, ǫ) \ {a}
)
6= ∅ for all ǫ > 0.

(c) A set E is closed if it contains all its accumulation points. That is, E is closed
if the following implication holds:

x is an accumulation point of E ⇒ x ∈ E.

(d) A point a is an interior point of the set E if there is a neighborhood of a that
is a subset of E. That is, a is an interior point of E if there exists ǫ > 0 such
that N(a, ǫ) ⊆ E.

(e) A set E is open if every point of E is an interior point of E.
(f) A set E is compact if every infinite subset of E has an accumulation point in

E.
(g) Let E ⊆ F . A set E is dense in F if every neighborhood of every point in F

contains a point of E.

Exercise 2.14.2. Find all accumulation points of the set

{
n(−1)n

n+ 1
: n ∈ N

}

. Pro-

vide formal proofs.
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Exercise 2.14.3. Find all accumulation points of

{
4

n
+

n

4
−
⌊n

4

⌋

: n ∈ N

}

. Pro-

vide formal proofs.

Exercise 2.14.4. Let A ⊂ R be a bounded set. If A does not have a maximum,
then supA is an accumulation point of A. State and prove the analogous statement
for inf A.

Exercise 2.14.5. Let a < b. Prove that the open interval (a, b) is an open set.
Prove that the complement of (a, b), that is the set R \ (a, b) is closed. (Hint:
State the contrapositive of the implication in the definition of a closed set. Simplify
the contrapositive using the concept of an interior point.)

Exercise 2.14.6. Let a < b. Prove that the closed interval [a, b] is a closed set.
Prove that the complement of [a, b], that is the set R \ [a, b] is open.
Exercise 2.14.7. Let a < b. Consider the interval [a, b). Is this a closed set? Is it
open?

Exercise 2.14.8. Is R a closed set? Is it open?

Exercise 2.14.9. Prove that G ⊂ R is open if and only if R \G is closed.

Exercise 2.14.10. Let a < b. Prove that the closed interval [a, b] is a compact set.
Hint 1: Use Proposition 2.8.10 and Exercise 2.14.4.
Hint 2: Use Cantor’s intersection theorem. Consider an arbitrary infinite

subset E of [a, b]. Define a sequence of closed intervals [an, bn], n ∈ N, such that,
for all n ∈ N,

[an, bn] ⊆ [a, b], [an+1, bn+1] ⊆ [an, bn], bn − an = (b− a)/2n−1,

and, most importantly, [an, bn] ∩ E is infinite.

Definition 2.14.11. A family G of open sets is an open cover for a set E if

E ⊆
⋃ {

G : G ∈ G
}
.

Definition 2.14.12. If every open cover of a set E has a finite subfamily that is
also an open cover of E, than we say that E has the Heine-Borel property.

Exercise 2.14.13. Let a < b. Prove that the closed interval [a, b] has the Heine-
Borel property.

Hint: Let G be an arbitrary open cover of [a, b]. Consider the set

S =
{

x ∈ (a, b] : ∃n ∈ N and ∃G1, . . . , Gn ∈ G such that [a, x] ⊆
n⋃

j=1

Gj

}

.

2.14.1. The structure of open sets in R.

Definition 2.14.14. A subset I ⊆ R is an open interval if one of the following four
conditions is satisfied

• I = R.
• There exists a ∈ R such that I = (−∞, a).
• There exists b ∈ R such that I = (b,+∞).
• There exist a, b ∈ R such that a < b and I = (a, b).
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Exercise 2.14.15. Let I be an infinite family of open mutually disjoint intervals.
(Mutually disjoint means that if I1, I2 ∈ I and I1 6= I2, then I1 ∩ I2 6= ∅.) Prove
that I is countable.

Exercise 2.14.16. Let G be a nonempty open subset of R. Assume that R \G is
neither bounded above nor below. Prove that for each x ∈ G there exist a, b ∈ R\G
such that a < b, x ∈ (a, b) and (a, b) ⊆ G.

Exercise 2.14.17. Let G be a nonempty open subset of R. Assume that R \ G
is neither bounded above nor below. Prove that there exists a finite or countable
family of open mutually disjoint intervals whose union equals G.

Exercise 2.14.18. Let G be a nonempty open subset of R. Then there exists a
finite or countable family of open mutually disjoint intervals whose union equals G.





CHAPTER 3

Sequences in R

3.1. Definitions and examples

Definition 3.1.1. A sequence in R is a function whose domain is N and whose
range is in R.

Let s : N → R be a sequence in R. Then the values of s are

s(1), s(2), s(3), . . . , s(n), . . . .

It is customary to write sn instead of s(n) for the values of a sequence. Sometimes
a sequence will be specified by listing its first few terms

s1, s2, s3, s4, . . . ,

and sometimes by listing of all its terms
{
sn
}∞

n=1
or
{
sn
}
. One way of specifying

a sequence is to give a formula, or a recursion formula for its n−th term sn.

Remark 3.1.2. In the above notation s is the “name” of the sequence and n ∈ N

is the independent variable.

Remark 3.1.3. Notice the difference between the following two expressions:
{
sn
}∞

n=1
This expression denotes a function (sequence).

{
sn : n ∈ N

}
This expression denotes a set: The range of a sequence

{
sn
}∞

n=1
.

For example
{
1− (−1)n

}∞

n=1
stands for the function n 7→ 1− (−1)n, n ∈ N, while

{
1− (−1)n : n ∈ N

}
=
{
0, 2
}
.

Example 3.1.4. Here we give examples of sequences given by a formula. In each
formula below n ∈ N.

(a) n, (b) n2, (c)
√
n, (d) (−1)n,

(e)
1

n
, (f)

1

n2
, (g)

1√
n
, (h) 1− (−1)n

n
,

(i)
1

n!
, (j) 21/n, (k) n1/n, (l) n(−1)n ,

(m)
9n

n!
, (n)

(−1)n+1

2n− 1
, (o)

n(−1)n

n+ 1
, (p)

( e

n

)n n!√
n
.

Example 3.1.5. Few more sequences given by a formula are

(a)
{√

n2 + 1− n
}∞

n=1
, (b)

{√
n2 + n− n

}∞

n=1
, (c)

{√
n+ 1−√

n
}∞

n=1
.

Example 3.1.6. In this example we give several recursively defined sequences.

49
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(a) s1 = 1 and
(
∀n ∈ N

)
sn+1 = −sn

2
,

(b) x1 = 1 and
(
∀n ∈ N

)
xn+1 = 1 +

xn

4
,

(c) x1 = 2 and
(
∀n ∈ N

)
xn+1 =

xn

2
+

1

xn
,

(d) a1 =
√
2 and

(
∀n ∈ N

)
an+1 =

√
2 + an,

(e) s1 = 1 and
(
∀n ∈ N

)
sn+1 =

√
1 + sn,

(f) x1 = 0 and
(
∀n ∈ N

)
xn+1 =

9 + xn

10
.

For a recursively defined sequence it is useful to evaluate the values of the first few
terms to get an idea how sequence behaves.

Example 3.1.7. The most important examples of sequences are listed below:

bn = a, n ∈ N, where a ∈ R,(3.1.1)

pn = an, n ∈ N, where − 1 < a < 1,(3.1.2)

En =

(

1 +
1

n

)n

, n ∈ N,(3.1.3)

G1 = a+ ax and
(
∀n ∈ N

)
Gn+1 = Gn + axn+1, where − 1 < x < 1,(3.1.4)

S1 = 2 and
(
∀n ∈ N

)
Sn+1 = Sn +

1

(n+ 1)!
,(3.1.5)

v1 = 1 + a and
(
∀n ∈ N

)
vn+1 = vn +

an+1

(n+ 1)!
, where a ∈ R.(3.1.6)

Definition 3.1.8. Let
{
an
}
be a sequence in R. A sequence which is recursively

defined by

S1 = a1 and
(
∀n ∈ N

)
Sn+1 = Sn + an+1,(3.1.7)

is called a sequence of partial sum corresponding to
{
an
}
.

Example 3.1.9. The sequences of partial sums associated with the sequences in
Example 3.1.4 (e), (f) and (n) are important examples for Definition 3.1.8. Notice
also that the sequences in (3.1.4), (3.1.5) and (3.1.6) are sequences of partial sums.
All of these are very important.

3.2. Bounded sequences

Definition 3.2.1. Let
{
sn
}
be a sequence in R.

(1) If a real number M satisfies

sn ≤ M for all n ∈ N

then M is called an upper bound of
{
sn
}
and the sequence

{
sn
}
is said to

be bounded above.
(2) If a real number m satisfies

m ≤ sn for all n ∈ N,

then m is called a lower bound of
{
sn
}
and the sequence

{
sn
}
is said to

be bounded below.
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(3) The sequence
{
sn
}

is said to be bounded if it is bounded above and
bounded below.

Remark 3.2.2. Clearly, a sequence
{
sn
}
is bounded above if and only if the set

{
sn : n ∈ N

}
is bounded above. Similarly, a sequence

{
sn
}
is bounded below if

and only if the set
{
sn : n ∈ N

}
is bounded below.

Remark 3.2.3. The sequence
{
sn
}
is bounded if and only if there exists a real

number K > 0 such that |sn| ≤ K for all n ∈ N.

Exercise 3.2.4. There is a huge task here. For each sequence given in this section
it is of interest to determine whether it is bounded or not. As usual, some of the
proofs are easy, some are hard. It is important to do few easy proofs and observe
their structure. This will provide the setting to appreciate proofs for hard examples.

3.3. The definition of a convergent sequence

Definition 3.3.1. A sequence
{
sn
}
is a constant sequence if there exists L ∈ R

such that sn = L for all n ∈ N.

Exercise 3.3.2. Prove that the sequence sn =

⌊
3n− 1

2n

⌋

, n ∈ N, is a constant

sequence.

Definition 3.3.3. A sequence
{
sn
}
is eventually constant if there exists L ∈ R

and N0 ∈ R such that sn = L for all n ∈ N, n > N0.

Exercise 3.3.4. Prove that the sequence sn =

⌈
3n− 2

2n+ 3

⌉

, n ∈ N, is eventually

constant.

Exercise 3.3.5. Prove that the sequence sn =

⌊
5n− (−1)n

n/2 + 5

⌋

, n ∈ N, is eventually

constant.

Definition 3.3.6. A sequence
{
sn
}
converges if there exists L ∈ R such that for

each ǫ > 0 there exists a real number N(ǫ) such that

n ∈ N, n > N(ǫ) ⇒ |sn − L| < ǫ.

The number L is called the limit of the sequence
{
sn
}
. We also say that

{
sn
}

converges to L and write

lim
n→∞

sn = L or sn → L (n → ∞).

If a sequence does not converge we say that it diverges.

Remark 3.3.7. The definition of convergence is a complicated statement. Formally
it can be written as:

∃L ∈ R s.t. ∀ ǫ > 0 ∃N(ǫ) ∈ R s.t. ∀n ∈ N, n > N(ǫ) ⇒ |sn − L| < ǫ.

Exercise 3.3.8. State the negation of the statement in remark 3.3.7.
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3.3.1. My informal discussion of convergence. It is easy to agree that
the constant sequences are simplest possible sequences. For example the sequence

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

cn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

or formally, cn = 1 for all n ∈ N, is a very simple sequence. No action here! In this
case, clearly, limn→∞ cn = 1.

Now, I define sn =
n− (−1)n

n
, n ∈ N, and I ask: Is {sn} a constant sequence?

Just looking at the first few terms

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

sn 2
1

2

4

3

3

4

6

5

5

6

8

7

7

8

10

9

9

10

12

11

11

12

14

13

13

14

16

15

15

16

18

17
indicates that this sequence is not constant. The table above also indicates that the
sequence {sn} is not eventually constant. But imagine that you have a calculator
which is capable of displaying only one decimal place. On this calculator the first
terms of this sequence would look like:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sn 2.0 0.5 1.3 0.8 1.2 0.8 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1

and the next 15 terms would look like:

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

sn 0.9 1.1 0.9 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Basically, after the 20-th term this calculator does not distinguish sn from 1. That
is, this calculator leads us to think that {sn} is eventually constant. Why is this?
On this calculator all numbers between 0.95 = 1 − 1/20 and 1.05 = 1 + 1/20 are
represented as 1, and for our sequence we can prove that

n ∈ N, n > 20 ⇒ 1− 1

20
< sn < 1 +

1

20
,

or, equivalently,

n ∈ N, n > 20 ⇒
∣
∣sn − 1

∣
∣ <

1

20
.

In the notation of Definition 3.3.6 this means N(1/20) = 20.
One can reasonably object that the above calculator is not very powerful and

propose to use a calculator that can display three decimal places. Then the terms
of {sn} starting with n = 21 are

n 21 22 23 24 25 26 27 28 29 30

sn 1.048 0.955 1.043 0.958 1.040 0.962 1.037 0.964 1.034 0.967

Now the question is: Can we fool this powerful calculator to think that {sn} is
eventually constant? Notice that on this calculator all numbers between 0.9995 =
1− 1/2000 and 1.0005 = 1 + 1/2000 are represent as 1. Therefore, in the notation
of Definition 3.3.6, we need N(1/2000) such that

n ∈ N, n > N(1/2000) ⇒ 1− 1

2000
< sn < 1 +

1

2000
.
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An easy calculation shows that N(1/2000) = 2000. That is

n ∈ N, n > 2000 ⇒
∣
∣sn − 1

∣
∣ <

1

2000
.

This is illustrated by the following table

n 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

sn 0.999 1.001 0.999 1.001 1.000 1.000 1.000 1.000 1.000 1.000

Hence, even this more powerful calculator is fooled into thinking that {sn} is even-
tually constant.

In computer science the precision of a computer is measured by the number
called the machine epsilon (also called macheps, machine precision or unit round-
off). It is the smallest number that gives a number greater than 1 when added to
1.

Now, Definition 3.3.6 can be paraphrased as: A sequence converges if on each
computer it appears to be eventually constant. This is the reason why I think that
instead of the phrase “a sequence is convergent” we could use the phrase “a sequence
is constantish.”

3.4. Finding N(ǫ) for a convergent sequence

Example 3.4.1. Prove that lim
n→∞

2n− 1

n+ 3
= 2.

Solution. We prove the given equality using Definition 3.3.6. To do that for
each ǫ > 0 we have to find N(ǫ) such that

(3.4.1) n ∈ N, n > N(ǫ) ⇒
∣
∣
∣
∣

2n− 1

n+ 3
− 2

∣
∣
∣
∣
< ǫ.

Let ǫ > 0 be given. We can think of n as an unknown in

∣
∣
∣
∣

2n− 1

n+ 3
− 2

∣
∣
∣
∣
< ǫ and solve

this inequality for n. To this end first simplify the left-hand side:

(3.4.2)

∣
∣
∣
∣

2n− 1

n+ 3
− 2

∣
∣
∣
∣
=

∣
∣
∣
∣

2n− 1− 2n− 6

n+ 3

∣
∣
∣
∣
=

| − 7|
|n+ 3| =

7

n+ 3
.

Now,
7

n+ 3
< ǫ is much easier to solve for n ∈ N:

(3.4.3)
7

n+ 3
< ǫ ⇔ n+ 3

7
>

1

ǫ
⇔ n+ 3 >

7

ǫ
⇔ n >

7

ǫ
− 3.

Now (3.4.3) indicates that we can choose N(ǫ) = 7
ǫ − 3.

Now we have N(ǫ), but to complete the formal proof, we have to prove impli-
cation (3.4.1). The proof follows. Let n ∈ N and n > 7

ǫ − 3. Then the equivalences

in (3.4.3) imply that 7
n+3 < ǫ. Since by (3.4.3),

∣
∣
∣
2n−1
n+3 − 2

∣
∣
∣ = 7

n+3 , it follows that
∣
∣
∣
2n−1
n+3 − 2

∣
∣
∣ < ǫ. This completes the proof of implication (3.4.1). �

Remark 3.4.2. This remark is essential for the understanding of the process de-
scribed in the following examples. In the solution of Example 3.4.1 we found (in
some sense) the smallest possible N(ǫ). It is important to notice that implication
(3.4.1) holds with any larger value for “N(ǫ).” For example, implication (3.4.1)
holds if we set N(ǫ) = 7

ǫ . With this new N(ǫ) we can prove implication (3.4.1) as
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follows. Let n ∈ N and n > 7
ǫ . Then 7

n < ǫ. Since clearly 7
n+3 < 7

n , the last two

inequalities imply that 7
n+3 < ǫ and we can continue with the same proof as in the

solution of Example 3.4.1.

Example 3.4.3. Prove that lim
n→∞

1

n3 − n+ 1
= 0.

Solution. We prove the given equality using Definition 3.3.6. To do that for
each ǫ > 0 we have to find N(ǫ) such that

(3.4.4) n ∈ N, n > N(ǫ) ⇒
∣
∣
∣
∣

1

n3 − n+ 1
− 0

∣
∣
∣
∣
< ǫ.

Let ǫ > 0 be given. We can think of n as an unknown in

∣
∣
∣
∣

1

n3 − n+ 1
− 0

∣
∣
∣
∣
< ǫ and

solve this inequality for n. To this end first simplify the left-hand side:

(3.4.5)

∣
∣
∣
∣

1

n3 − n+ 1
− 0

∣
∣
∣
∣
=

∣
∣
∣
∣

1

n3 − n+ 1

∣
∣
∣
∣
=

|1|
|n3 − n+ 1| =

1

n3 − n+ 1
.

Unfortunately
1

n3 − n+ 1
< ǫ is not easy to solve for n ∈ N. Therefore we use the

idea from Remark 3.4.2 and replace the quantity
1

n3 − n+ 1
with a larger quantity.

To make a fraction larger we have to make the denominator smaller. Notice that
n2 − n = n(n− 1) ≥ n− 1 for all n ∈ N. Therefore for all n ∈ N we have

n3 − n+ 1 = n3 − (n− 1) ≥ n3 − n(n− 1) = n(n2 − n+ 1) ≥ n.

Consequently,

(3.4.6)
1

n3 − n+ 1
≤ 1

n
.

Now,
1

n
< ǫ is truly easy to solve for n ∈ N:

(3.4.7)
1

n
< ǫ ⇔ n >

1

ǫ
.

Hence we set N(ǫ) = 1
ǫ .

Now we have N(ǫ), but to complete the formal proof, we have to prove impli-
cation (3.4.4). The proof follows. Let n ∈ N and n > 1

ǫ . Then the equivalence in

(3.4.7) implies that 1
n < ǫ. By (3.4.6), 1

n3−n+1 ≤ 1
n . The last two inequalities yield

that 1
n3−n+1 < ǫ. By (3.4.5) it follows that

∣
∣
∣

1
n3−n+1 − 0

∣
∣
∣ < ǫ. This completes the

proof of implication (3.4.4). �

Example 3.4.4. Prove that lim
n→∞

n2 − 1

n2 − 2n+ 2
= 1.

Solution. We prove the given equality using Definition 3.3.6. To do that for
each ǫ > 0 we have to find N(ǫ) such that

(3.4.8) n ∈ N, n > N(ǫ) ⇒
∣
∣
∣
∣

n2 − 1

n2 − 2n+ 2
− 1

∣
∣
∣
∣
< ǫ.
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Let ǫ > 0 be given. We can think of n as an unknown in

∣
∣
∣
∣

n2 − 1

n2 − 2n+ 2
− 1

∣
∣
∣
∣
< ǫ and

solve this inequality for n. To this end first simplify the left-hand side:

(3.4.9)

∣
∣
∣
∣

n2 − 1

n2 − 2n+ 2
− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

n2 − 1− n2 + 2n− 2

n2 − 2n+ 2

∣
∣
∣
∣
=

|2n− 3|
n2 − 2n+ 2

.

Unfortunately
|2n− 3|

n2 − 2n+ 2
< ǫ is not easy to solve for n ∈ N. Therefore we use

the idea from Remark 3.4.2 and replace the quantity
|2n− 3|

n2 − 2n+ 2
with a larger

quantity. Here is one way to discover a desired inequality. We first notice that for
all n ∈ N the following two inequalities hold

(3.4.10) |2n− 3| ≤ 2n

and

(3.4.11) n2 − 2n+ 2 =
n2

2
+

1

2

(
n2 − 4n+ 4

)
=

n2

2
+

1

2
(n− 2)2 ≥ n2

2
.

Consequently

(3.4.12)
|2n− 3|

n2 − 2n+ 2
≤ 2n

n2/2
=

4

n
.

Now,
4

n
< ǫ is truly easy to solve for n ∈ N:

(3.4.13)
4

n
< ǫ ⇔ n >

4

ǫ
.

Hence we set N(ǫ) = 4
ǫ .

Finally we have N(ǫ). But to complete the formal proof we have to prove
implication (3.4.8). The proof follows. Let n ∈ N and n > 4

ǫ . Then the equivalence

in (3.4.13) implies 4
n < ǫ. By (3.4.12), |2n−3|

n2−2n+2 ≤ 4
n . The last two inequalities

yield |2n−3|
n2−2n+2 < ǫ. By (3.4.9) it follows that

∣
∣
∣

n2−1
n2−2n+2 − 1

∣
∣
∣ < ǫ. This completes

the proof of implication (3.4.8). �

Remark 3.4.5. For most sequences
{
sn
}
a proof of lim

n→∞
sn = L based on Defini-

tion 3.3.6 should consist from the following steps.

(1) Use algebra to simplify the expression |sn − L|. It is desirable to eliminate the
absolute value.

(2) Discover an inequality of the form

(3.4.14) |sn − L| ≤ b(n) valid for all n ∈ N.

Here b(n) should be a simple function with the following properties:
(a) b(n) > 0 for all n ∈ N.
(b) lim

n→∞
b(n) = 0. (Just check this property “mentally.”)

(c) b(n) < ǫ is easily solvable for n for every ǫ > 0. The solution should be of

the form “n > some expression involving ǫ, call it N(ǫ).”
(3) Use inequality (3.4.14) to prove the implication n ∈ N, n > N(ǫ) ⇒ |sn−L| < ǫ.

Exercise 3.4.6. Determine the limits (if they exist) of the sequences (e), (f), (g),
(h), (i), and (n) in Example 3.1.4. Prove your claims.
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Exercise 3.4.7. Determine whether the sequence

{
3n+ 1

7n− 4

}∞

n=1

converges and, if

it converges, give its limit. Provide a formal proof.

Exercise 3.4.8. Determine the limits (if they exist) of the sequences in Exam-
ple 3.1.5. Prove your claims.

3.5. Two standard sequences

Exercise 3.5.1. Let a ∈ R be such that −1 < a < 1.

(1) Prove that for all n ∈ N we have

|a|n ≤ 1

n (1− |a|) .

(2) Prove that
lim
n→∞

an = 0.

Exercise 3.5.2. Let a be a positive real number. Prove that

lim
n→∞

a1/n = 1.

Solution. Let a > 0. If a = 1, then a1/n = 1 for all n ∈ N. Therefore
limn→∞ a1/n = 1.

Assume a > 1. Then a1/n > 1. We shall prove that

(3.5.1) a1/n − 1 ≤ a
1

n

(
∀n ∈ N

)
.

Put x = a1/n − 1 > 0. Then, by Bernoulli’s inequality we get

a = (1 + x)n ≥ 1 + nx.

Consequently, solving for x we get that x = a1/n − 1 ≤ (a− 1)/n. Since a− 1 < a,
(3.5.1) follows.

Assume 0 < a < 1. Then 1/a > 1. Therefore, by already proved (3.5.1), we
have

(
1

a

)1/n

− 1 ≤ 1

a

1

n

(
∀n ∈ N

)
.

Since (1/a)1/n = 1/
(
a1/n

)
, simplifying the last inequality, together with the in-

equality a1/n < 1, yields

(3.5.2) 1− a1/n ≤ a1/n

a

1

n
≤ 1

a

1

n

(
∀n ∈ N

)
.

As a < a+ 1/a and 1/a < a+ 1/a, the inequalities (3.5.1) and (3.5.2) imply

(3.5.3)
∣
∣a1/n − 1

∣
∣ ≤

(

a+
1

a

)
1

n

(
∀n ∈ N

)
.

Let ǫ > 0 be given. Solving
(
a+ 1/a

)
1
n < ǫ for n, reveals N(ǫ):

N(ǫ) =

(

a+
1

a

)
1

ǫ

Now it is easy to prove the implication (Do it as an exercise!)

n ∈ N, n >

(

a+
1

a

)
1

ǫ
⇒ |a1/n − 1| < ǫ. �
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3.6. Non-convergent sequences

Exercise 3.6.1. Prove that the sequence (d) in Example 3.1.4 does not converge.
Use Remark 3.3.7 and Exercise 3.3.8

Exercise 3.6.2. (Prove or Disprove) If
{
sn
}
does not converge to L, then there

exist ǫ > 0 and N(ǫ) such that |sn − L| ≥ ǫ for all n ≥ N(ǫ).

3.7. Convergence and boundedness

Exercise 3.7.1. Consider the following two statements:

(A) The sequence
{
sn
}
is bounded.

(B) The sequence
{
sn
}
converges.

Is (A)⇒(B) true or false? Is (B)⇒(A) true or false? Justify your answers.

3.8. Algebra of limits of convergent sequences

Exercise 3.8.1. Let
{
sn
}
be a sequence in R and let L ∈ R. Set tn = sn − L for

all n ∈ N.
Prove that

{
sn
}
converges to L if and only if

{
tn
}
converges to 0.

Exercise 3.8.2. Let c ∈ R. If lim
n→∞

xn = X and zn = c xn for all n ∈ N, then

lim
n→∞

zn = cX .

Exercise 3.8.3. Let
{
xn

}
and

{
yn
}
be sequences in R. Assume

(a)
{
xn

}
converges to 0,

(b)
{
yn
}
is bounded,

(c) zn = xnyn for all n ∈ N.

Prove that
{
zn
}
converges to 0.

Exercise 3.8.4. Let
{
xn

}
and

{
yn
}
be sequences in R. Assume

(a) lim
n→∞

xn = X ,

(b) lim
n→∞

yn = Y ,

(c) zn = xn + yn for all n ∈ N.

Prove that lim
n→∞

zn = X + Y .

Exercise 3.8.5. Let
{
xn

}
and

{
yn
}
be sequences in R. Assume

(a) lim
n→∞

xn = X ,

(b) lim
n→∞

yn = Y ,

(c) zn = xn yn for all n ∈ N.

Prove that lim
n→∞

zn = X Y .

Exercise 3.8.6. If lim
n→∞

xn = X and X > 0, then there exists a real number N

such that n ≥ N implies xn ≥ X/2.

Exercise 3.8.7. Let
{
xn

}
be a sequence in R. Assume

(a) xn 6= 0 for all n ∈ N,
(b) lim

n→∞
xn = X ,

(c) X > 0,
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(d) wn =
1

xn
for all n ∈ N.

Prove that lim
n→∞

wn =
1

X
.

Exercise 3.8.8. Let
{
xn

}
and

{
yn
}
be sequences in R. Assume

(a) xn 6= 0 for all n ∈ N,
(b) lim

n→∞
xn = X ,

(c) lim
n→∞

yn = Y ,

(d) X 6= 0,

(e) zn =
yn
xn

for all n ∈ N.

Prove that lim
n→∞

zn =
Y

X
. (Hint: Use previous exercises.)

Exercise 3.8.9. Prove that lim
n→∞

2n2 + n− 5

n2 + 2n+ 2
= (insert correct value) by using

the results we have proved (Exercises 3.8.2, 3.8.4, 3.8.5, 3.8.7, 3.8.8) and a small
trick. You may use Definition 3.3.6 of convergence directly in this problem only to

evaluate limit of the special form lim
n→∞

1

n
.

Remark 3.8.10. The point of Exercise 3.8.9 is to see that the general properties of
limits (Exercises 3.8.2, 3.8.4, 3.8.5, 3.8.7, 3.8.8) can be used to reduce complicated
situations to a few simple ones, so that when the few simple ones have been done
it is no longer necessary to go back to Definition 3.3.6 of convergence every time.

3.9. Convergent sequences and the order in R

Exercise 3.9.1. Let
{
sn
}
be a sequence in R. Assume

(a) lim
n→∞

sn = L.

(b) There exists a real number N0 such that sn ≥ 0 for all n ∈ N such that n > N0.

Prove that L ≥ 0.

Exercise 3.9.2. Let
{
an
}
and

{
bn
}
be sequences in R. Assume

(a) lim
n→∞

an = K.

(b) lim
n→∞

bn = L.

(c) There exists a real number N0 such that an ≤ bn for all n ∈ N such that
n > N0.

Prove that K ≤ L.

Exercise 3.9.3. Is the following refinement of Exercise 3.9.1 true? If
{
sn
}
con-

verges to L and if sn > 0 for all n ∈ N, then L > 0.

Exercise 3.9.4. Let
{
xn

}
be a sequence in R. Assume

(a) xn ≥ 0 for all n ∈ N,
(b) lim

n→∞
xn = X ,

(c) wn =
√
xn for all n ∈ N.

Prove that lim
n→∞

wn =
√
X.
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3.10. Squeeze theorem for convergent sequences

Exercise 3.10.1. There are three sequences in this exercise:
{
an
}
,
{
bn
}
and

{
sn
}
.

Assume the following

(1) The sequence
{
an
}
converges to L.

(2) The sequence
{
bn
}
converges to L.

(3) There exists a real number n0 such that

an ≤ sn ≤ bn for all n ∈ N, n > n0.

Prove that
{
sn
}
converges to L.

Exercise 3.10.2. (1) Let x ≥ 0 and n ∈ N. Prove the inequality

(1 + x)n ≥ 1 + nx+
n(n− 1)

2
x2.

(2) Prove that for all n ∈ N we have 1 ≤ n1/n ≤ 1 +
2√
n
.

Hint: Apply the inequality proved in (1) to
(
1 + 2/

√
n
)n
.

(3) Prove that the sequence
{
n1/n

}
converges and determine its limit.

Exercise 3.10.3. (1) Prove that (n!)2 ≥ nn for all n ∈ N. Hint: Write

(
n!
)2

=
(
1 · n

)(
2 · (n− 1)

)
· · ·
(
(n− 1) · 2

)(
n · 1

)
=

n∏

k=1

k
(
n− k + 1

)
.

Then prove k
(
n− k + 1

)
≥ n for all k = 1, . . . , n.

(2) Prove that

lim
n→∞

1
(
n!
)1/n

= 0.

3.11. The monotonic convergence theorem

Definition 3.11.1. A sequence
{
sn
}
of real numbers is said to be non-decreasing

if sn ≤ sn+1 for all n ∈ N, strictly increasing if sn < sn+1 for all n ∈ N, non-

increasing if sn ≥ sn+1 for all n ∈ N, strictly decreasing if sn > sn+1 for all n ∈ N.

A sequence with any of these properties is said to be monotonic.

Exercise 3.11.2. Again a huge task here. Which of the sequences in Exam-
ples 3.1.4, 3.1.5, and 3.1.6 are monotonic? Find few monotonic ones in each exam-
ple. Provide rigorous proofs.

Exercise 3.11.3. (Prove or Disprove) If
{
xn

}
is non-increasing, then

{
xn

}
con-

verges.

The following two exercises give powerful tools for establishing convergence of
a sequence.

Exercise 3.11.4. If
{
sn
}
is non-increasing and bounded below, then

{
sn
}
con-

verges.

Exercise 3.11.5. If
{
sn
}
is non-decreasing and bounded above, then

{
sn
}
con-

verges.
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Proof. Assume that the sequence
{
sn
}
is non-decreasing and bounded above.

Consider the range of the sequence
{
sn
}
. That is consider the set

A =
{
sn : n ∈ N

}
.

The set A is nonempty and bounded above. Therefore supA exists. Put L = supA.
We will prove that sn → L (n → ∞). Let ǫ > 0 be arbitrary. Since L = supA

we have

(1) L ≥ sn for all n ∈ N.
(2) There exists aǫ ∈ A such that L− ǫ < aǫ.

Since aǫ ∈ A, there exists Nǫ ∈ N such that aǫ = sNǫ
. It remains to prove that

(3.11.1) n ∈ N, n > Nǫ ⇒ |sn − L| < ǫ.

Let n ∈ N, n > Nǫ be arbitrary. Since we assume that
{
sn
}
is non-decreasing,

it follows that sn ≥ s
Nǫ
. Since L− ǫ < aǫ = sNǫ

≤ sn, we conclude that L− sn < ǫ.
Since L ≥ sn, we have |sn−L| = L−sn < ǫ. The implication (3.11.1) is proved. �

Exercise 3.11.6. There is a huge task here. Consider the sequences given in
Example 3.1.6. Prove that each of these sequences converges and determine its
limit.

3.12. Two important sequences with the same limit

In this section we study the sequences defined in (3.1.3) and (3.1.5).

En =

(

1 +
1

n

)n

, n ∈ N,

S1 = 2 and
(
∀n ∈ N

)
Sn+1 = Sn +

1

(n+ 1)!
.

Exercise 3.12.1. Prove by mathematical induction that Sn ≤ 3 − 1/n for all
n ∈ N.

Exercise 3.12.2. Prove that the sequence
{
Sn

}
converges.

Exercise 3.12.3. Let n, k ∈ N and n ≥ k. Use Bernoulli’s inequality to prove that

n!

(n− k)!nk
≥ 1− (k − 1)k

n

Hint: Notice that

n!

nk(n− k)!
= 1 ·

(

1− 1

n

)(

1− 2

n

)

· · ·
(

1− k − 1

n

)

≥
(

1− k − 1

n

)k

.

Exercise 3.12.4. The following inequalities hold: E1 = S1 and for all integers n
greater than 1,

(3.12.1) Sn − 3

n
< En < Sn.

Hint: Let n be an integer greater than 2. Notice that by the Binomial Theorem

En =

(

1 +
1

n

)n

=

n∑

k=0

n!

k!(n− k)!

1

nk
= 1 + 1 +

n∑

k=2

n!

(n− k)!nk

1

k!
.

Then use Exercise 3.12.3 to prove En > Sn − Sn−2/n. Then use Exercise 3.12.1.

Exercise 3.12.5. The sequences {En} and {Sn} converge to the same limit.
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Exercise 3.12.5 justifies the following definition.

Definition 3.12.6. The number e is the common limit of the sequences {En} and
{Sn}.
Remark 3.12.7. The sequence {En} is increasing. To prove this claim let n ∈ N

be arbitrary. Consider the fraction

En+1

En
=

(

1 + 1
n+1

)n+1

(
1 + 1

n

)n =
n+ 1

n

(

1 + 1
n+1

)n+1

(
1 + 1

n

)n+1 =
n+ 1

n

(
n+2
n+1
n+1
n

)n+1

=
n+ 1

n

(
n(n+ 2)

(n+ 1)2

)n+1

=
n+ 1

n

(

1− 1

(n+ 1)2

)n+1

(3.12.2)

Since − 1
(n+1)2 > −1 for all n ∈ N, applying Bernoulli’s Inequality with x = − 1

(n+1)2

we get

(3.12.3)

(

1− 1

(n+ 1)2

)n+1

> 1− (n+ 1)
1

(n+ 1)2
= 1− 1

n+ 1
.

The relations (3.12.2) and (3.12.3) imply

En+1

En
=

n+ 1

n

(

1− 1

(n+ 1)2

)n+1

>
n+ 1

n

(

1− 1

n+ 1

)

= 1.

Thus
En+1

En
> 1 for all n ∈ N,

that is the sequence
{
En

}
is increasing.

3.13. Subsequences

Composing functions is a common way how functions interact with each other.
Can we compose two sequences? Let x : N → R and y : N → R be two sequences.
Does the composition x ◦ y make sense? This composition makes sense only if the
range of y is contained in N. In this case y : N → N. That is the composition x ◦ y
makes sense only if y is a sequence in N. It turns out that the most important
composition of sequences involve increasing sequences in N. In this section the
Greek letters µ and ν will always denote increasing sequences of natural numbers.

Definition 3.13.1. A subsequence of a sequence
{
xn

}
is a composition of the

sequence
{
xn

}
and an increasing sequence

{
µk

}
of natural numbers. This compo-

sition will be denoted by
{
xµk

}
or
{
x(µk)

}
.

Remark 3.13.2. The concept of subsequence consists of two ingredients:

• the sequence
{
xn

}
(remember it’s really a function: x : N → R)

• the increasing sequence
{
µk

}
of natural numbers (remember this is an

increasing function: µ : N → N).

The composition x◦µ of these two sequences is a new sequence y : N → R. The k-th
term yk of this sequence is yk = xµk

. Note the analogy with the usual notation
for functions: y(k) = x(µ(k)). Usually we will not introduce the new name for

a subsequence: we will write
{
xµk

}∞

k=1
to denote a subsequence of the sequence

{
xn

}
. Here {µk}∞k=1 is and increasing sequence of natural numbers which selects

particular elements of the sequence
{
xn

}
to be included in the subsequence.
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Remark 3.13.3. Roughly speaking, a subsequence of
{
xn

}
is a sequence formed

by selecting some of the terms in
{
xn

}
, keeping them in the same order as in

the original sequence. It is the sequence
{
µk

}
of positive integers that does the

selecting.

Example 3.13.4. Few examples of increasing sequences in N are:

(1) µk = 2k, k ∈ N. (The sequence of even positive integers.)
(2) νk = 2k − 1, k ∈ N. (The sequence of odd positive integers.)
(3) µk = k2, k ∈ N. (The sequence of perfect squares.)
(4) Let j be a fixed positive integer. Set νk = j + k for all k ∈ N.
(5) The sequence 2, 3, 5, 7, 11, 13, 17, . . . of prime numbers. For this se-

quence no formula for
{
µk

}
is known.

Exercise 3.13.5. Let
{
µn

}
be an increasing sequence in N. Prove that µn ≥ n

for all n ∈ N.

Exercise 3.13.6. Each subsequence of a convergent sequence is convergent with
the same limit.

Remark 3.13.7. The “contrapositive” of Exercise 3.13.6 is a powerful tool for
proving that a given sequence does not converge. As an illustration prove that the
sequence

{
(−1)n

}
does not converge in two different ways: using the definition of

convergence and using the “contrapositive” of Exercise 3.13.6.

Exercise 3.13.8 (The Zipper Theorem). Let
{
xn

}
be a sequence in R and let

{
µk

}
and

{
νk
}
be increasing sequences in N. Assume

(a)
{
µk : k ∈ N

}∪{νk : k ∈ N
}
= N.

(b)
{
xµ

k

}
converges to L.

(c)
{
xνk

}
converges to L.

Prove that
{
xn

}
converges to L.

Example 3.13.9. The sequence (o) in Example 3.1.4 does not converge, but it does

have convergent subsequences, for instance the subsequence

{
2k

2k + 1

}∞

k=1

(Here

µk = 2k, k ∈ N) and the subsequence

{
1

(2k − 1)2k

}∞

k=1

(Here νk = 2k−1, k ∈ N).

Remark 3.13.10. The notation for subsequences is a little tricky at first. Note that
in xµk

it is k that is the variable. Thus the successive elements of the subsequence
are xµ

1
, xµ

2
, xµ

3
, etc. To indicate a different subsequence of the same sequence

{xn}∞n=1 it would be necessary to change not the variable name, but the selection

sequence. For example
{
xµk

}∞

k=1
and

{
xνk

}∞

k=1
in Example 3.13.9 are distinct

subsequences of {xn}. (Thus
{
xµk

}∞

k=1
and

{
xµj

}∞

j=1
are the same subsequence of

{xn}∞n=1 for exactly the same reason that x 7→ x2 (x ∈ R) and t 7→ t2 (t ∈ R) are
the same function. To make a different function it’s the rule you must change, not
the variable name.)

Example 3.13.11. Let
{
xn

}
be the sequence defined by

xn =
(−1)n(n+ 1)(−1)n

n
, n ∈ N.
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The values of
{
xn

}
are

− 1

1 · 2 ,
3

2
, − 1

3 · 4 ,
5

4
, − 1

5 · 6 ,
7

6
, − 1

7 · 8 ,
9

8
, − 1

9 · 10 ,
11

10
, . . . .

Exercise 3.13.12. Every sequence has a monotonic subsequence.

Hint: Let
{
xn

}
be an arbitrary sequence. Consider the set

M =
{
n ∈ N : ∀ k > n we have xk ≥ xn

}
.

The set M is either finite or infinite. Construct a monotonic subsequence in each
case.

Exercise 3.13.13. Every bounded sequence of real numbers has a convergent
subsequence.

3.14. The Cauchy criterion

Definition 3.14.1. A sequence
{
sn
}
of real numbers is called a Cauchy sequence

if for every ǫ > 0 there exists a real number Nǫ such that

∀n,m ∈ N, n,m > Nǫ ⇒ |sn − sm| < ǫ.

Exercise 3.14.2. Prove that every convergent sequence is a Cauchy sequence.

Exercise 3.14.3. Prove that every Cauchy sequence is bounded.

Exercise 3.14.4. If a Cauchy sequence has a convergent subsequence, then it
converges.

Exercise 3.14.5. Prove that each Cauchy sequence has a convergent subsequence.

Exercise 3.14.6. Prove that a sequence converges if and only if it is a Cauchy
sequence.

3.15. Sequences and supremum and infimum

Exercise 3.15.1. Let A ⊂ R, A 6= ∅ and assume that A is bounded above. Prove
that a = supA if and only if

(a) a is an upper bound of A, that is, a ≥ x, for all x ∈ A;
(b) there exists a sequence

{
xn

}
such that

xn ∈ A for each n ∈ N and lim
n→∞

xn = a.

Exercise 3.15.2. Let A ⊂ R, A 6= ∅ and assume that A is bounded above. Let
a = supA and assume that a /∈ A. Prove that there exists a strictly increasing
sequence

{
xn

}
such that

xn ∈ A for each n ∈ N and lim
n→∞

xn = a.

Exercise 3.15.3. State and prove the characterization of infimum which is analo-
gous to the characterization of supA given in Exercise 3.15.1.

Exercise 3.15.4. State and prove an exercise involving infimum of a set which is
analogous to Exercise 3.15.2.





CHAPTER 4

Continuous functions

In this chapter I will always denote a non-empty subset of R. This includes
more general sets, but the most common examples of I are intervals.

4.1. The ǫ-δ definition of a continuous function

Definition 4.1.1. A function f : I → R is continuous at a point x0 ∈ I if for each
ǫ > 0 there exists δ = δ(ǫ, x0) > 0 such that

(4.1.1) x ∈
(
x0 − δ, x0 + δ

)
∩ I ⇒ |f(x)− f(x0)| < ǫ.

The function f is continuous on I if it is continuous at each point of I.

Note that the implication in (4.1.1) can be restated as

x ∈ I and |x− x0| < δ(ǫ, x0) ⇒ |f(x)− f(x0)| < ǫ.

Next we restate Definition 4.1.1 using the terminology introduced in Section 2.14.
For a function f : I → R and a subset A ⊆ I we will use the notation f(A) to
denote the set

{
y ∈ R : ∃x ∈ A s.t. f(x) = y

}
=
{
f(x) : x ∈ A

}
.

A function f : I → R is continuous at a point x0 ∈ I if for each neighborhood
V of f(x0) there exists a neighborhood U of x0 such that

f
(
I ∩ U

)
⊆ V.

4.2. Finding δ(ǫ) for a given function at a given point

In this and the next section we will prove that some familiar functions are
continuous. This should be a review of what was done in Math 226.

A general strategy for proving that a given function f is continuous at a given
point x0 is as follows:

Step 1. Simplify the expression |f(x)−f(x0)| and try to establish a simple connec-
tion with the expression |x − x0|. The simplest connection is to discover
positive constants δ0 and K such that

(4.2.1) x ∈ I and x0 − δ0 < x < x0 + δ0 ⇒ |f(x)− f(x0)| ≤ K |x− x0|.

Constants δ0 and K might depend on x0. Formulate your discovery as a
lemma.

Step 2. Let ǫ > 0 be given. Use the result in Step 1 to define your δ(ǫ, x0). For
example, if (4.2.1) holds, then δ(ǫ, x0) = min

{
ǫ/K, δ0

}
.

Step 3. Use the definition of δ(ǫ, x0) from Step 2 and the lemma from Step 1 to
prove the implication (4.1.1).

65
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Example 4.2.1. We will show that the function f(x) = x2 is continuous at x0 = 3.
Here I = R and we do not need to worry about the domain of f .
Step 1. First simplify

(4.2.2)
∣
∣f(x)− f(x0)

∣
∣ =

∣
∣x2 − 32

∣
∣ =

∣
∣(x+ 3)(x− 3)

∣
∣ =

∣
∣x+ 3

∣
∣
∣
∣x− 3

∣
∣.

Now we notice that if 2 < x < 4 we have
∣
∣x + 3

∣
∣ = x + 3 ≤ 7. Thus (4.2.1) holds

with δ0 = 1 and K = 7. We formulate this result as a lemma.

Lemma. Let f(x) = x2 and x0 = 3. Then

(4.2.3) |x− 3| < 1 ⇒
∣
∣x2 − 32

∣
∣ < 7|x− 3|.

Proof. Let |x − 3| < 1. Then 2 < x < 4. Therefore x + 3 > 0 and |x + 3| =
x+ 3 < 7. By (4.2.2) we now have

∣
∣x2 − 32

∣
∣ < 7|x− 3|. �

Step 2. Now we define δ(ǫ) = min
{
ǫ/7, 1

}
.

Step 3. It remains to prove (4.1.1). To this end, assume |x − 3| < min
{
ǫ/7, 1

}
.

Then |x− 3| < 1. Therefore, by Lemma we have
∣
∣x2 − 32

∣
∣ < 7|x− 3|. Since by the

assumption |x− 3| < ǫ/7, we have 7|x− 3| < 7 ǫ/7ǫ. Now the inequalities
∣
∣x2 − 32

∣
∣ < 7|x− 3| and 7|x− 3| < ǫ

imply that
∣
∣x2 − 32

∣
∣ < ǫ. This proves (4.1.1) and completes the proof that the

function f(x) = x2 is continuous at x0 = 3.

Exercise 4.2.2. Prove that the reciprocal function x 7→ 1

x
, x 6= 0, is continuous

at x0 = 1/2.

Exercise 4.2.3. State carefully what it means for a function f not to be continuous
at a point x0 in its domain. (Express this as a formal mathematical statement.)

Exercise 4.2.4. Consider the function f(x) = sgnx. Find a point x0 at which the
function f is not continuous. Provide a formal proof.

Exercise 4.2.5. Show that the function f(x) = x2 is continuous on R.

Exercise 4.2.6. Prove that q(x) = 3x2 + 5 is continuous on R.

4.3. Familiar continuous functions

Exercise 4.3.1. Let m, k ∈ R and m 6= 0. Prove that the linear function ℓ(x) =
mx+ k is continuous on R.

Exercise 4.3.2. Let a, b, c ∈ R and a 6= 0. Prove that the quadratic function
q(x) = a x2 + b x+ c is continuous on R.

Exercise 4.3.3. Let n ∈ N and let x, x0 ∈ R be such that x0 − 1 ≤ x ≤ x0 + 1.
Prove the following inequality

∣
∣xn − xn

0

∣
∣ ≤ n

(
|x0|+ 1

)n−1∣
∣x− x0

∣
∣.

Hint: First notice that the assumption x0 − 1 ≤ x ≤ x0 + 1 implies that
|x| < |x0|+ 1. Then use the Mathematical Induction and the identity

∣
∣xn+1 − xn+1

0

∣
∣ =

∣
∣xn+1 − xxn

0 + xxn
0 − xn+1

0

∣
∣.

Exercise 4.3.4. Let n ∈ N. Prove that the power function x 7→ xn, x ∈ R, is
continuous on R.
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Exercise 4.3.5. Let n ∈ N and let a0, a1, . . . , an ∈ R with an 6= 0. Prove that the
n-th order polynomial

p(x) = a0 + a1 x+ · · ·+ an−1 x
n−1 + an x

n

is a continuous function on R.

Exercise 4.3.6. Prove that the reciprocal function x 7→ 1

x
, x 6= 0, is continuous

on its domain.

Exercise 4.3.7. Prove that the square root function x 7→ √
x, x ≥ 0, is continuous

on its domain.

Exercise 4.3.8. Let n ∈ N and let x and a be positive real numbers. Prove that

∣
∣ n
√
x− n

√
a
∣
∣ ≤

n
√
a

a

∣
∣x− a

∣
∣.

Hint: Notice that the given inequality is equivalent to

bn−1
∣
∣y − b

∣
∣ ≤

∣
∣yn − bn

∣
∣, y, b > 0.

This inequality can be proved using Exercise 2.7.7 (with a = 1 and x = y/b).

Exercise 4.3.9. Let n ∈ N. Prove that the n-th root function x 7→ n
√
x, x ≥ 0, is

continuous on its domain.

4.4. Various properties of continuous functions

Exercise 4.4.1. Let f : I → R be continuous at x0 ∈ I and let y be a real number
such that f(x0) < y. Then there exists α > 0 such that

x ∈ I ∩ (x0 − α, x0 + α) ⇒ f(x) < y.

Illustrate with a diagram.

Exercise 4.4.2. Let f : I → R be a continuous function on I. Let S be a non-
empty bounded above subset of I such that u = supS belongs to I. Let y ∈ R.
Prove: If f(x) ≤ y for each x ∈ S, then f(u) ≤ y.

The following exercise establishes a connection between continuous functions
and convergent sequences.

It is very important since it will enable us to use what we learned about se-
quences to study continuous functions.

Exercise 4.4.3. Let f : I → R be continuous at x0 ∈ I. Let {tn} be a sequence
in I that converges to x0 ∈ I. Then f (tn) → f(x0) as n → ∞.

Exercise 4.4.4. Let f : I → R be continuous at x0 ∈ I. Let {tn} be a sequence
in I that converges to x0 ∈ I. Assume that there is a real number y such that
f(tn) ≤ y for all n ∈ N. Then f(x0) ≤ y.

Exercise 4.4.5. Let f : I → R be continuous at x0 ∈ I. Let {xn} be a sequence
in I that converges to x0 ∈ I. Assume that there is a real number y such that
f(tn) ≥ y for all n ∈ N. Then f(x0) ≥ y.
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4.5. Algebra of continuous functions

All exercises in this section have the same structure. With the exception of
Exercise 4.5.3, there are three functions in each exercise: f , g and h. The function
h is always related in a simple (green) way to the functions f and g. Based on the
given (green) information about f and g you are asked to prove a claim (red) about
the function h.

Exercise 4.5.1. Let f : I → R and g : I → R be given functions with a common
domain. Define the function h : I → R by

h(x) = f(x) + g(x), x ∈ I.

(a) If f and g are continuous at x0 ∈ I, then h is continuous at x0.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.2. Let f : I → R and g : I → R be given functions with a common
domain. Define the function h : I → R by

h(x) = f(x)g(x), x ∈ I.

(a) If f and g are continuous at x0 ∈ I, then h is continuous at x0.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.3. Let g : I → R be a given functions such that g(x) 6= 0 for all
x ∈ I. Define the function h : I → R by

h(x) =
1

g(x)
, x ∈ I.

(a) If g is continuous at x0 ∈ I, then h is continuous at x0.
(b) If g is continuous on I, then h is continuous on I.

Exercise 4.5.4. Let f : I → R and g : I → R be given functions with a common
domain. Assume that g(x) 6= 0 for all x ∈ I. Define the function h : I → R by

h(x) =
f(x)

g(x)
, x ∈ I.

(a) If f and g are continuous at x0 ∈ I, then h is continuous at x0.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 4.5.5. Let I and J be non-empty subsets of R. Let f : I → R and
g : J → R be given functions. Assume that the range of f is contained in J . Define
the function h : I → R by

h(x) = g(f(x)), x ∈ I.

(a) If f is continuous at x0 ∈ I and g is continuous at f(x0) ∈ J , then h is
continuous at x0.

(b) If f is continuous on I and g is continuous on J , then h is continuous on I.

4.6. Continuous functions on a closed bounded interval [a, b]

In this section we assume that a, b ∈ R and a < b.



4.6. CONTINUOUS FUNCTIONS ON A CLOSED BOUNDED INTERVAL [a, b] 69

Exercise 4.6.1. Let f : [a, b] → R be a continuous function. If f(a) < 0 and
f(b) > 0, then there exists c ∈ [a, b] such that f(c) = 0.

Hint: Consider the set

W =
{
w ∈ [a, b) : ∀x ∈ [a, w] f(x) < 0

}
.

Prove the following properties of W :

(i) W does not have a maximum.
(ii) W has a supremum. Set w = supW .
(iii) Review Exercise 4.4.2.
(iv) Connect the dots.

Exercise 4.6.2. Let f : [a, b] → R be a continuous function. Then there exists
c ∈ [a, b] such that f(x) ≤ f(c) for all x ∈ [a, b].

Hint: Consider the set

W =
{

v ∈ [a, b) : ∃ z ∈ [a, b] such that ∀ x ∈ [a, v] f(x) < f(z)
}

.

Here [a, a] denotes the set {a}. Prove the following properties of the set W :

(i) If a < u and [a, u) ⊆ W and there exists t ∈ [a, b] such that f(t) > f(u), then
u ∈ W .

(ii) W does not have a maximum.
(iii) W has a supremum. Set w = supW and prove [a, w) ⊆ W .
(iv) The items (ii) and (iii) yield information about w.

Exercise 4.6.3. Let f : [a, b] → R be a continuous function. Then there exists
d ∈ [a, b] such that f(d) ≤ f(x) for all x ∈ [a, b].

Hint: Use Exercise 4.6.2.

Exercise 4.6.4. Let f : [a, b] → R be a continuous function. Then the range of f
is a closed bounded interval.

Hint: Use Exercises 4.6.2, 4.6.3, and 4.6.1.

Exercise 4.6.5. Consider the function f(x) = x2, x ∈ R.

(a) Prove that 2 is in the range of f .
(b) Prove that the range of f equals [0,+∞).

Definition 4.6.6. A function f is increasing on an interval I if x, y ∈ I and
x < y imply f(x) < f(y). A function f is decreasing if x, y ∈ I and x < y imply
f(x) > f(y). A function which is increasing or decreasing is said to be strictly

monotonic.

Exercise 4.6.7. If f is continuous and increasing on [a, b] or continuous and de-
creasing on [a, b], then for each y between f(a) and f(b) there is exactly one x ∈ [a, b]
such that f(x) = y.

Exercise 4.6.8. Let f(x) = x3 + x, x ∈ R. Prove that f has an inverse. That is,
prove that for each y ∈ R there exists unique x ∈ R such that f(x) = y.
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