Explore the proof of Cantor's Theorem. Here $S = \{ \Delta, \Box, O, \bigstar \}$. Invent your own $\theta : S \to \mathcal{P}(S)$ and use the algorithm from the proof of Cantor's Theorem to construct A which is NOT in the range of Θ .

indicator function of $\Theta()$

indicator function of A

	the value of $\Theta()$	Δ	0	*	to find A	Δ	0	*	fold	A
Δ	{ }				1-					
	{ }				1-					
0	{ }				1-					
*	{ }				1-					

Thus,
$$A = \{$$
 \quad \text{\text{Verify }} $A \notin \operatorname{ran} \Theta$:

$$\left\{\begin{array}{c} \\ \\ \end{array}\right\}
eq \left\{\begin{array}{c} \\ \end{array}\right.$$

$$\left\{ \right\}
eq \left\{ \right.$$

$$\Big\{ \qquad \Big\} \neq \Big\{ \qquad \Big\}$$

$$\left\{ \begin{array}{c} \\ \end{array} \right\}
eq \left\{ \begin{array}{c} \\ \end{array} \right]$$