

Give all details of your reasoning.

Each problem is worth 25 points for the total of 100 points.

Problem 1. (a) Express the following complex numbers in the form x + iy:

(A)
$$\frac{i}{1+i}$$
, (B) $(3-2i)^2$, (C) $e^{1+i\frac{\pi}{4}}$

(b) Write the following numbers in polar form $(|z|e^{i\arg(z)})$:

(A)
$$i$$
, (B) $-1-i$, (C) $-\sqrt{3}+i$,

Problem 2. A young couple wants to buy a house. They plan to borrow \$250,000 and pay it off in 30 years. The current annual interest rate is 6%. Assume that this interest is compounded continuously. What will be their fixed annual payment? What will be the monthly payment?

Your work must clearly show:

- (a) The initial value problem for the loan amount over 30 years.
- (b) The equation that was solved to get the annual fixed payment.

Problem 3. Suppose the electrical circuit has a resistor of $R = 5\Omega$ and a capacitor of C = 1F. Assume the voltage source is $E(t) = 100e^{-t/5}$ V.

- (a) If there is no charge on the capacitor at time t=0 find the ensuing charge on the capacitor at time t.
- (b) Plot on the same graph the voltage source and the charge on the capacitor. Explain the graph of the charge.
- (c) What is the maximum charge on the capacitor. Preferably give the exact answer, or an approximate answer with 5 significant digits.

Problem 4. Consider the following second order homogeneous differential equation with constant coefficients

$$y'' + 2y' + 5y = 0.$$

- (a) Find the fundamental set of solutions of the given differential equation. (You do not need to verify that the Wronskian is nonzero.)
- (b) Write the general solution of the given differential equation.
- (c) Find the particular solution that satisfies the initial conditions

$$y(0) = 1,$$
 $y'(0) = 0$

$$\frac{i}{1+i} = \frac{i(1+i)}{(1+i)(1+i)} = \frac{i-i^{2}}{2} = \frac{1+i}{2} = \frac{1}{2} + i\frac{1}{2}$$
(B) $(3-2i)^{2} = 9 - 12i + 4i^{2} = 5 - 12i$
(C) $e^{1+i\frac{\pi}{4}} = e(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}) = e(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}) = e^{\sqrt{2}} + i\frac{\sqrt{2}}{2}$
(B) $\sqrt{2} = e^{\sqrt{2}} + i\frac{\sqrt{2}}{2} = e^{\sqrt{2}} + i\frac{\sqrt{2}}{2}$
(C) $2e^{i\frac{\pi}{2}}$
(D) $2e^{i\frac{\pi}{2}}$
(E) $2e^{i\frac{\pi}{2}}$
(E)

$$e^{-rt} L = \frac{P}{r} e^{-rt} + C$$

$$L(t) = \frac{P}{r} + C e^{rt}$$

$$L(0) = 250000 = L_0$$

$$L_0 = L(0) = \frac{P}{r} + C$$

$$C = L_0 - \frac{P}{r}$$

$$L(t) = \frac{P}{r} + (L_0 - \frac{P}{r}) e^{rt}$$

$$0 = L(30)^{\frac{1}{2}} = \frac{P}{r} + (L_0 - \frac{P}{r}) e^{30r}$$

$$Solve for P:$$

$$P = \frac{30r}{r} + \frac{30r}{r} = 0$$

$$P = \frac{30r}{r} - 1$$

$$P \approx 17,970.5 \quad \text{annual payment}$$

$$monthly payment = \frac{14,97.54}{1497.54}$$

\$5Q+Q=100e-t/5 Q+ = 20 e-t/5 e Q+ = e Q = 20 (et/5 Q) = 20 et/s Q = 20t + C Q(0) = 0 implies C = 0 $Q(t) = 20 t e^{-t/5}$ Q (t)= 20 e-t/5 4te Q(5)=100e The source is strong in =
the beginning, so it charges
capacitor, then the source dies out so the capacitor discharges

(b)
$$y_1(t) = C_1 e^{-t} cos(2t) + C_2 e^{-t} sin(2t)$$

(c) $y_1(t) = C_1 e^{-t} cos(2t) - 2C_1 e^{-t} sin(2t)$
 $y_1'(t) = -C_1 e^{-t} cos(2t) - 2C_1 e^{-t} sin(2t)$
 $-C_2 e^{-t} sin(2t) + 2C_2 e^{-t} cos(2t)$

$$1 = y(0) = C_1$$

$$0 = y'(0) = -C_1 + 2C_2$$

$$C_1 = 4 + C_2 = 1/2$$

$$y(t) = e^{t}(\cos(2t) + 1/2\sin(2t))$$