
Section 4.7
EXERCISES

8. The initial value problem to be solved is

y′′(t) + 144y(t) = cos(11t), y(0) = y0, y′(0) = 0.

The solution of this IVP is

y(t) =
1

23

(

cos(11t)− cos(12t)
)

+ y0 cos(12t) =
2

23
sin

(

1

2
t

)

sin

(

23

2
t

)

+ y0 cos(12t)

Figures 1 through 6 show the solutions for the indicated initial values. We notice that the “fast” oscillations
are still present while the “slow” oscillations are less and less pronounced as y0 increases.
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Figure 1: y0 = 0
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Figure 2: y0 = 0.1
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Figure 3: y0 = 0.2
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Figure 4: y0 = 0.3
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Figure 5: y0 = 0.4
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Figure 6: y0 = 0.5



9. The initial value problem to be solved is

x′′(t) + 4x(t) = 4 cos(ωt), x(0) = 0, x′(0) = 0.

Here we assume that ω 6= 2. The solution of this initial value problem is

x(t) =
4

ω2 − 4

(

cos(2t) − cos(ωt)
)

This function written in the ”beats” form is

x(t) =
8

ω2 − 4
sin

(

ω − 2

2
t

)

sin

(

ω + 2

2
t

)

From this formula we see that the envelope of the beating motion is the determined by

8

ω2 − 4
sin

(

ω − 2

2

)

, and − 8

ω2 − 4
sin

(

ω − 2

2

)

In Figures 7 and 8 the envelope is pictured in blue.
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Figure 7: ω = 2.2
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Figure 8: ω = 2.1

10. The initial value problem to be solved is

x′′(t) + 25x(t) = 4 cos(5t), x(0) = 1, x′(0) = 0.

The general solution of the corresponding homogeneous equation is

xh(t) = C1 cos(5t) +C2 sin(5t), or, in complex form, xh(t) = C1e
−5it + C2e

−5it.

The first guess for the particular solution would be ae5it, but since this function is a part of xh, we should
try

zp(t) = ate5it,

z′p(t) = ae5it + ia5te5it = ae5it
(

1 + 5it
)

z′′p (t) = a5ie5it
(

1 + 5it
)

+ a5ie5it = ae5it
(

10i− 25t
)

Substituting in the given equation we get

ae5it
(

10i − 25t
)

+ 25ate5it = 4e5it,

which simplifies to

10ai = 4, a = −2

5
i



Hence the complex particular solution is

zp(t) = −2

5
ite5it

But we are interested in the real part only. Hence

xp(t) =
2

5
t sin(5t)

The general solution of the given equation is

x(t) = xh(t) + xp(t) = C1 cos(5t) + C2 sin(5t) +
2

5
t sin(5t)

To find the solution of the initial value problem we need

x′(t) = −5C1 sin(5t) + 5C2 cos(5t) +
2

5
sin(5t) + 2 t cos(5t)

Hence
1 = C1, 0 = 5C2.

Thus the solution of the initial value problem is

x(t) = cos(5t) +
2

5
t sin(5t)

The function 2
5 t sin(5t) oscillates between the lines 2

5 t and −2
5 t. This constitutes the resonance, since the

amplitude grows without bound.

12. The characteristic polynomial of the given differential equation is

P (λ) = λ2 + λ+ 4.

We calculate
P (2i) = −4 + 2i+ 4 = 2i = 2expi

π

2 .

Hence, the transfer function is

H(2i) =
1

P (2i)
=

1

2
exp−iπ

2

Therefore the complex particular solution is

zp(t) =
1

2
exp−iπ

2 3 exp2it =
3

2
exp(2t−

π

2
)i

We are interested only in the real part

xp(t) =
3

2
cos
(

2t− π

2

)

=
3

2
sin(2t).

This is the steady state solution.

14. The characteristic polynomial of the given differential equation is

P (λ) = λ2 + 2λ+ 4.

We calculate

P (2πi) = −4π2 + 4πi+ 4 = 4
(

(1− π2) + πi
)

= 4
√

(1− π2)2 + π2 expiφ .



Here φ = arg
(

(1 − π2) + πi
)

. Since 1− π2 < 0 we can not use the function arctan directly, but we can use
arccos, or we have to add π to arctan:

φ = arccos

(

1− π2

√

(1− π2)2 + π2

)

= π + arctan

(

π

1− π2

)

≈ 2.8012

Hence, the transfer function is

H(2πi) =
1

P (2πi)
=

1

4
√

(1− π2)2 + π2
exp−iφ

Therefore the complex particular solution is

zp(t) =
1

4
√

(1− π2)2 + π2
exp−iφ 2 exp2πit =

1

2
√

(1− π2)2 + π2
exp(2πt−φ)i

We are interested only in the imaginary part

xp(t) =
1

2
√

(1− π2)2 + π2
sin(2πt− φ) .

This is the steady state solution.

16. The initial value problem to be solved is

x′′(t) + 5x′(t) + 4x(t) = 2 sin(2t), x(0) = 1, x′(0) = 0.

The general solution of the corresponding homogeneous equation is

xh(t) = C1e
−4t + C2e

−t.

The guess for the particular solution is ae2it. This guess leads to the equation involving the characteristic
polynomial of the given differential equation:

P (λ) = λ2 + 5λ+ 4,

that is aP (2i) = 2. Since
P (2i) = −4 + 10i + 4 = 10i = 10ei

π

2 .

Hence the complex particular solution is

zp(t) =
1

5
e−iπ

2 e2it =
1

5
e(2t−

π

2
)i

But we are interested in the imaginary part only. Hence

xp(t) =
1

5
sin
(

2t− π

2

)

= −1

5
cos (2t)

The general solution of the given equation is

x(t) = xh(t) + xp(t) = C1e
−4t + C2e

−t − 1

5
cos (2t) .

From the initial conditions we find the particular solution of the IVP:

x(t) = −2

5
e−4t +

8

5
e−t − 1

5
cos (2t) .
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Figure 9: Problem 16

The transient term of the solution is

−2

5
e−4t +

8

5
e−t

and the steady state solution is

−1

5
cos (2t) .

Figure 9 shows the solution of the IVP and the steady state solution.

16 and 22. The initial value problem to be solved is

x′′(t) + 2x′(t) + 2x(t) = cos(2t), x(0) = 0, x′(0) = 2.

The general solution of the corresponding homogeneous equation is

xh(t) = C1e
−t cos t+ C2e

−t sin t.

The guess for the particular solution is ae2it. This guess leads to the equation involving the characteristic
polynomial of the given differential equation:

P (λ) = λ2 + 2λ+ 2,

that is aP (2i) = 1. Since

P (2i) = −4 + 4i+ 2 = −2 + 4i = 2
√
5eiφ, where φ = arg(−1 + 2i) = arccos

(−1√
5

)

≈ 2.0344

Hence the complex particular solution is

zp(t) =
1

2
√
5
e−iφ e2it =

1

2
√
5
e(2t−φ)i

But we are interested in the real part only. Hence

xp(t) =
1

2
√
5
cos (2t− φ)



The general solution of the given equation is

x(t) = xh(t) + xp(t) = C1e
−t cos t+ C2e

−t sin t+
1

2
√
5
cos (2t− φ) .

From the initial conditions we find the particular solution of the IVP:

x(t) =
1

10
e−t cos t+

17

10
e−t sin t+

1

2
√
5
cos (2t− φ) .

The transient term of the solution is

1

10
e−t cos t+

17

10
e−t sin t =

√
1 + 172

10
e−t cos

(

t− arctan(17)
)

and the steady state solution is
1

2
√
5
cos (2t− φ) .

The time constant TC = 1. It is important number here is
√
1 + 172

10
e−4 ≈ 0.03119.

Figure 10 shows the transient term and the values −0.03119 and 0.03119. It is clear that for t > 4 = 4TC

the absolute value of the transient term is < 0.03119.
Figure 11 shows the solution of the IVP and the steady state solution.
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Figure 10: Problem 22, the transient term
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Figure 11: Pr.18, the IVP sol. and the st. st. sol.

24. The equation to be solved is

x′′(t) + 2x′(t) + 4x(t) = 3 cos(2t).

Here are the solutions of the given initial value problems:

x(t) = 2e−t cos(
√
3t) +

√
3

6
e−t sin(

√
3t) +

3

4
sin(2t) solves x(0) = 2, x′(0) = 0,

x(t) = e−t cos(
√
3t)−

√
3

6
e−t sin(

√
3t) +

3

4
sin(2t) solves x(0) = 1, x′(0) = 0,

x(t) = −
√
3

2
e−t sin(

√
3t) +

3

4
sin(2t) solves x(0) = 0, x′(0) = 0,

x(t) = −e−t cos(
√
3t)− 5

√
3

6
e−t sin(

√
3t) +

3

4
sin(2t) solves x(0) = −1, x′(0) = 0,

x(t) = −2e−t cos(
√
3t)− 7

√
3

6
e−t sin(

√
3t) +

3

4
sin(2t) solves x(0) = −2, x′(0) = 0,



Clearly the steady state solution is
3

4
sin(2t). Figure 12 shows the five solutions of the initial value problems

together with the steady state solutions. It clearly shows that all these solution approach the steady state
solution.
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Figure 12: Problem 24

26. The characteristic polynomial of the given differential equation is

P (λ) = λ2 +
1

5
λ+ 1.

To determine the transfer function and the gain we calculate

P (iω) = −ω2+
1

5
iω+1 = 1−ω2+

1

5
ωi =

1

5

√

25(1 − ω2)2 + 1eiφ, where φ = arccos

(

1
√

25(1 − ω2)2 + 1

)

.

Thus the transfer function, the gain and the phase are as follows:

H(iω) =
5

√

25(1 − ω2)2 + 1
e−iφ, R(ω) =

5
√

25(1 − ω2)2 + 1
, φ(ω) = arccos

(

1
√

25(1 − ω2)2 + 1

)

.

The particular values for ω = 1 are

H(i) = 5e−iπ
2 , R(1) = 5, φ =

π

2
.

The steady state response is

Re
(

5e−iπ
2 eit

)

= Re
(

5 e(t−
π

2
)i
)

= 5cos
(

t− π

2

)

= 5 sin(t).

Figure 13 shows the driving function cos t in black and the steady state response in gray. The gain can be
seen as a ratio of the amplitude of the steady state response (which is 5) and the amplitude of the driving
function (which is 1). The phase can be seen as a smaller distance between consecutive zeros of the state
response (for example t = π) and the driving function (for example t = 3π/2). Thus the phase is π/2.
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Figure 13: Problem 26

30. I estimate that the first zero of cos t in Figure 6 in the book is

8π +
π

2
≈ 26.7035.

The closest zero of the steady state response x(t) is

8π +
5π

6
≈ 27.7507.

Therefore I estimate that the phase is given

φ =
π

3
≈ 1.0472.

For simplicity I estimate that the amplitude of the steady state response x(t) is 2.25. Thus, the gain is
R = 2.25 = 9/4. Figure 14 is a reproduction of Figure 6 in the book.
The easiest way to calculate c and ω0 in the equation

x′′(t) + 2cx′(t) + ω2
0x(t) = cos(t).

is from the equation

P (i) = −1 + 2ci + ω2
0 = ω2

0 − 1 + 2ci =
1

R
eiφ =

4

9
ei

π

3 .

Hence

ω2
0 − 1 + 2ci =

4

9

(

1

2
+ i

√
3

2

)

.

Therefore,

ω2
0 − 1 =

2

9
, 2c =

2
√
3

9
,

that is,

ω0 =

√
11

3
, c =

√
3

9
,
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Figure 14: Problem 30

31 and 35. The equation to be discussed is

x′′(t) +
1

100
x′(t) + 49x(t) = A cos(ωt).

The characteristic polynomial of the equation is

P (λ) = λ2 +
1

100
λ+ 49.

To calculate the gain as a function of λ we calculate

|P (iω)| =
√

(49− ω2)2 +
( ω

100

)2
.

The gain is the reciprocal of this quantity. The maximum gain occurs at the following frequency (see formula
(7.20) on page 227 in the book)

ωres =

√

49− 2

(

1

200

)2

≈ 6.999996429.

The maximum gain is

G(ωres) =
1

√

(

49− (ωres)2
)2

+
(

ωres

100

)2
≈ 14.2857

This is confirmed by the plot of the gain:

32 and 36. The equation to be discussed is

x′′(t) +
1

2
x′(t) + 4x(t) = A sin(ωt).

The characteristic polynomial of the equation is

P (λ) = λ2 +
1

2
λ+ 4.
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Figure 15: Problem 31, the gain as a function of ω

To calculate the gain as a function of λ we calculate

|P (iω)| =
√

(4− ω2)2 +
(ω

2

)2
.

The gain is the reciprocal of this quantity. The maximum gain occurs at the following frequency (see formula
(7.20) on page 227 in the book)

ωres =

√

4− 2

(

1

4

)2

≈ 1.968501969.

The maximum gain is

G(ωres) =
1

√

(

4− (ωres)2
)2

+
(

ωres

2

)2
=

8

3
√
7
≈ 1.00791

The calculations are confirmed by the plot of the gain in Figure 16.
Remark. We see that the maximum gain is negligible. The reason for this is that the resistance is relatively
high. In fact if the resistance was even higher, for example 2c = 1, then the gain would be less then 1.
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Figure 16: Problem 32, the gain as a function of ω


