Section 3.3 Assigned problems: 1-10.
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The current in the circuit is 10e~"/2° (1 — e 20). The maximum is 5/2 and occurs at

time 201n 2 ~ 13.863 seconds.

The general solution of the differential equation modeling this circuit is
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Here ¢; is an arbitrary constant. Since the function with ¢; becomes negligible for large

t the steady state response, that is the significant part of all solutions for large ¢, is
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The period of this function is 1. Hence its frequency is also 1.

By the capacitance law the voltage drop V' (t) across a capacitor is related to the charge
Q(t) on the capacitor by the following formula: Q(t) = C'V (t), where C'is the capacitance,
which is constant. Therefore Q)'(t) = CV'(t). Now we substitute the last two equations
in

RQ'(t) + %Q(t) = FE cos(wt)

and get

RCV'(t) + %CV(t) = F cos(wt)

which simplifies to

RCV'(t) + V(t) = FE cos(wt).
The general solution of the last differential equation is
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Here ¢; is an arbitrary constant. As before, the function with ¢; becomes negligible for
large t. Therefore the steady state response, that is the significant part of all solutions
for large t, is



