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With the systematic study of differential equations, the calculus of functions of
a single variable reaches a state of completion. Modeling by differential equations
greatly expands the list of possible applications. The list continues to grow as we
discover more differential equation models in old and in new areas of application.
The use of differential equations makes available to us the full power of the calculus.

When explicit solutions to differential equations are available, they can be used
to predict a variety of phenomena. Whether explicit solutions are available or not,
we can usually compute useful and very accurate approximate numerical solutions.
The use of modern computer technology makes possible the visualization of the
results. Furthermore, we continue to discover ways to analyze solutions without
knowing the solutions explicitly.

The subject of differential equations is solving problems and making predic-
tions. In this book, we will exhibit many examples of this—in physics, chemistry,
and biology, and also in such areas as personal finance and forensics. This is the
process of mathematical modeling. If it were not true that differential equations
were so useful, we would not be studying them, so we will spend a lot of time on
the modeling process and with specific models. In the first section of this chapter
we will present some examples of the use of differential equations.

The study of differential equations, and their application, uses the derivative
and the integral, the concepts that make up the calculus. We will review these ideas
starting in Sections 1.2 and 1.3.
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al Equation Models

To start our study of differential equations, we will give a number of examples. T.hlS
list is meant to be indicative of the many applications of the topic. Itis far from l?emg
exhaustive. In each case, our discussion will be brief. Most of the examplgs will be
discussed later in the book in greater detail. This section should be considered as
advertising for what will be done in the rest of the.book. ‘

The theme that you will see in the examples is that in every case we compute
the rate of change of a variable in two different ways. First there is the .mat.hematlcal
way. In mathematics, the rate at which a quantity changes is the denva'uve of that
quantity. This is the same for each example. Thg segond way of computing th_e rate
of change comes from the application itself and is different from one application to
another. When these two ways of expressing the rate of change are equated, we get
a differential equation, the subject we will be studying.

Mechanics

Isaac Newton was responsible for a large number of discoveries in physics and math-
ematics, but perhaps the three most important are the following:

o The systematic development of the calculus. NeWFon’s achigvemeqt was the
realization and utilization of the fact that integration and differentiation are
operations inverse to each other. ’

o The discovery of the laws of mechanics. Principal among these was Newton’s
second law, which says that force is equal to the rate of change of momentum
with respect to time. Momentum is defined to be the product of mass and
velocity, or mv. Thus the force is equal to the derivative of the momentum. If

the mass is constant,

d dv

—my = m— = ma,

dt dt
where a is the acceleration. Newton’s second law says that the rate of change
of momentum is equal to the force F. Expressing the equality of these two
ways of looking at the rate of change, we get the equation

F =ma, (1.1)

the standard expression for Newton’s second law.

« The discovery of the universal law of gravitation. This law says that any body
with mass M attracts any other body with mass m directly toward the mass M,
with a magnitude proportional to the product of thfe two masses gnd inversely
proportional to the square of the distance separating them. .Th1s means that
there is a constant G, which is universal, such that the magnitude of the force
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GMm
r2

(1.2)
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where r is the distance between the two bodies.
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All of these discoveries were made in the period between 1665 and 1671, The
discoveries were presented originally in Newton’s Philosophiae Naturalis Principia
Mathematica, better known as Principia Mathematica, published in 1687.

Newton’s development of the calculus is what miakes the theory and use of
differential equations possible. His laws of mechanics create a template for a model
for motion in almost complete generality. It is necessary in each case to figure out
what forces are acting on a body. His law of gravitation does just that in one very
important case.

The simplest example is the motion of a ball thrown into the air near the surface
of the earth. If x measures the distance the ball is above the earth, then the velocity
and acceleration of the ball are

dx dv  d*x

v=— and a=—=—-——,

dt dr  dr?
Since the ball is assumed to move only a short distance in comparison to the radius
of the earth. the force given by (1.2) may be assumed to be constant. Notice that 1,
the mass of the ball, occurs in (1.2). We can write the force as F — —mg, where
g = GM/r* and r is the radius of the earth. The constant g is called the earth’s
acceleration due to gravity. The minus sign reflects the fact that the displacement x
is measured positively above the surface of the earth, and the force of gravity tends
to decrease x. Newton’s second law, (1.1), becomes

dv d*x
mg=ma=mo = m -
The masses cancel, and we get the differential equation
d’x
T=s (1.3)

which is our mathematical model for the motion of the ball.

The equation in (1.3) is called a differential equation because it involves an
unknown function x(¢) and at least one of its derivatives. In this case the highest
derivative occurring is the second order, so this is called a differential equation of
second order.

A more interesting example of the application of Newton’s ideas has to do with
planetary motion. For this case, we will assume that the sun with mass M is fixed
and put the origin of our coordinate system at the center of the sun. We will denote
by x(#) the vector that gives the location of a planet relative to the sun. The vector
X(¢) has three components. Its derivative is

0 dx
v = —,
dt

which is the vector valued velocity of the planet. For this example, Newton’s second
law and his law of gravitation become

d*x GMm x

M—s = ————— —,
dr? X2 x|
This system of three second-order differential equations is Newton’s model of

planetary motion. Newton solved these and verified that the three laws observed by
Kepler fotlow from his model.
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Population models

Consider a population P(z) that is varying with time.! A mathematician will say
that the rate at which the population is changing with respect to time is given by the
derivative JpP

dt
However, the population biologist will say that the rate of change is roughly propor-
tional to the population. This means that there is a constant r, called the reproductive
rate, such that the rate of change is equal to r P. Putting together the ideas of the
mathematician and the biologist, we get the equation

dp
— =rP. 1.4
T (1.4)

This is an equation for the function P(¢). It involves both P and its derivative, so it
is a differential equation. It is not difficult to show by direct substitution into (1.4)

that the exponential function
P(t) = Py’

is a solution. Thus, assuming that the reproductive rate r is positive, our population
will grow exponentially.

If at this point you go back to the biologist he or she will undoubtedly say that
the reproductive rate is not really a constant. While that assumption works for small
populations, over the long term you have to take into account the fact that resources
of food and space are limited. When you do, a better model for the the reproductive
rate is the function r (1 — P/K), and then the rate at which the population changes
is better modeled by (1 — P/K)P. Here both r and K are constants.

When we equate our two ideas about the rate at which the population changes,
we get the equation

ap

— = - . 1.5

7 r(l1—- P/K)P (1.5)
This differential equation for the function P (z) is called the logistic equation. It is
much harder to solve than (1.4), but it does a creditable job of predicting how single
populations grow in isolated circumstances.

Pollution

Consider a lake that has a volume of V = 100 km?. It is fed by an input river, and
there is another river which is fed by the lake at a rate that keeps the volume of the
lake constant. The flow of the input river varies with the season, and assuming that
t = 0 corresponds to January 1 of the first year of the study, the input rate is

r(t) =504 20cos(2n (¢ — 1/4)).

Notice that we are measuring time in years. Thus the maximum flow into the lake
occurs when ¢ = 1/4, or at the beginning of April.

! For the time being, the population can be anything—humans, paramecia, butterflies, etc. We will be
more careful later.
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In addition, there is a factory on the lake that introduces a pollutant into the lake
at the rate of 2 km*/year. Let x(¢) denote the total amount of pollution in the lake
at time 7. If we make the assumption that the pollutant is rapidly mixed throughout
the lake, then we can show that x(r) satisfies the differential equation

dx X
— =2-(52420 27(t —1/4))—.
7 ( + 20 cos(2m( / ))) 100

This equation can be solved and we can then answer questions about how dan-
gerous the pollution problem really is. For example, if we know that a concentration
of less than 2% is safe, will there there be a problem? The solution will tell us.

The assumption that the pollutant is rapidly mixed into the lake is not very
realistic. We know that this does not happen, especially in this situation, where
there is a flow of water through the lake. This assumption can be removed, but to do
s0, we need to allow the concentration of the pollutant to vary with position in the
lake as well as with time. Thus the concentration is a function ¢(t, x, y, z), where
(x, y, z) represents a position in the three-dimensional lake. Instead of assuming
perfect mixing, we will assume that the pollutant diffuses through water at a certain
rate.

Once again we can construct a mathematical model. Again it will be a differ-
ential equation, but now it will involve partial derivatives with respect to the spatial
coordinates x, y, and z, as well as the time 7.

Personal finance

How much does a person need to save during his or her work life in order to be sure
of a retirement without money worries? How much is it necessary to save each year
in order to accumulate these assets? Suppose one’s salary increases over time. What
percent of one’s salary should be saved to reach one’s retirement goal?

All of these questions, and many more like them, can be modeled using dif-
ferential equations. Then, assuming particular values for important parameters like
return on investment and rate of increase of one’s salary, answers can be found.

Other examples

We have given four examples. We could have given a hundred more. We could talk
about electrical circuits, the behavior of musical instruments, the shortest paths on
a complicated-looking surface, finding a family of curves that are orthogonal to a
given family, discovering how two coexisting species interact, and many others.

All of these examples use ordinary differential equations. The applications of
partial differential equations go much farther. We can include electricity and mag-
netism; quantum chromodynamics, which unifies electricity and magnetism with
the weak and strong nuclear forces; the flow of heat; oscillations of many kinds,
such as vibrating strings; the fair pricing of stock options; and many more.

The use of differential equations provides a way to reduce many areas of appli-
cation to mathematical analysis. In this book, we will learn how to do the modeling
and how to use the models after we make them.
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EXERCISES
The phrase “y is proportional to x” implies that y is related to x via the equation
y = kx, where k is a constant. In a similar manner, “y is proportional to the

square of x” implies y = kx>, "'y is proportional to the product of x and z” implies
y = kxz, and “y is inversely proportional to the cube of x” implies y = k/x3. For
example, when Newton proposed that the force of attraction of one body on another
is proportional to the product of the masses and inversely proportional to the square
of the distance between them, we can immediately write

GMm

F=-"",

,
where G is the constant of proportionality, usually known as the universal gravita-
tional constant. In Exercises 1-10, use these ideas to model each application with a
differential equation. All rates are assumed to be with respect to time.

1. The rate of growth of bacteria in a petri dish is proportional to the number of
bacteria in the dish.

2. The rate of growth of a population of field mice is inversely proportional to the
square root of the population.

3. A cerfain area can sustain a maximum population of 100 ferrets. The rate of
growth of a population of ferrets in this area is proportional to the product of the
population and the difference between the actual population and the maximum
sustainable population.

4. The rate of decay of a given radioactive substance is proportional to the amount
of substance remaining.

5. The rate of decay of a certain substance is inversely proportional to the amount
of substance remaining.

6. A potato that has been cooking for some time is removed from a heated oven.
The room temperature of the kitchen is 65°F. The rate at which the potato
cools is proportional to the difference between the room temperature and the
temperature of the potato.

7. A thermometer is placed in a glass of ice water and allowed to cool for an ex-
tended period of time. The thermometer is removed from the ice water and
placed in a room having temperature 77°F. The rate at which the thermometer
warms is proportional to the difference in the room temperature and the tem-
perature of the thermometer.

8. A particle moves along the x-axis, its position from the origin at time ? given
by x(7). A single force acts on the particle that is proportional to but opposite
the object’s displacement. Use Newton’s law to derive a differential equation
for the object’s motion.

9. Use Newton’s law to develop the equation of motion for the particle in Exercise
8 if the force is proportional to but opposite the square of the particle’s velocity.

10. Use Newton’s law to develop the equation of motion for the particle in Exercise
8 if the force is inversely proportional to but opposite the square of the particle’s
displacement from the origin.

1.2 The Derivative

Table 1 A table of

derivatives

fy= fx)=

C 0

X 1

x" nx"1
cos(x) —sin(x)
sin(x) cos(x)

eX eX
In(|x]) 1/x
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11. The voltage drop across an inductor is proportional to the rate at which the
current is changing with respect to time.

Before reading this section, ask yourself, “What is the derivative?” Several answers
may come to mind, but remember your first answer.
Chances are very good that your answer was one of the following five:

1. The rate of change of a function
2. The slope of the tangent line to the graph of a function
3. The best linear approximation of a function
4. The limit of difference quotients,
o) = tim L= 00
x—=xp X — Xp
5. A table containing items such as we see in Table |

All of these answers are correct. Each of them provides a different way of
looking at the derivative. The best answer to the question is “all of the above.”
Since we will be using all five ways of looking at the derivative, let’s spend a little
time discussing each.

The rate of change

In calculus, we learn that a nonlinear function has an instantaneous rate of change,
and this rate is equal to the derivative. For example, if we have a distance x(z)
measured from a fixed point on a line, then the rate at which x changes with respect
to time is the velocity v. We know that

,  dx
v=x"=—.
dt
Similarly, the acceleration a is the rate of change of the velocity, so
. dv  d%x
a=V = — = ——,
dt  di?

These facts about linear motion are reflected in many other fields. For example,
in economics, the law of supply and demand says that the price of a product is
determined by the supply of that product and the demand for it. If we assume that
the demand is constant, then the price P is a function of the supply S, or P =
P(S§). The rate at which P changes with the supply is called the marginal price. In
mathematical terms, the marginal price is simply the derivative P’ = dP/dS. We
can also talk about the rate of change of the mass of a radioactive material, of the
size of population, of the charge on a capacitor, of the amount of money in a savings
account or an investment account, or of many more quantities.”

ZIn all but one of the mentioned examples, the quantity changes with respect to time. Most of the
applications of ordinary differential equations involve rates of change with respect to time. For this
reason, 7 is usually used as the independent variable. However, there are cases where things change
depending on other parameters, as we will see. Where appropriate, we will use other letters to denote the
independent variable. Sometimes we will do so just for practice.
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We will see all of these examples and more in this book. The point is that when
any quantity changes, the rate at which it changes is the derivative of that quantity.
It is this fact that starts the modeling process and makes the study of differential
equations so useful. For this reason we will refer to the statement that the derivative
is the rate of change as the modeling definition of the derivative.

The slope aof the tangent line

This provides a good way to visualize the derivative. Look at Figure 1. There you
see the graph of a function f, and the tangent line to the graph of f at the point
(xo, f(x0)). The equation of the tangent line is

y = f(x0) + f'(x0)(x — xo).

From this formula, it is easily seen that the slope of the tangent line is f”(xo).

y = flxg) + f(xo){x — x0) (xo, f(x0))

Figure 1 The derivative is the slope of the tangent line to the
graph of the function.

Again looking at Figure 1, we can visualize the rate at which the function f is
changing as x changes near the point xo. It is the same as the slope of the tangent

line.
We will refer to this characterization of the derivative as the geometric defini-

tion of the derivative.
The hest linear approximation
Let
L(x) = f(x0) + f'(x0)(x — xo). 2.1

L is a linear (or affine) function of x. Taylor’s theorem says there is a remainder
function R (x), such that

0. (2.2)

. R(x)
f(x)=L{x)+ R(x) and lim =

x—=>xg X — X0

The limit in (2.2) means that R(x) gets small as x — xg. Infact, it gets enough
smaller than x — x that the ratio goes to 0. It turns out that the function L defined in
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(2.1) is the only linear function with this property. This is what we mean when we
say that L is the best linear approximation to the nonlinear function f. You will also
notice that the straight line in Figure 1 is the graph of L. In fact, Figure 1 provides
a pictorial demonstration that L(x) is a good approximation for f(x) for x near x,.

The formula in (2.1) defines L(x) in terms of the derivative of f. In this sense,
the derivative gives us the best linear approximation to the nonlinear function f
near x = xg. [Actually (2.1) contains three important pieces of data, xq, f(xo), and
f'(xp). We are perhaps stretching the point when we say that it is the derivative
alone that enables us to find a linear approximation to f, but it is clear that the
derivative is the most important of these three.]

Since the linear approximation is an algebraic object, we will refer to this as the
algebraic definition of derivative.

The limit of difference quotients
Consider the difference quotient

_ S0 = fxo)
m=——-,:

X — Xp

(2.3)

This is equal to the slope of the line through the two points (xg, f(x)) and (x, f(x))
as illustrated in Figure 2. We will refer to this line as a secant line. As x approaches
Xg, the secant line approaches the tangent line shown in Figure 1. This is reflected
in the fact that

f(x) = lim M. (2.4)

x—xy X — Xo

Thus the slope of the tangent line, f'(xg), is the limit of the slopes of secant lines.

(x, f(x)) _

¥ = flxe) +m(x —xg)

(xo. f(xo))

Figure 2 The secant line with slope m given by the
difference quotient in (2.3).

The difference quotient in (2.3) is also the average rate of change of the function
S between xp and x. As the interval between xg and x is made smaller, these average
rates approach the instantaneous rate of change of f. Thus we see the connection
with our modeling definition.

The definition of the derivative given in (2.4) will be called the limit quotient
definition. This is the definition that most mathematicians think of when asked to
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define the derivative. However, as we will see, it is also very useful, even when
attempting to find mathematical models.

The table of formulas

By memorizing a table of derivatives and a few formulas (especially the chain rule),
we can learn the skill of differentiation. It isn’t hard to be confident that you can
compute the derivative of any given function. This skill is important. However, it is
clear that this formulaic definition of derivative is quite different from those given
previously.

A complete understanding of the formulaic definition is important, but it does
not provide any information about the other definitions we have examined. There-
fore, it helps us neither to apply the derivative in modeling nature nor to understand
its properties. For that reason, the formulaic definition is incomplete. This is not
true of the other definitions. Starting with one of them, it is possible to construct a
table that will give us the formulaic finesse we need. However, admittedly that is a
big task. That was what was done (or should have been done) in your first calculus
course.

To sum up, we have examined five definitions of the derivative. Each of these
emphasizes a different aspect or property of the derivative. All of them are impor-
tant. We will see this as we progress through the study of differential equations.
If your answer to the question at the beginning of the section was any of these
five, your answer is correct. However, a complete understanding of the derivative
requires the understanding of all five definitions.

Even if your answer was not on the list of five, it may be correct. The famous
mathematician William Thurston once compiled a list of over 40 “definitions” of the
derivative. Of course many of these appear only in more advanced parts of math-
ematics, but the point is made that the derivative appears in many ways in mathemat-
ics and in its applications. It is one of the most fundamental ideas in mathematics
and in its application to science and technology.

We can start once more by asking the question, “What is the integral?” This time
our list of possible answers is not so long.

1. The area under the graph of a function
2. The antiderivative
3. A table containing items such as we see in Table 1

Let’s look at each of them briefly.

The area under the graph
The first answer emphasizes the definite integral. The integral

b
/ f(x)dx (3.1
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Table 1 A table of integrals

fx) = S fx)dx = fx) = J fx)ydx =
0 C cos(x) sin(x) + C
1 x+C sin(x) —cos(x) +C
XZ
X 5 +C e~ et +C
. xn+l 1
X n+1+C ; In(lxh +C

is interpreted as the area under the graph of the function f, between x = g and
x = b. It represents the area of the shaded region in Figure 1.

This is the most fundamental definition of the integral. The integral was in-
vented to solve the problem of finding the area of regions that are not simple rect-
angles or circles. Despite its origin as a method to use in this one application, it has
found numerous other applications.

Figure 1 The area of the shaded region is the integral
in (3.1).

The antiderivative

This answer emphasizes the indefinite integral. In fact, the phrase indefinite inte-
gra{ Is a synonym for antiderivative. The definition is summed up in the following
equivalence. If the function g is continuous, then

f'=g if and only if fg(x) dx = f(x)+C. 3.2)
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In (3.2), C refers to the arbitrary constant of integration. Thus the process of indefi-
nite integration involves finding antiderivatives. Given a function g, we want to find

a function f suchthat f' = g. . o _ '
The connection between the definite and the indefinite integral is found in the

fundamental theorem of calculus. This says that if f' = g, then

b
/g@ﬂxzﬂm—fml

The table of formulas

This formulaic approach to the integral has the same featufes aqd failur.es as th.e
formulaic approach to the derivative. It leads to the handy skill of integration, but 1t
does not lead to any deep understanding of the integral. . .

All of these approaches to the integral are important. It is very important to
understand the first two and how they are connected by the.fundar{\ental thfeorerr}.
However, for the elementary part of the study of ordin.ary differential equations, 1t
is really the second and third approaches that are most important. In other words, it
is important to be able to find antiderivatives.

Solution by integration .
The solution of an important class of differential equations amounts to finding an-
tiderivatives. A first-order differential equation can be written as

Y= £y, 3.3)

where the right-hand side is a function of the independent Yariable t and the un-
known function y. Suppose that the right-hand side is a function only of + and does
not depend on y. Then equation (3.3) becomes

y = fl).
Comparing this with (3.2), we see immediately that the solution is
ym=ffmm. (3.4)
Let’s look at an example.
Solve the differential equation
y = cost. (3.6)

According to (3.4), the solution is
y(t) = / cos(t)dt = sint + C, 3.7

where C is an arbitrary constant. That’s pretty easy. Itis just thc? process of .1ntegra—
tion. It’s old hat to you by now. Solving the more general equation in (3.3) isnot so
easy, as we will see. ‘ '
The constant of integration C makes (3.7) a one-parameter faml!y of solu_tlons
of (3.6) defined on (—oco, 00). This is an example qf a general solution to a differ-
ential equation. Some of these solutions are drawn in Figure 2. *

EXAMPLE 3.8 o

t
—L\M

i —
Figure 3 The solution of the
initial value problem in

Example 3.8 passes through the
point (Q, 2).
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It is significant that the solution curves of equation (3.6) shown in Figure 2 are
vertical translates of one another. That is to say, any solution curve can be obtained
from any other by a vertical translation. This is always the case for solution curves
of an equation of the form y" = f(¢). According to (3.2), if y(t) = F(t) is one
solution to the equation, then all others are of the form y(t) = F(t) + C for some
constant C. The graphs of such functions are vertical translates of the graph of
y() = F(@).

The constant of integration allows us to put an extra condition on a solution.
This is illustrated in the next example.

Find the solution to y'(¢) = te’ that satisfies y(0) = 2.

This is an example of an initial value problem. 1t requires finding the particular
solution that satisfies the initial condition y(0) = 2. According to (3.2), the general
solution to the differential equation is given by

y(t) = / te’ dt. (3.9)

This integral can be evaluated using integration by parts. Since this method is
so useful, we will briefly review it. In general, it says

/udv:uv—/vdu, (3.10)

where u and v are functions. If they are functions of r, then du = u'(t)dt and
dv = v'(t)dt. For the integral in equation (3.9), we let u(t) = t, and dv =
V(t)dt = e'dt. Then du = dt and v(r) = €', and equation (3.10) gives

/te’dt:/udvzuv—/va’u:te’—/e’dt.

After evaluating the last integral, we sec that
vty =t —e'+C=e'(t — 1)+ C. (3.11)
This one-parameter family of solutions is the general solution to the equation

y" = te'. Each member of the family exists on the interval (—oo, 0c). The condition
¥(0) = 2 can be used to determine the constant C.

2=y0)=e"0-D+C=-1+C
Therefore, C = 3 and the solution of the initial value problem is
y@y=¢€@—1)+3. (3.12)
It is important to note that the solution curve defined by equation (3.12) is the

member of the family of solution curves defined by (3.11) that passes through the
point (0, 2), as shown in Figure 3. L 2




troduction to Differential Equations

3.13 o

The use of initial conditions to determine a particular solution can b§ affected
from the beginning of the solution process by using definite integrgls instead of
indefinite integrals. For example, in Example 3.8, we can proceed using the funda-

mental theorem of calculus:
t
y(t) —y(0) =/ Y (u)du.
0
Hence,

t
y(t) = y(0) +/ ue' du
0

t
=2+ue“—e“0

=e'(t—1)+3.

We will not always use the letter ¢ to designate the independent variable. Any
letter will do, as long as we are consistent. The same is true of the dependent

variable.
Find the solution to the initial value problem

1
y' =~ with y()=3.
x

Here we are using x as the independent variable. By integration, we find that
y(x) =In(jx) + C.
We are asked for the solution that satisfies the initial condition
3=y()=In()+C =C.

=3. .
Thui&iolution to a differential equation has to have a derivative at every point.
Therefore, it is also continuous. However, the function y(x) = ln(lx[) —|— 3is ngt
defined for x = 0. To get a continuous function from y, we have to limit its domain
to (0, 00) or (—o0, 0). Since we want a solution that is defined at x = 1, we must
choose (0, 00). Thus, our solution is

y(x) =In(x)+3 for x>0. g

The motion of a hall |
In Section 1.1, we talked about the application of Newton’s laws Fo the motion of a
ball near the surface of the earth. The model we derived [in equation (1.3)] was

d*x

Froiai

EXAMPLE 3.16 o
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where x(7) is the height of the ball above the surface of the earth and g is the
acceleration due to gravity. If we measure x in feet and time in seconds, g =32
ft/s.

We can solve this equation using the methods of this section. First we intro-
duce the velocity to reduce the second-order equation to a system of two first-order
equations:

dx dv

PR — =g 1
) v, and dr g (3 4)

Solving the second equation by integration, we get
v(t) = —gr + Cy.

Evaluating this at r = 0, we see that the constant of integration is C; = v(0) = vy,
the initial velocity. Hence, the velocity is v(r) = —gr + vp, and the first equation
in (3.14) becomes

dx ‘4
—_— = vg.
dt g 0

Solving by integration, we get

1
x(t) = —Egt2 + vot + Cs.

Once more we evaluate this at + = 0 to show that C; = x(0) = Xp, the initial
elevation of the ball. Hence, our final solution is

|
X(’)=——2-gf‘+vot+xo. (3.15)

Suppose a ball is thrown into the air with initial velocity vy = 20 fu/s. Assuming the
ball is thrown from a height of 6 feet, how long does it take for the ball to hit the
ground?

Since the initial height is xo = 6, equation (3.15) becomes
x(t) = —16¢% + 20t + 6.
The ball hits the ground when x () = 0. We use the quadratic formula to solve
—161> +20r + 6 = 0.

The answer is 1.5 seconds. *
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EXERCISES

In Exercises 1-8, find the general solution of the given differential equation. In each
case, indicate the interval of existence and sketch at least six members of the family
of solution curves.

1.3 Integration 17

27. A ball is thrown into the air from an initial hei
of 120 m/s. What will be the maximum hel
this event occur?

ght of 6 m with an initial velocity
ght of the ball and at what time will

28. At t = 0, aball is propelled downward from an initial height of 1000 m with an
Initial speed of 25 m/s. Calculate the time, ¢, that the ball hits the ground.

1. vV =2t +3
3. y =sin2f +2cos 3¢
,
1+ 12
7.y =1%e¥

5.y

2. vV =32 4+2t43
4. v = 2sin3r — cos 5¢
%
[ +272
8. v =tcos3r

6. v

In Exercises 1-8, each equation has the form y' = f(z, y), the goal being to find
a solution y = y(¢r). That is, find y as a function of r. Of course, you are free
to choose different letters, both for the dependent and independent variables. For
example, in the differential equation s” = xe", it is understood that s = ds/dx, and
the goal is to find a solution s as a function of x; that is, s = s(x). In Exercises
9-14, find the general solution of the given differential equation. In each case,
indicate the interval of existence and sketch at least six members of the family of
solution curves.

-, -
9. 5 =e “sinw

11. 1’ = 5%

13. /= ———
u(l —u)

10. y’ = x sin3x

12. ' =e “cosu

4 y=——-
Y x(4—x)

Note: Exercises 13 and 14 require a partial fraction decomposition. If you have
forgotten this technique, you can find extensive explanation in Section 5.3 of this
text. In particular, see Example 3.6 in that section.

In Exercises 15-24, find the solution of each initial value problem. In each case,
state the interval of existence and sketch the solution.

15. yy=4r—-6, yO)y=1 16. y = x>+ 4, y0)=-2

17. X =te™”, x(0)=1 18. ¥ =1/(1 +12), r(@O) =1

19. s =r2cos2r, s(0)=1 20. P’ =¢""cosdt, PO)=1

2. x' =4 -1, x(OH =1 22. v =1/{(x =5), u(0 =-1
t+1 r?

2.y =~ y(=1)=0 24, v = ——, w(0)=0
Y=rarsy YO V= O

In Exercises 25-28, assume that the motion of a ball takes place in the absence of
friction. That is, the only force acting on the ball is the force due to gravity.

25. A ball is thrown into the air from an initial height of 3 m with an initial velocity
of 50 m/s. What is the position and velocity of the ball after 3 s?

26. A ball is dropped from rest from a height of 200 m. What is the velocity and
position of the ball 3 seconds later?

i
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First-Order kquations

[n this chapter, we will undertake our study of ﬁrst—or@er equations'. We will begin
in Section 1 by making some definitions and presenting an overview of ‘what we
will cover in this chapter. We will then alternate between methods of finding exact
solutions and some applications that can be studiefi using those methods. For eag\h
application, we will carefully derive the matherpatlcal model's apd explore the exis-
tence of exact solutions. We will end by showing how qualitative methods can be
used to derive useful information about the solutions.

tial Equations and Solutions

In this section, we will give an overview of what we want to learn i1'1 this chapFer.
We will visit each topic briefly to give a flavor of what will follow in succeeding
sections.

Ordinary differential equations

An ordinary differential equation is an equation involving derivatives of an un-
known function of a single variable. For example, the equation

dy _ . _, (L)
dt Y

is an ordinary differential equation. o ‘ '
Most of the time in this chapter we will deal with differential equations of the

form

Y = f(t,y). (1.2)

EXAMPLE 1.4 o
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Here y is the unknown function and 7 is the independent variable. The function
S (z,y) involves both the independent variable ¢ and the unknown function y. For
example, in equation (1.1), f(z,v) =y —t.

Some other examples of ordinary differential equations are

/ 2

Y=y -1
y =cos(ty), and
y =y

A differential equation is of first order if it involves only the first derivative of
the unknown function. All of the examples we have seen thus far are first order. The
equation

12

= —4y
is second order because it involves the second derivative of y. In general, we define
the order of a differential equation to be the order of the highest derivative that

occurs in the equation. In this chapter, we will concentrate solely on first-order,
ordinary differential equations.

The equation

32w 532w

Tw _ 0w 1.3
a2 = ¢ B (1.3)

is not an ordinary differential equation, since the unknown function w is a function
of two variables 7 and x. Because it involves partial derivatives of an unknown

function of more than one independent variable, equation (1.3) is called a partial
differential equation.

Solutions

A solution of the first-order, ordinary differential equation y’ = f(z, y) is a differ-

entiable function y(¢) such that y'(t) = f(¢, y(¢)) for all 7 in the interval' where
v(t) is defined.

We can show that y() = 7 + [ is a solution to equation (1.1) by substitution.

It is only necessary to substitute this function into both sides of equation (1.1) and
show that they are equal. We have

Yy=1, and y®)—t=1+1—1=1.

Here is another example.

Show that y(r) = Ce™' * is a solution of the first-order equation

y = —2ty, (1.5)

where C is an arbitrary real number.

' We will use the notation (a, b}, [a, b1, (a, bl. [a, b), (a, ), [a, 00), (—00, b), (—00, b], and (—00, 00)
for intervals. For example, (a,b) = {t :a <t < b}, [a,b) ={t 1a <t < b}, (—o0, bl={t:.t <b},
and so on.
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We compute both sides of the equation and compare themt.2 On the lefl:,t.W:e1
have y'(t) = —2tCe—12’ and on the right, —2ty(t).= —2tCe™"", s0 thf};qt:;;)e
is satisfied. Both y(¢) and y'(¢) are defined on the 1nterval' (—o00, 00). ?r 1
for each real number C, y(¢) = Ce~"’ is a solution of equation (1.5) on the 1nterva’
(—00, 00).

Example 1.4 illustrates the fact that azdifferential equation can haYe lots of solu;
tions. The solution formula y(¢) = Ce™", which depends on th(? arbitrary conﬁ;arolf
C, describes a family of solutions and is called a gener‘al solution. Thngrap 1
ch:se solutions are called solution curves, several of which are drawn in Figure 1.

Initial value problems | - f
In Example 1.4, we have found a general sol.utlon, as indicated by the p(I;:SCnCGd iof_
an undetermined constant in the formula. Thls reflects Fhe fact tbat ail1 gr mar}; ;
ferential equation has infinitely many solutlong In appllcat1on§, it wi ! f g&;,lciie ?ﬁz
to use other information, in addition to the dlfft?rentlal equatlon,S toh e ? ine (he
value of the constant and to determine the solution completely. Such a solu

called a particular solution.

Given that

1
- (1.7)

is the general solution of y' = y2, find a particular solution satisfying y(0) = 1.

Because -1 1

C = 1. Substituting C = 1 in equation (1.7) makes

1
o (1.8)
YO =-r_7

a particular solution of y’ = y2, satisfying y(0) = 1.

DEFINITION 1.9 A first-order differential equation together with an initial
condition,

y = f(t,y), y{to)= Yo, (1.10)

is called an initial value problem. A solution of the initial value problem is a
differentiable function y(¢) such that

1. y'@¢) = f(t, y()) for all 7 in an interval containing tp where y(¢) is de-
fined, and

2. y(to) = Yo-

EXAMPLE 1.14 o
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Thus, in Example 1.6, the function y(t) = 1/(1 —¢) is the solution to the initial
value problem

v =yl with y(0)=1.

Normal form

Consider the differential equation

t+4yy' = 0. (1.11)

Differential equations often arise naturally in the form

¢, y.y) =0, (1.12)

illustrated by (1.11). We will frequently find that this form is too general to deal

with, and we will find it necessary to solve equation (1.12) for y'. We will give the
result a name.

DEFINITION 1.13 A first-order differential equation of the form
Y =f

is said to be in normal form.

Place the differential equation ¢ + 4yy" = 0 into normal form.

This is accomplished by solving the equation
t+4yy' =0

for y’. We find that
, t

=, 1.1
y iy (1.15)

Note that the right-hand side of equation (1.15) is a function of ¢ and ¥, as required
by the normal form y’ = £(z, y). .
Using variables other than y and ¢

So far all of the examples in this section have had a solution y that was a function of
t. This is not required. We can use any letter to designate the independent variable
and any other for the unknown function. For example. the equation

Y ==
X

has the form y’ = f(x,y), making x the independent variable and requiring a
solution y that is a function of x. This equation has general solution

y(x)=Inx|+ C.

This solution exists on any interval not
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the independent variable is r and the unknqwn f
tion of r. The general solution of this equation 18
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For another example, in the equation
s = JT.

unction is s, which must be a func-

2
< 32
) = =7 + C.
s(r) 3
This general solution exists on the interval [0, 00).

Interval of existence

The interval of existence of a solutio ' ¢ :
the largest interval over which the solution can be d§ﬁned an.d remain a so ton ¢
o remember that solutions to differential equations are required to |

tinuous. The solution to the initial

n to a differential equation is defined to be
olution. It

is important t :
differentiable, and this implies that they are con
value problem in Example 1.6 is revealing.

Find the interval of existence for the solution to the initial value problem

’ 2

Y =y with y(0) =1

Tn Example 1.6, we found that the solution is

y() = 1

i i ;. as shown in Figure 2. The func-
h of v is a hyperbola with two branches, as s ! ‘
o an i}nﬁnite )(/ili)scontinuity at t = 1. Consequently, this function cannot be

o one uation y' = y* over the whole real

considered to be a solution to the differential eq

1. ’ - . . .
" Note that the left branch of the hyperbola in Figure 2 passes through the point

(0, 1), as required by the initial condition y(O) = 1‘. Hencel, t.he 1;1;\/ beri?::ngi
the hyperbola is the solution curve neqded. _Th1§ parugular SO ut}llon eurve exien .
indefinitely to the left, but rises to positive 1nﬁr}1ty as it approaches . e yld [;1 ote
t = 1 from the left. Any attempt to extend this splutlon to the rig t wou  fave
to include ¢ = 1, at which point the function _v({) is undeﬁned. Conseqluez o)(/) D
maximum interval on which this solution curve 1s defined is the interval ( , D).

i L g
This is the interval of existence.
Verify that y(t) = 2 — Ce™ is a solution of
yo=2—y (1.18)

for any constant C. Find the solution that satisfies the initial condition y(0) = 1.
What is the interval of existence of this solution?

(0, 1)

X}

-4

Figure 3 Solutionof y'=2 ~y,
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We evaluate both sides of (1.18) for y(1) =2 — Ce ™.

V(1) =Ce™
2-y=2-Q2-Ce")=Ce"'

They are the same, so the differential equation is solved for all 1 € (—o0, ). In
addition,

yO)y=2—-ce?=2_.

To satisfy the initial condition y(0) = 1, we must have 2 — C — LorC = 1.
Therefore, y(t) = 2 — ¢ is a solution of the initial value problem. This solution
exists for all 7 € (—oo, 00). Its graph is displayed in Figure 3.

Finally, both y(r) and y’(¢) exist and solve the equation on (—o00, 00). There-
fore, the interval of existence is the whole real line. L J

The geometric meaning of a differential equation and its solutions
Consider the differential equation

Vo= @y,
where the right-hand side f(¢, y) is defined for (¢, ¥) in the rectangle
R={(t.y)|la<t<bandc <y <d}.

Let y(r) be a solution of the equation y' = f(r, v), and recall that the graph of the
function y is called a solution curve. Because v(to) = yo, the point (1o, yg) is on
the solution curve. The differential equation says that y'(p) = f(t, yp). Hence
S (to, yo) is the slope of any solution curve that passes through the point (¢, yp).
This interpretation allows us a new, geometric insight into a differential equa-
tion. Consider, if you can, a small, slanted line segment with slope f(z, v) attached
to every point (z, y) of the rectangle R. The result is called a direction field, because
ateach (1, y) there is assigned a direction represented by the line with slope f(z, y).
Even for a simple equation like

Y=y, (1.19)

itis difficult to visualize the direction field. However, a computer can calculate and
plot the direction field at a large number of points—a large enough number for us to
get a good understanding of the direction field. Each of the standard mathematics
programs, Maple, Mathematica, and MATLAB have the capability to easily produce
direction fields. Some hand-held calculators also have this capability. The stu-
dent will find that the use of computer- or calculator-generated direction fields will
greatly assist their understanding of differential equations. A computer-generated
direction field for equation (1.19) is given in Figure 4.

The direction field is the geometric interpretation of a differential equation.
However, the direction field view also gives us a new interpretation of a solution.
Associated to the solution v(¢), we have the solution curve in the ry-plane. At each
point (¢, y(¢)) on the solution curve the curve must have slope f (¢, y(t)). In other
words, the solution curve must be tangent to the direction field at every point. Thus
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Figure 4 The direction field for y'=y.

finding a solution to the differential equation is equiyalegt to the geometric p'rotblem
of finding a curve in ty-plane that is tangent to the direction field at every point.

For example, note how the solution curve of

y=y y0=1I

(1.20)

in Figure 5 is tangent to the direction field at each point (f, ) on the solution curve.
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Figure 5 The solution curve is tangent to the direction field.

Approximate numerical solutions

The direction field hints at how we might produce a numerical solution of an initial

value problem. To find a solution curve for the initial value problem y’

= f(t, y),

2.1 Differential Equations and Solutions 29

y{fy) = yo, first plot the point Py(#, yo). Because the slope of the solution curve at
Py is given by f(fg, yo), move a prescribed distance along a line with slope f(ty, yo)
to the point Py (f1, y1). Next, because the slope of the solution curve at P; is given by
f(t1, y1), move along a line with slope f(t;, y,) to the point P,(f,, y;). Continue in
this manner to produce an approximate solution curve of the initial value problem.
This technique is used in Figure 6 to produce an approximate solution of equa-
tion (1.20) and is the basic idea behind Euler’s method, an algorithm used to find
numerical solutions of initial value problems. Clearly, if we decrease the distance

between consecutively plotted points, we should obtain an even better approxima-
tion of the actual solution curve.

of
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Figure 6 An approximate solution curve of y' = y, y(0) = 1.

Using a numerical solver

We assume that each of our readers has access to a computer, either at work, at
school, at home, or perhaps at the home of a friend. Furthermore, we also assume
that this computer has software designed to produce numerical solutions of the ini-
tial value problems encountered in an introductory differential equations course. For
many purposes a hand-held calculator with graphics capabilities will suffice.

There is a wide variety of software packages available for the study of differ-
ential equations. Some of these packages are commercial, some are shareware, and
some are even freeware. Some solvers are very easy to use, with well-designed
graphical user interfaces that enable the user to interact easily with the solver. Other
solvers require such obtuse command line syntax that you will find yourself easily
frustrated, so care is needed in selecting a package suitable for your needs.

The Preface contains a review of some of the more popular solvers. However,

if your solver can
¢ draw direction fields,

e provide numerical solutions of differential equations and systems of differen-
tial equations, and
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. . . . . ons,
« plot solutions of differential equations and systems of differential equatio

then your solver will be adequate for use with this text.

Test drive your solver ' |
Let’s test our solvers in order to assure ourselves that they will provide adequate
support for the material in this text.

Use a numerical solver to compute and plot the solution of the initial value problem

"= y? (1.22)

y=y -t y@4 =0

over the t-interval [—2, 10].

ugh solvers differ widely, they do share some common charac?ensﬂcs.
First?klytc})‘s ngeed to input the differential equation. Aftgr entering t_he equatlon,lym;
might need to declare the independent variable, whlch in this case 1s ¢. -Mos; §ohvte;e
require that you declare limits on the display window, a rectangle 1n4w<1c o
solution will be drawn. Set bounds on ¢ and y so that'——2 <r< }0 aqd —h < )t) < 1<;
This display window declares that solution curves will be contained in the rectang
R={t,y)|2=<1t<10,-4=<y= 4} in t.h.e ty-plane. ot the solution. If
Finally, you need to enter the initial condlthn y(fl) = 0 and plot the S(IJ u ° . 1.;1
your solver can superimpose the solution on a direction field, then your plot shou

. .
look similar to that shown in Figure 7.
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Figure 7 The solution curve for y'= y* — £, y(4) = O.

Qualitative methods | |
We are unable at this time to find analytic, closed-form solutions to the equation

y =1—y%. (1.23)

AL

Figure 9 The graph of
=1~y
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Figure 10 Equilibrium solutions
to the equation y'= 1 - y2.
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This situation will be remedied in the next section. However, the lack of closed-form
solutions does not prevent us from using a bit of qualitative mathematical reasoning
to investigate a number of important qualities of the solutions of this equation.
Some information about the solutions can be gleaned by looking at the direction
field for the equation (1.23) in Figure 8. Notice that the lines y=1landy= -1

seem to be tangent to the direction field. It is easy to verify directly that the constant
functions

yi(t) =-1

are solutions to equation (1.23).

and »(@)y=1 (1.24)

—
| /-

y
<o
—
NN NN NN NN

~cbme——y

Figure 8 The direction field for the equation y'=1-y2

To see how we might find such constant solutions, consider the function of ¥
on the right-hand side of (1.23),

fO) =1-y=2

The graph of f is shown in Figure 9. Notice that f (y) =0only fory = —1 and
y = L. Each of these points (called equilibrium points) gives rise to one of the
solutions we found in (1.24). These equilibrium solutions are the solutions that
can be “seen” in the direction field in Figure 8. They are shown plotted in color in
Figure 10.

Next we notice that f(y) = | — y? is positive if —1 < ¥ < 1 and negative
otherwise. Thus, if y(¢) is a solution to equation (1.23), and ~1 < y < 1, then

y,=l—y2>0.

Having a positive derivative, y is an increasing function.

How large can y(r) get? If it gets larger than 1, then y' =1 — y% < 0, so y(t)
will be decreasing. We cannot complete this line of reasoning at this point, but in
Section 2.9 we will develop the argument, and we will be able to conclude that if
y(0) = yp satisfies —1 < yp < 1, then y(¢) increases and approaches 1 as t — o0.
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On the other hand, if y(0) = y > L, then y'(t) = 1 —y* <0, scl) _y.(tr)1 tlcs)
decreasing, and we again conclude that y(t) — 1 ast — oc. Thus any so_;lt;c;
the equation y’ = 1 — y? with an initial value Yo > —1 approaches 1 a; ! 'm’j]ar

Finally, if we consider a solution y(t) Wlth y(0) = Yo < -1, tden a si i
analysis shows that y'(t) = 1 — y? < 0,50 y(t)is d'ecreasmg. As y(t) ecreasc; ,ter
derivative y' (1) = 1 — y? gets more and more negauye. Hencse, y(t) decrea}ses 1as2 .
and faster and must approach —oo as t — 00. Typical sol.utlons to equatlc;)n ( h )
are shown in Figure 11. These solutions were found with a computer, but the
qualitative nature can be found simply by looking at the equation.
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Figure 11 Typical solutions to the equation y'= 1-y°.

EXERCISES

In Exercises | and 2, given the function ¢, place the ordinary differential equation
¢(t, v, y) = 0 in normal form.

L ¢(x,y, ) =xz+ (L +x)y

2. ¢p(x,y,2) =xz—2y—x

In Exercises 3—6, show that the given solution is a general solution of .the dlffereqtlal
equation. Use a computer or calculator to sketch members of the farmly of s.olut1ons
for the given values of the arbitrary constant. Experiment with dlfferent' intervals
for ¢ until you have a plot that shows what you consider to be the most important
behavior of the family.

3y = 1y, () = Ce~VP?,C=-3,-2,...,3
4. y +y=2,y(@) =2t—24+Ce’',C=-3,-2,...,3

2.1  Differential Equations and Solutions 29

5.+ (1/2)y = 2cost, y(1) = (4/5)cost + (8/5)sint + Ce~ V2 ¢ =
—5,—4,....5

6. V=y@d—y)y®)=4/(1+Ce™),C=1,2,....5

7. A general solution might not produce all solutions of a differential equation. In
Exercise 6, show that y = 0 is a solution of the differential equation, but no
value of C in the given general solution will produce this solution.

8. (a) Use implicit differentiation to show that 1> + y> = C? implicitly defines
solutions of the differential equation ¢ + yy' = 0.

(b) Solve 1* + y? = C? for y in terms of ¢ to provide explicit solutions. Show
that these functions are also solutions of ¢t + yy’ = 0.

(c) Discuss the interval of existence for each of the solutions in part (b).
(d) Sketch the solutions in part (b) for C = 1,2, 3, 4.
9. (a) Use implicit differentiation to show that 1> — 4y? = C2 implicitly defines
solutions of the differential equation t — 4yy’ = 0.

(b) Solve 1* —4y? = C? for y in terms of £ to provide explicit solutions. Show
that these are also solutions of 1 — 4yy’ = 0.

(c) Discuss the interval of existence for each of the solutions in part (b).
(d) Sketch the solutions in part (b) for C = 1,2, 3, 4.

10. Show that y(r) = 3/(6¢ — 11) is a solution of y' = —2y%, y(2) = 3. Sketch

this solution and discuss its interval of existence. Include the initial condition
on your sketch.

11. Show that y(t) = 4/(1 — 5¢=*) is a solution of the initial value problem y’ =
Y4 — y), y(0) = —1. Sketch this solution and discuss its interval of existence.
Include the initial condition on your sketch.

In Exercises 12-15, use the given general solution to find a solution of the differ-
ential equation having the given initial condition. Sketch the solution, the initial
condition, and discuss the solution’s interval of existence.

12. y'+ 4y =cost, y(t) = (4/1T)cost + (1/17)sint + Ce ™, y(0) = —1
1Bty +y =12 y1) = (1/3)° + C/t,y(1) =2

14. 1y’ +(t+ Dy =2te", y(t) = e (t + C/1), y(1) = 1 /e

15. Y = yQ2+y), y(t) = 2/(—1 + Ce ), y(0) = —3

16. Maple, when asked for the solution of the initial value problem o=

¥(0) = I, returns two solutions: y(¢) = (1/4)(r +2)? and y() = (/4 —2)%.
Present a thorough discussion of this response, including a check and a graph of
each solution, interval of existence, and so on. Hins: Remember that v/a2 — la|.

In Exercises 17-20, plot the direction field for the differential equation by hand. Do

this by drawing short lines of the appropriate slope centered at each of the integer
valued coordinates (¢, y), where —2 < ¢ <2and-1<y<1.

17. Y =y +¢
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18. y =y —1
19_ y’ e ttan(y/z)
20. y = (2y)/(1 + )

In Exercises 21-24, use a computer to draw a direction ﬁelq for the .given ﬁrst—or.der
differential equation. Use the indicated bounds for your display WlI'IdOW.. Obtamha
printout and use a pencil to draw a number of possible solution trajectories on the
direction field. If possible, check your solutions with a computer.

21. y’:—ry,R:{(t,y):—3§f§3, —5<y<S5}

2.y =y —t,R={(,y):-2<t <10, —4<y=<4]

2.y =t—-y+LR={ty:-6<t<6, -6=y=6]

4.y =(y+0)/(y =1, R={t, )1 -5=21<5 -5=y=5

initi s in Exercises 25-28, use a numerical solver to
S?ortet;llzhsglfuttlilgr?g:llrzgev(?\lflg tI;lre? ?rllt(ai?éated interval. Try diffetrent displlay Kindow;‘i lszyt
experimenting with the bounds on y. Note: Your solver might require that you
place the differential equation in normal form.
25. y+y =2,y(0) =0,7 € (-2 10]
26. y +1y =12, y(0)=3,1€[-4,4]
27. y —3y =sint, y(0) = -3,7 € [—6m, /4]
28. v/ + (cost)y =sint, y(0) =0, 1 € [—10, 10]

Some solvers allow the user to choose depende/nt and indepelliient tvar:sbfle;aic;;
example, your solver may allow the equation r* = .—2sr + e J,;bu_ ;t e+ olyers
will insist that you change variables so that the equation feads y = y - i:or
y = —2xy + e~*, should your solver require x as the independent Valrl t. or
each of the initial value problems in Exercises 29 and 30, use your solver to p
solution curves over the indicated interval.

29, r' 4 xr = cos(2x), r(0) = =3, x € [—4. 4]
30. T+T=s5.T(-3)=0,5 € [-5,5]

In Exercises 31-34, plot solution curves for each of the initial. conditions on ohne;
set of axes. Experiment with the different display w@ndows until you ﬁl}d one t ad
exhibits all of the important behavior of your solutlops. Note: §electmg a goc;
display window is an art, a skill developed with experience. Don’t become overly
frustrated in these first attempts.

3.y =y3—»,y0) =-2,-1,0,1,2,3,4,5

32 x —x2=1,x(0) = —2,0,2,x(2) = 0,x(4) = —-3,0,3,x(6) =0

33. y/ =sin(xy), y(0) =05,1.0,1.5,2.0,2.5

34, x' = —tx,x(0)=-3,-2,-1,0,1,2,3

2.2 Solutions to Separable Equations 31

In Exercises 35-38, the exact solution accompanies each initial value probiem.
(i) Verify that the y(r) is a solution of the initial value problem.
(i) Use your numerical solver to plot the solution of the initial value problem.
(iii) Plot the graph of y(r) and compare with the numerical solution found in part
(ii).
5. Y =y4+2,y0) = 1, y(t) = =2 + 3¢
36. y' = y(5—y), y0)=1/2, y(1) = 5/(1 + 9¢~)

37. ¥y + 4y = cost + sinr, y(0) = 1, y(#) = (3/17)ycost + (5/17)sint +
(14/17)e=%

38. ¥ =1y, y(0) =2, y(1) = 2e1/27*

2.2 Solutions to Separable Equations
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Separable equations form a large class of differential equations that can be solved

easily. An example is the equation y’ = ry?. Its solution can be found as follows.
First, we rewrite the equation using dy /dt instead of Y, 80

dy 2
— = ty-, 2.1
P y 2.1

Next we separate the variables by putting every expression involving y on the left
and everything involving 7 on the right. This includes dy and dr. We get

1
—dy =1dr. (2.2)
y

It is important to note that this step is valid only if y = 0, since otherwise we would
be dividing by zero. Then we integrate both sides of equation (2.2):

1
/—zdy:/tdt.
y

When we perform the integrations, we get?

1 L,
—-——=—t"4+C. (2.3)
y 2

Finally, we solve equation (2.3) for y. The equation for the solution is

-1 2
n4c rry2c

y) = (2.4)

Several solutions are shown in Figure 1.

? Our understanding of integration first has us use two constants of integration,
1 1,
—~+C|=——t-+CZ.
y 2

We get (2.3) by setting C = C, — C,. This combining of the two constants into one works with any
solution of separable equations.
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LE 2.7

Treating dy and dt as mathematical entities, as we d1d in separating the Va:):
ables in equation (2.2), may be troublesome o you. If s0, it i probably beczus? i,his
have learned your calculus very well. We will e{(plaln this stip at the end o
section under the heading “Why separation of variables works.

The general method N
in thi j i f variables. This is the s

Clearly the key step in this method is the separation o s. T

going }tirom equation (2.1) to equation (2.2). The method of solution illustrated h§re

will work whenever we can perform this step, and this can be done for any equation

of the two equivalent forms

dy _ @) (2.5)
dt k()

and
dy _ (2.6)
o = g f».

Equations of either form are called separable differential equations. For both we
can separate the variables; for example, for equation (2.6), we get

4 _ g(n)dr.

o

(We must be careful here to avoid those points where f(y) = 0.) We can integrate
both sides of this equation,

dy f
L = (l)dl.
f»m ¢

Thus we can find the solution to separable equations b}{ p<.3rforming two integrations.
An equation in the form of (2.5) can be handled ip a smul.ar mannir. L
What about those points where f(y) = 0 in equation (2.6)7 It turnih ou bo
be quite easy to find the solutions in such a case, since if f (yo)’ = 0, ! gn Iy
substitution we see that the constant function y(f) = Yo is alsolum;n to (2.6). In
particular, the function y(¢t) = 0isa solution to the equation y* = [y~.
Let’s Jook at some examples.

Consider the equation x” = rx, where r is an arbitrary constant and ¢ is the assumed
independent variable.

This equation is perhaps the one that arises most in applications. 'We w111.see
it often. Because of the form of its solutions, it is called the exponential equation.
The equation is separable, so we rewrite it as

a _ .. (2.8)

EXAMPLE 2.13 o
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and then we separate the variables to obtain

Liverar 2.9)
X

In doing so we have to be cautious about dividing by zero, so for now we insist that
x #0.

We want to integrate (2.9), but there is a slight hitch with the left-hand side of
the equation. If x > 0, then f(l/x) dx = Inx, but what if x < 0? In this case, we

have [(1/x)dx = In(—x). Hence, when we integrate both sides of equation (2.9),
it becomes

Injx{ =rt +C. (2.10)

It remains to solve for x. Taking the exponential of both sides of equation (2.10),
we get

[x()] = "1 = e, (2.11)
Since ¢ and e"" are both positive, there are two cases
eCet,  ifx >0
x(1) = Cort
—ete” ifx <0

We can simplify the solution by introducing

e eC,C ?'fx>0;
—ev, ifx < 0.

Therefore, the solution is also described by the simpler formula
x(t) = Ae',

where A is a constant different from zero, but otherwise arbitrary.

In arriving at equation (2.9), we divided both sides of equation (2.8) by x, and
this procedure is not valid when x = 0. However, as we pointed out before this
example, this means that x = 0 is a solution of the original equation, x’ = rx.
Consequently, the solution

x(r) = Ae”, (2.12)

where A is completely arbitrary, gives us the solution in all cases. *

Find a solution to the initial value problem y’ = 0.3y with ¥(0) = 4.

This is a special case of the equation in Example 2.7. Therefore, we know that
the general solution is

y(t) = Ae™.
Substituting 1 = 0 and using the initial condition, we get
4=y(0) = A.

Hence A = 4 and our solution is y(r) = 4¢%3. .
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£ 2.14

Using definite integration

Sometimes it is useful to use definite integrals when solving initial value problems

for separable equations.

Solve the differential equation y’ = ry with y(0) = 3.

The equation is separable, so we first rewrite it as

dy

— =1y.

dt Y
Separating variables, we get

dy

— =tdt.

y

The next step is to integrate both sides, but this time let’s use definite integirals
to bring in the initial condition y(0) = 3. Thus t = 0 corresponds to y = 3, and we

have

; 1
S @15)
0

3 U

Notice that we changed the variables of integration because we want the upper limits
of our integrals to be y and 7. Performing the integration, we get

[}

t
lny—ln3=—2—.

We can solve for y by exponentiating, and our answer 18

y() = 3¢, *
Let’s look back at equation (2.15), where we implemented the initial condition.

In general, the initial condition is of the form y(fo) = yo. Thus t = 1o corresponds
to y = yo. These are the initial points for our integrals, and equation (2.15) becomes

y t
/ d_u _—_f sds.
o 4 fo

2 2
-1

Iny —Inyo = 5

This integrates to

When we solve for y, we get

2,2
y(1) = yoe T2,

EXAMPLE 2.16 o
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Figure 2 r{u) = \/2sinu+ 1

passes through (0,1), and

r{u) = - /2sin u + 1 passes

through (0,-1).
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Implicitly defined solutions

After the integration step, we need to solve for the solution. However, this is not
always easy. In fact, it is not always possible. We will look at a series of examples.

Consider the equation ' = (cosu)/r, where u is the independent variable. We will
be interested in the initial conditions #(0) = ! and r(0) = —1.
We rewrite the equation and separate the variables,

dr cos u
— = or rdr =cosudu.
du r

Integrating, we get

1
E,.Z =sinu+C or r?=2sinu+2C.

To simplify things slightly, replace the constant 2C by D, so
r? = 2sinu + D. Q.17)

This is an implicit equation for the function r. It can be easily solved by taking
the square root; however, we have to be aware of two things. First, we need 2 sin u -+
D > 0in order to have real square roots. This may affect the interval of existence
of our solution. Second. under this assumption there are two possible solutions,

r(u) ==x+2sinu + D. (2.18)

Now consider the initial conditions. For the first condition, we get

I =r(0) =+v2sin0+ D = +v/D.

Consequently, we must have D = 1. Furthermore, because (0) = | and 1 is
positive, we must select the positive square root in (2.18), and our solution is

r(u) =/2sinu + 1. (2.19)

The graph of this solution is the top half of the oval-shaped curve shown in Figure 2.

What about the interval of existence? Solution (2.19) is defined only when
2sinu + 1 > 0. Therefore, it would seem that the interval containing # = 0 (our
initial point) where solution (2.19) is defined is [—7 /6, 77 /6]. However, there is a
small problem with this interval: r is zero at each of its endpoints, but the original

equation, r’ = (cosu)/r, does not permit the use of r = 0. Consequently, the
maximally extended interval of existence is (~7/6, 77/6).
In a similar manner, if 7(0) = — 1, then D still equals one. However, since r(0)

is negative, we must choose

() = —+/2sinu + 1

as our solution. Again, this solution is defined on the interval (—m /6, 77/6). It too
is shown in Figure 2, but as the bottom half of the oval-shaped curve.
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Let’s be sure we know what the terminology means. An explicit solution is one
for which we have a formula that is a mathematical expression involving only the
independent variable. Such a formula enables us, in theory at least, to calculate it.
For example, (2.19) is an explicit solution to the equation in the previous example.
In contrast, (2.17) is an implicit equation for the solution. In this example, the

implicit equation can be solved easily, but this is not always the case.
Unfortunately, implicit solutions occur frequently. Consider again the general
problem in the form dy/dt = g(1)/ h(y). Separating variables and integrating, we

get
/h(y) dy = /g(t)dt. (2.20)

If we let
Ho) = [hordy a6 = [aar
and then introduce a constant of integration, equation (2.20) can be rewritten as

H(y)=G@1+C. (2.21)

Unless H(y) = y, this is an implicit equation for y(r). To find an explicit solution
we must be able to compute the inverse function ~1_ If this is possible, then we

have
y(t) = H'(G() + C).

Let’s look at a slightly more complicated example.

'E 2.22 & Findthe solutions of the equation y' = ¢*/(1+), having initial conditions y(0) = 1
and y(0) = —4.

Y . .
i Separate the variables and integrate.

1+ y)dy =¢*dx

1
y + 5))2 = e -+ C (223)

t
5  Rearrange equation (2.23) as

Y242y —2(e"+C)=0.

LJi This is an implicit equation for y(x) that we can solve using the quadratic formula.
A

+/2 + 2
(0, 1}, while x
e* passes =—1£ V142" +0)

y(x) = % [—2 +./4+ 8 + C)]

Again we get two solutions from the quadratic formula, and the initial condition
will dictate which solution we choose. If y(0) = 1, then we must use the positive
square root and we find that C = 1/2. The solution is

y(x) = =1+ 2+ 2e*. (2.24)

EXAMPLE 2.26 ¢
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On the other hand, if y(0) = —4, then we must us i
, = —4, e the negative square root and
find that C = 3. The solution in this case is ! e

y(x)=—1— 74+ 2e". (2.25)

Both solutions are shown in Figure 3.

. What about the interval of existence? A quick glance reveals that each solution
is defined on the interval (—o0, 00). Some calculation will reveal that y'(x) is also
dfﬁned on (—00, 00). However, for each solution to satisfy the eqﬁation y =
e*/(1 + y), y must not equal —1. Fortunately, neither solution (2.24) or (2.25') can
ever equal —1. Therefore, the interval of existence is (—oo, 0). *

Let’s do one more example.

Find the solutions to the differential equation

_ 2tx
=y

I3

having initial conditions x(0) = 1, x(0) = —2, and x(0) = 0.
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Figure 4 The direction field for x'= 2tx/(1 + x).

The di'rection field for this equation is shown in Figure 4. This equation is
separable since it can be written as

dx X

—_— t .
dt 1+ x

When we separate variables, we get

1
(1 + —) dx = 2t dr,
X
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assuming that x # 0. Integrating, we get
x +In(jx]) =7+ C, (2.27)

where C is an arbitrary constant. For the initial condition x(0) = 1, this becomes
| = C. Hence our solution is implicitly defined by

x+lnx—1=17¢. (2.28)

This is as far as we can go. We cannot solve equation (2.28) exp!icitly for
x(t), so we have to be satisfied with this as our answer. The solution x is defined
implicitly by equation (2.28). '

For the initial condition x(0) = —2, we can find the constant C in the same
manner. We get —2+1In(| —2]) = C, or C = In2— 2. Hence the solution is defined
implicitly b

P x+In(x]) =2 +In2 —2.

Our initial condition is negative, so our solution must also be negative. Hence [x| =
—x, and our final implicit equation for the solution is

x+1n(—x) =2 +1n2-2.

For the initial condition x(0) = 0, we cannot divide by x /{1l + x? to separate
variables. However, we know that this means that x(¢) = Oisa §olut10n. We can
easily verify that by direct substitution. Thus we do get an explicit formula for the

solution with this initial condition. L 2
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Figure 5 Solutions to x'= 2tx/(1 + x).

The solutions sought in the previous example were computed numerically .and
are plotted in Figure 5. We will see in Chapter 6 that this is an easy process. Since
the solutions are defined implicitly, it is a difficult task to visualize them without the
aid of numerical methods.
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Why separation of variables works
If we start with a separable equation

Y =g /hy), (2.29)

then separation of variables leads to the equation

h(y)dy = g(¢) dt. (2.30)

However, many readers will have been taught that the terms dy and df have no
meaning and so equation (2.30) has no meaning. Yet the method works, so what is
going on here?

To understand this better, let’s start with (2.29) and perform legitimate steps

Y =g@)/h(y) or h(y)y = g@).

Integrating both sides with respect to ¢, we get

[ ROy (1) dt = / (O dr.

The integral on the left contains the expression y’(t) d¢. This is inviting us to change
the variable of integration to v, since when we do that, we use the equation dy =
y'(t) dt. Making the change of variables leads to

/h(y)dy = /g(t)dt. 2.3

Notice the similarity between (2.30) and (2.31). Equation (2.30), which has no
meaning by itself, acquires a precise meaning when both sides are integrated. Since
this is precisely the next step that we take when solving separable equations, we can
be sure that our method is valid.

We mention in closing that the objects in (2.30), h(y)dy and g(r) dt, can be
given meaning as formal objects that can be integrated. They are called differen-
tial forms, and the special cases like dy and dt are called differentials. The basic
formula connecting differentials dy and dt when y is a function of ¢ is

dy = y' (1) d,

which is the change-of-variables formula in integration. These techniques will as-
sume greater importance in Section 2.6, where we will deal with exact equations.
The use of differential forms is very important in the study of the calculus of func-
tions of several variables and especially in applications to geometry.

................

EXERCISES

In Exercises 1-12, find the general solution of each of the following differential
equations. If possible, find an explicit solution.

Ly =xy 2. xy' =2y
3y = 4. ¥ = (14 y*)e*
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5.y =xy+y 6. Yy =ye' 2" +y—2
7.y =x/(y+2) 8. y=xy/(x—1)

9. x’y =ylny—y 10. xy' —y = 2x%y

11. ¥y =x +2y 12. v = Qxy +2x)/(x* = 1)

In Exercises 13—18, find the exact solution of the initial value problem. Indicate the
interval of existence.

13, y = y/x, y(1) = =2

14. y = =21+ y)/y, y(0) = |

15. v/ = (sinx)/y, y(7/2) =1

16. y =", y(0) =0

17. y =1 +y"). (0 = |

18. y = x/(1 +2y), y(=1) =0

In Exercises 19-22, find exact solutions for each given initial condition. State the

interval of existence in each case. Plot each exact solution on the mter‘vz.ll. of exlls—
tence. Use a numerical solver to duplicate the solution curve for each initial value

problem.

19. y' = x/y, y(0) = 1, y(0) = —1

20. v = —x/y, y(0) =2, y(0) = -2

21, Yy =2-y,y(0) =3, y0) =1

22,y = (4 D/y, (D) =2

An unstable nucleus is radioactive. At any instant, it can emit azgpgan%cle, trlanlf—
forming itself into a different nucleus in the process. For exag;ple, ; g4ls an a411)_1 a
emitter that decays spontaneously according to the scheme .U — “*Th 4 “He,
where 4He is the alpha particle. In a sample of 28U, a certain percentage of t.he
nuclei will decay during a given observation period. If at time the sample contains

N (1) radioactive nuclei, then we expect that the number of nuclei that decay in t{le
time interval Ar will be approximately proportional to both N and Ar. In symbols,

AN = N(t + At) — N(@) = —AN(r)dt, (2.32)
where A is a constant of proportionality. Use this fact to solve Exercises 23-26.

23. Show that N (¢) satisfies the differential equation

aN _ N, (2.33)
dt

24. If Ny represents the number of 2**U nuclei present at time f = 0, use equa-
tion (2.33) to show that the number of 2**U present at time ¢ is given by the

equation
N(t) = Noe ™. (2.34)
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25. The half-life of a radioactive substance is defined as the amount of time that
it takes one-half of the substance to decay. Show that the half-life of the 33U,
defined by equation (2.34), is given by the formula

In2

Tip=—". (2.35)

26. The half-life of >*8U is 4.47 x 107 yr.
(a) Use equation (2.35) to compute the decay constant ) for 238U

(b) Suppose that 1000 mg of 28U are present initially. Use equation (2.34)
and the decay constant determined in part (a) to determine the time for this
sample to decay to 100 mg.

27. P, an isotope of phosphorus, is used in leukemia therapy. After 10 hours, 615
mg of a 1000-mg sample remain. Determine the half-life of 32P.

28. Tritium, *H, is an isotope of hydrogen that is sometimes used as a biochemical

tracer. Suppose that 100 mg of *H decays to 80 mg in 4 hours. Determine the
half-life of 3H.

29. The isotope Technitium 99m is used in medical imaging. It has a half-life of
about 6 hours, a useful feature for radioisotopes that are injected into humans.
The Technitium, having such a short half-life, is created artificially on scene by
harvesting it from a more stable Molybdenum isotope, ’Mb. If 10 g of *™Tc¢

are “harvested” from the Molybdenum, how much of this sample remains after
9 hours?

30. The isotope lodine 131 is used to destroy tissue in an overactive thyroid gland.
It has a half-life of 8.04 days. If a hospital receives a shipment of 500 mg of
1311, how much of the isotope will be left after 20 days?

In the laboratory, a more useful measurement is the decay rate R, usually measured
in disintegrations per second, counts per minute, etc. Thus, the decay rate is de-
fined as R = —dN/dt. Using equation (2.33), it is easily seen that R = AN.
Furthermore, differentiating (2.34) with respect to ¢ reveals that

R = Rye ™, (2.36)

in which Ry is the decay rate at 1 = 0. That is, because R and N are proportional,
they both decrease with time according to the same exponential law.

31. Jim, working with a sample of 1311 in the lab, measures the decay rate at the end
of each day.

Time Counts Time Counts
(days) (counts/day) (days) (counts/day)

1 938 6 587
2 822 7 536
3 753 8 494
4 738 9 455
5 647 10 429
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Taking the natural logarithm of both sides of equation (2.36) produces the result Assume that th
¢ that the surrounding air temperature remains co °
: 1€ surrot nstant .
R lC.a.lcullallte the victims’ time of death. Note: The “normal” tempgragtirjrzelofC a
v ing i i °
Therefore, plotting In R versus ¢ should produce a line with slope —x. On a e gy mtely 3T°C
36. Suppose a cold beer at 40°F is placed into a warm room at 70°F. Suppose 10

sheet of graph paper, plot the natural logarithm of the decay rates versus the .
time, and then estimate the slope of the line of best fit. Use this estimate to minutes later, the temperature of the beer is 48°F. Use Newton’s law of cooli
) : coolin
to find the temperature 25 minutes after the beer was placed into the room £

approximate the half-life of *'1.
32. A 1.0-g sample of Radium 226 is measured to have a decay rate of 3.7 X 37. Referring to the previous problem, su
. « . 5 18} o : .
101° disintegrations/s. What is the half-life of 226Ra in years? Note: A chemical ered on a kitchen counter in a 70°F roggl S’T’ezrl] ?T?itr?st Oflbeer attl OF 1S~dlSC?v-
constant, called Avogadro’s number, says that there are 6.02 x 10?* atoms per If the refrigerator is kept at 40°F, how lc;ng had the %S talter’ft e bottle is 60°F.
mole, a common unit of measurement in chemistry. Furthermore, the atomic on the counter when it was first discovered? ottle of beer been sitting
mass of 2*°Ra is 226 g/mol. :
33. A substance contains two Radon isotopes, 210Rn [ 2 = 2.42h] and 2'Rn
[£,,» = 15h]. At first, 20% of the decays come from 2!'Rn. How long must one
wait until 80% do so?
34. Radiocarbon dating. Carbon 14 is produced naturally in the earth’s atmo-

38. Consider the equation
y' = flar + by +c),
where a, b, and ¢ are constants. Show that the substitution x = at + by + ¢

changes the equation to the se ion x’ i
parable equation x’ = a+bf(x). U i
to find the general solution of the equation y’ = (y + t)z.f( - e s method

sphere through the i’nteractliéton of closmic rays andf]f\litrogen l4.dA neutron 39. Suppose a curve ¥ = £(x) lies in the &
f;)mes along gnd strikes a "N nucleus, knocking off a proton an creating a %, the piece of the tangent i rst qanrant 'and' suppose that for each
C atom. This atom now has an affinity for oxygen and quickly oxidizes as bisected by the po; gent line at (x, y(x)) which lies in the first quadrant is

a 4CO, molecule, which has many of the same chemical properties as regu- y the point (x, y(x)). Find y(x).
40. Suppose the projection of the part of the line normal to the graph of y = y(x)

lar CO,. Through photosynthesis. the }*CO, molecules work their way into the
d from there into the food chain. The ratio of '4C to regular car-
atoms in the earth’s
41. tSh‘;pPOSle af polar graph r = r(Q) has the property that 8 always equals twice
angle from the radial line (i.e., the line from the origin to (8, r(9))) to th
tangent. Find the function (). ' ¢

from the point (x, y(x)) to the x-axis has length 2. Find y(x).

plant system, an
bon in living things is the same as the ratio of these carbon
atmosphere, which is fairly constant, being in a state of equilibrium. When a
living being dies, it no longer ingests '*C and the existing 14C in the now de-

funct life form begins to decay. In 1949, Willard F. Libby and his associates 5

at the University of Chicago measured the half-life of this decay at 5568 + 30 42. Suppose y(x) is a continuous, nonnegative function wi = i

years, which to this day is known as the Libby half-life. We now know that the if the area under the curve y = y(r) %rom 0tox isna?v/xlfg;sy EEO)UEE t(c))' oF m(; y(x})l
the area of the rectangle with vertices at (0, 0) and (x, v(x)),q ne-fourt

half-life is closer to 5730 years, called the Cambridge half-life, but radiocar-
bon dating labs still use the Libby half-life for technical and historical reasons.
Libby was awarded the Nobel prize in chemistry for his discovery.

43. ;L\ footl?all, .in the shap§ of an ellipsoid, is lying on the ground in the rain. Its
rer;l.gth 12s ‘8 inches and.lts cross section at its widest point is a circular dis.c of
adius 2 inches. A rain drop hits the top half of the football. Find the path

(a) Carbon 14 dating is a useful dating tool for organisms that lived during a

specific time period. Why is that? Estimate this period. that it follows as it runs down the top half of the football, Hinr: Recall th
b) Suppose that the ratio of *C to carbon in the charcoal on a cave wall is the gradient of a functi , ; . Wl Hinr Recall that
(b) Supp increase of 1. ction f(x, y) points in the (x, y)-direction of maximum

0.617 times a similar ratio in living wood in the area. Use the Libby half-

life to estimate the age of the charcoal. 44. From Torricelli’s law, water in an open tank will flow through a hole in the

bottom at a speed equal to that it would acquire in a free-fall from the level of

35. Newton’s law of cooling asserts that the rate at which an object cools is propor-
tional to the difference betw.een the object’s temperature (7') and the tempera- the water to the hole. A parabolic bow! has the shape of v = x2 0
ture of the surrounding medium (A). (units are feet) revolved around the y-axis. This boa/l 18 1‘1)11;2111 ,f 11S ? o
(a) Show that and at 1 = 0, a hole of radius « is punched at the bottom HO}:N ?Ono W,ﬁte;r
T = A+ (Ty—A) e take for the bow! to drain? Hint: An object dropped from h'eight h wil% I;Ytl th1t
ground at a speed of v = /2gh where g 1s the gravitational constant. Thiz

formula is derived from equating the kinetic energy of impact, (1 /2)mv?, with

where Tp is the temperature of the body at time # = 0 and & is the propor-
the work required to raise the object, mgh.

tionality constant.
(b) A murder victim is discovered at midnight and the temperature of the body 45. Referri .
: erring to the previous problem, for what function f would the bowl defined

is recorded at 31°C. One hour later, the temperature of the body is 29°C. DYy =) have th
| = ave the property that the water leve] drons at a constant rata2. oo
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f Mation

dense fog. The fog tifts for a moment,

. . ina
46. A destroyer is hunting a submarine 1n dense Lo, The Fog . The subima.

. L ]
isclosing that the submarine lies on th : mile: -
fine imm%tdiately descends and departs in a straight line in an unknown dire

tion. The speed of the destroyer is three times that of thg subttlnarm;r.m\;‘i/rl::;
. follow to be certain of intercepting the su e’
R lieh o polas coordi ith the origin located at the point
int: Establish a polar coordinate system w .
fvbt:letre the submaril;e was sighted. Look up the formula for arclength in polar

coordinates.

ienti i ion. This
One of the most intensively studied scientific problems is the Stl;di; ofdr:ostlglr:] g
is true in particular for the motion of the planets. "1jhe history of 1t etlrt ; e a
is one of the most interesting chapters of human history. We will start by g

brief summary of the development of models of motion.

A hrief history of models of motion

3000 years to the Babylonians. Their interest in
ks, who came up with a descriptive model gf the
he earth was the center of the universe
h. At first they thought that the planets

The study of astronomy goes back
the stars was furthered by the Gree
motion of the planets. They assumed that t

] d the eart! the | .
and that everything revolved aroun planets
moved in circular paths around the earth, but as they grew more proficient

. . b
measurements they realized that this was not true. They modlﬁe;lc_l ttllleno :/t:(:iogonz
inventing epicycles. These were smaller circles, the centers of whic m ved alone
circular arcs centered at the earth. The planets moved along thebep%cyf1 os 28 the
epicycles moved around the earth. When this theorly proved to be 1nadeq
i s to the epicycles. .
ases, the Greeks added epicycles to t .
Som?l"lf)egfheory of epicycles enabled the Greeks to compute an_d predict th:i m(;t:]ce)?
of the planets. In many ways it was a highly satisfactory scientific theory. ha(\);v Suct;
it left many questions unanswered. Most important, why dq thelplgn%tsere e such
a complicated motion as that suggested by the theo.ry of epicyc es’ here was o
causal explanation of why the use of epicycles predicted the motion o p .
ir theory was only descriptive in nature. . .
Thel;\ majgr improv)c:,mem on this theory came 1n 1543f, LVhen'C(;I;zmIlg:ti ar(rjla(&z
i 1 t the center of the universe. b
the radical suggestion that the earth was no { e change in
the center. Of course this require j .
B of ] ankind i f religion and philosophy as well as 1n
he thinking of all humankind in matters o gl _
tasft:ronomy.glt did, however, make the theory of gpwycles somewhat easier, because
fewer epicycles were needed to explain the motion of the planets.

Starting in 1609, and based on extensive and careful astronomical observations

d in ellipses around the
ho Brahe, Kepler proposed that the plane‘ts move : nd
rsrlllarlxde’[‘b;l};: <)i/1(ii away with the need for epicycles, but his theory r:lmamed gfsi:)liggi}
' 1 i f planetary motion. He was able
ler devised three experimental laws of p _ : «
EZF: t;re klrown planets satisfied his laws. However, his new theory still provided no

causal explanation for the motion of the planets.
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A causal explanation was provided by Isaac Newton. However he did much
more. He made three major advances.? First, he proved the fundamental theorem
of calculus, and for that reason he is given credit for inventing the calculus. The
fundamental theorem made possible the easy evaluation of integrals. As has been
demonstrated, this made possible the solution of differential equations. Newton’s
second contribution was his formulation of the laws of mechanics. In particular, his
second law, which says that force is equal to mass times acceleration, means that
the study of motion can be reduced to a differential equation or to a system of dif-
ferential equations. Finally, he discovered the universal law of gravity, which gave a
mathematical description of the force of gravity. All of these results were published
in 1687 in his Philosophiae Naturalis Principia Mathematica (The Mathematical
Principles of Natural Philosophy), commonly referred to as the Principia.

Using his three discoveries, Newton was able to derive Kepler’s laws of plan-
etary motion. This means that for the first time there was a causal explanation of
the motion of the planets. Newton’s results were much broader in application, since
they explained any kind of mechanical motion.

There were still difficulties with Newton’s explanation. In particular, the force
of gravity, as Newton described it, was a force acting at a distance. One body
acts on any other without any indication of a physical connection. Philosophers and
physicists wondered how this was possible. In addition, by the end of the nineteenth
century, some anomalous phenomena had been observed. Although in most cases
Newton’s theory provided good answers, there were some situations in which the
predictions of Newton's theory were not quite accurate.

These difficulties were apparently resolved in 1919, when Albert Einstein pro-
posed his general theory of relativity. In this theory, gravity is explained as being
the result of the curvature of four-dimensional space-time. This curvature in turn is
caused by the masses of the bodies. The space-time itself provided the connection
between the bodies and did away with problems of action at a distance. Finally, the
general theory seems to have adequately explained most of the anomalies.

However, this is not the end of the story. Most physicists are convinced that
all forces should be manifestations of one unified force. Early in the twentieth
century they realized that there were four fundamental forces: gravity, the weak and
strong nuclear forces, and electromagnetism. In the 1970s they were able to use
quantum mechanics to unify the last three of these forces, but to date there is no
generally accepted theory that unites gravity with the other three. There seems to
be a fundamental conflict between general relativity and quantum mechanics.

A number of theories have been proposed to unify the two, but they remain
unverified by experimental findings. Principal among these is string theory. The
fundamental idea of string theory is that a particle is a tiny string that is moving in a
10-dimensional space-time. Four of these dimensions correspond to ordinary space-
time. The extra six dimensions are assumed to have a tiny extent, on the order of
107% cm. This explains why these directions are not noticeable. It also gives a clue
as to why string theory has no experimental verification. Nevertheless, as a theory
it is very exciting. Hopefully someday it will be possible to devise an experimental
test of the validity of string theory.

*We have already discussed this briefly in Section 1 of Chapter 1.
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What we have described is a sequence of at 1§ast SIX different theories or math};
ematical models. The first were devised to explain t‘he motion of the planel;s. Ea(io
was an improvement on the previous one, ar’ld starting with Newt(gl lth?y lleﬁzgon
have more general application. With Newtqn s theory we have a model of a ’
based on ordinary differential equations. H1§ model was a complete depalll'ture1 i(_)\r/l;
those that preceded it. It is his model that is used today, except when the relati
velocities are so large that relativistic effects rr}ust pe taker} into account. 1

The continual improvement of the model in this case is what should take c}}) zllce
wherever a mathematical model is used. As we learn more, we ch_ange the mode t(;
make it better, Furthermore, changes are always madg on-the basm. of expen.mentae
findings that show faults in the existing model. The scientific theo.ru;sh(.)f motu;lrcl) jlvrs
probably the most mature of all scientiﬁc theories. Y_et' as our br1e 1;tor){ s o ar;
they are still being refined. This skepticism of the validity otj existing t eorzﬁz scan
important part of the scientific method. As good as our theories may seem, they

always be improved.

Linear motion -
Let’s look now at Newton’s theory of motion. We will limit our§elves for the1 mo-
ment to motion in one dimension. Think in terms of a ball that is moving ondy l1;1_p
and down near the surface of the earth. Recall that we have already discussed this

in Sections 1 and 3 of Chapter 1. ' . .
" EEl(":olset the stage, we recall from Chapter 1 that the displacement x is the distance

the ball is above the surface of the earth. Its derivative v = x"1is thg velomty,lafnd
its second derivative a = v’ = x” is the acceleration. The mathematical model for

motion is provided by Newton’s second law. In our terms this is
F =ma, 3B.D

where F is the force on the body and m is its mass. The gravitational force on a
body moving near the surface of the earth is

F = ~mg7

2 _ 2
where g is the gravitational constant. It has value g = 32 ft/s. = 9.8 m/s d The
minus sign is there because the direction of the force of gravity is always owr:,
in the direction opposite to the positive x-direction. Thus, in this case, Newton’s
second law (3.1) becomes

md—v = mdz—x = —mg,
dt dr?
or
v _dx o (3:2)
dt  dr?

We solved equation (3.2) in Section 3 of Chapter 1, and the solution is
x() = ——;-gt2 + ¢t +ca, (3.3)

where ¢; and ¢, are constants of integration.
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Air resistance

In the derivation of our model in equation (3.2), we assumed that the only force
acting was gravity. Now let’s take into account the resistance of the air to the motion
of the ball. If we think about how the resistance force acts, we come up with three
simple facts. First, if there is no motion, then the velocity is zero, and there is no
resistance. Second, the force always acts in the direction opposite to the motion.
Thus if the ball is moving up, the resistance force is in the down direction, and if the
ball is moving down, the force is in the up direction. From these considerations, we
conclude that the resistance force has sign opposite to that of the velocity. We can
put this mathematically by saying that the resistance force R has the form

R(x,v) = —r(x, v)v, (3.4

where r is a function that is always nonnegative.

Beyond these considerations, experiments have shown that the resistance force
is somewhat complicated and it does not have a form that applies in all cases. Physi-
cists use two models. In the first, resistance is proportional to the velocity, and in the

second, the magnitude of the resistance is proportional to the square of the velocity.
We will look at each of these cases in turn.

In the first case, r is a positive constant. Our total force is
F=-mg+ R(x,v)=-mg —ru.

Using Newton’s second law, we get

dv
m— = —mg — rv,
dt £ '
or
dv r
Ly 35
dr & mL (3.5

Notice that equation (3.5) is separable. Let’s look for solutions. We separate
variables to get

dv
—— = —dt.
g+rv/m
When we integrate this and solve for v, we get
v(r) = Ce """ —mg/r, (3.6)

where C is a constant of integration.

We discover an interesting fact if we look at the limit of the velocity for large ¢.
The exponential term in (3.6) decays to 0, so the velocity reaches a limit

m
lim v(t) = ——g.
t~— 00

Thus the velocity does not continue to increase as the ball is falling. Instead it
approaches the velocity

Vierm = —mg/r, (3.7)
which is called the terminal velocity.
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We still have to solve for the displacement and for this we use equation (3.6),

which we rewrite as
dx
=v

i

This equation can be solved by integration to get

= Ce "M —mg/r.

t
x_______e—rt/m_%_'_A,
r r

where A is another constant of integration.

Suppose you drop a brick from the top of a building that is 250 m high. The b.ric-k
has a mass of 2 kg, and the resistance force is given by RV= —4v. pr long will it
take the brick to reach the ground? What will be its velocity at that time?

The equation for the velocity of the brick is given in (3.6). Since we are drop-
ping the brick, the initial condition is v(0) = 0O, and we can use (3.6) to find that

0=v0)=C—mg/r or C=mg/r=2x98/4=49.

Then dx
v =49 (e - 1).
- =) ( )

Integrating, we get

x() =49 (—%e—” - z) +A.

The initial condition x(0) = 250 enables us to compute A, since evaluating the
previous equation at = 0 gives

250:—%+A or A =25245.

Thus the equation for the height of the brick becomes
gy
x(t)=4.9 —56 — 1) +252.45.

We want to find 7 such that x(r) = 0. This equation cannot be solved using .alge-
bra, but a hand-held calculator or & computer can find a very accurate approximate
sofution. In this way we obtain # = 51.5204 seconds. .

For a time this large the exponential term in (3.6) is negligible, so the brick has
reached its terminal velocity of Vierm = —4.9m/s. .

Now let’s turn to the second case, where the magnitude of the.resistance force
is proportional to the square of the velocity. Given the form of R in (3.4) together
with the fact that r > 0, we see that the magnitude of R is

[R(x,v)| =r(x,v)|v] = kv?
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for some non-negative constant k. Since v? = |v|2, we conclude that r — k|v|, and

the resistance force is R(v) = —k|v|v. In this case, Newton’s second law becomes
v
mdﬁt = —mg — k|vlv,
or
dv k
m =—g—’;|v!v. 3.9

Again, (3.9) is a separable equation. Let’s ook for solutions. Because of the
absolute value, we have to consider separately the situation when the velocity is
positive and the ball is moving upward and when the velocity is negative and the
ball is descending. We will solve the equation for negative velocity and leave the

other case to the exercises. When v < 0, jv] = —v, 50 (3.9) becomes
dv k
F7 + Zv . 3.10)

Scaling variables to ease computation

We could solve (3.10) using separation of variables, but the constants cause things

to get a little complicated. Instead, let’s first introduce new variables by scaling the
old ones. We introduce

v=qw and = fs,
where the constants « and 8 will be determined in a moment. Then

dv dvdwds «adw

dr dw ds di B ds’

so equation (3.10) becomes

o dw k5, 5 dw gB  kap
S =g+ —aw, or — =214 77,72
B ds m ds o + m -1
Now we choose « and f to make both coefficients equal to 1. This means that
k
88 _ ) aa P _
a m
and requires that
k 2
o« =gh and 8b =1
m
Thus
m mg
p=_[/— ad a=,[—2.
kg k
As a reward for all of this, our differential equation in (3.11) simplifies to
dw
— = —1 4w
7 +w (3.12)
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The separable equation (3.12) can be solved in the usual way. We first get

dw
1 —w?

= —dS,

Next we use partial fractions to write this as
l[ dw + dw ]:—ds.

2114+w  1—w
This can be integrated to get
| )
lln 1w =C —s.
2 1—w

where C is an arbitrary constant. When we exponentiate, we get

14w
Il—w

2 —2s
o= eZC 25 = Ae S‘

By allowing A to be negative or 0, we see that in general

1+w e
1 —w
Solving for w, we find that
Ae % ~ 1

In terms of our original variables v and 7. this becomes

mg 1 — Ae " (3.13)
v(t) =" k 1+ Ae42r,/kg/m
(¢) as t — oco. From (3.13), we

limiting behavior of v _
T ental e . locity approaches the terminal

see that the exponential term decays to 0, and the ve

velocit
© d Verm = —V mg/k.

i ion (3.7), which
This should be compared to equation (3.7), Whi he ts
" the air resistance is proportional to the velocity instead ot to its square.

................

EXERCISES

1. The acceleration due to gravity (nez}r the earth’s surface
ship in free space were able to maint
how long would it take the Sh.lp to re
the speed of light? How far w1u the I
resistance. Note: The speed of light is 3.0 x 10 m/s.

when a package is dropped frq .
to reach the ground? Ignore air resistance.

gives the terminal velocity when

}is 9.8 m/s°. If arocket-
ain this constant acceleration indefinitely,

ach a speed equaling (1/5)c, where ¢ i‘s
he ship have traveled in this time? Ignore air

i i bove the ground
i t a rate of 15 m/s at a height of 100 m a
A e s drepped m the gondola. How long will it take the package

10.

2.3 Models of Motion 51

- A stone is released from rest and dropped into a deep well. Eight seconds later,

the sound of the stone splashing into the water at the bottom of the well returns
to the ear of the person who released the stone. How long does it take the stone
to drop to the bottom of the well? How deep is the well? Ignore air resistance.
Note: The speed of sound is 340 m/s.

. Atocket is fired vertically and ascends with constant acceleration a = 100 m/s’

for 1.0min. At that point, the rocket motor shuts off and the rocket continues
upward under the influence of gravity. Find the maximum altitude acquired by
the rocket and the total time elapsed from the take-off until the rocket returns to
the earth. Ignore air resistance.

- A body is released from rest and travels the last half of the total distance fallen

in precisely one second. How far did the body fall and how long did it take to
fall the complete distance? Ignore air resistance.

- A ball is projected vertically upward with initial velocity vy from ground level.

Ignore air resistance.
(a) What is the maximum height acquired by the ball?

(b) How long does it take the ball to reach its maximum height? How long does
it take the ball to return to the ground? Are these times identical?

(c) What is the speed of the ball when it impacts the ground on its return?

- A particle moves along a line with x, v, and a representing position, velocity,

and acceleration, respectively. The chain rule states that

dv _dvdx  dv
di ~drdr dx
Assuming constant acceleration a and the fact that dv/dt = a, show that

v? = v(z) + 2a(x — xg),

where xg and vy are the position and velocity of the particle at time ¢ = 0, re-
spectively. A car’s speed is reduced from 60 mi/h to 30 mi/h in a span covering
500 ft. Calculate the magnitude and direction of the constant deceleration.

- Near the surface of the earth, a ball is released from rest and its flight through

the air offers resistance that is proportional to its velocity. How long will it take
the ball to reach one-half of its terminal velocity? How far will it travel during
this time?

. A ball having mass m = 0.1 kg falls from rest under the influence of gravity

in a medium that provides a resistance that is proportional to its velocity. For a
velocity of 0.2 m/s, the force due to the resistance of the medium is — 1 N. [One
Newton (N) is the force required to accelerate a 1 kg mass at a rate of 1 m/s>.
Hence, 1 N = 1 kgm/s®.] Find the terminal velocity of the ball.

An object having mass 70 kg falls from rest under the influence of gravity. The
terminal velocity of the object is —20 m/s. Assume that the air resistance is
proportional to the velocity.

(a) Find the velocity and distance traveled at the end of 2 seconds.
(b) How long does it take the object to reach 80% of its terminal velocity?
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object in Exercise

11. A ball is thrown vertically into the air with unknown velocity vo at time 7 = 0.
Assume that the ball is thrown from about shoulder height, say yp = 1.5m.
The ball reaches a maximum height of 15 m. If you ignore air resistance, then
it is easy to show thatdv/dt = —&, where g = 9.8 m/ s2 is the acceleration due
to gravity. Follow the lead of Exercise 7 to show that v dv = —gdy. Further,
because the velocity of the ball is zero when it reaches its maximum height,

0 15
/ vdv = / —gdy.
) 1.5

Find the initial velocity of the ball if the ball reaches a maximum height of

15 m.
Next, let’s include air resistance. Suppose that R(v) = —rv and show that

the equation of motion becomes
’
vdv = (—g - —v) dy.
m

If the mass of the ball is 0.1 kg and r = 0.02 N/(m/s), find the initial velocity
if the ball is again released from shoulder height (yo = 1.5 m) and reaches a
maximum beight of 15 m.

12. A mass of 0.2 kg is released from rest. As the object falls, air provides a re-
sistance proportional to the velocity (R(v) = —0.1v), where the velocity is
measured in m/s. If the mass is dropped from a height of 50 m, what is its
velocity when it hits the ground?

13. An object having mass m = 0.1 kg is launched from ground level with an initial
vertical velocity of 230 m/s. The air offers resistance proportional to the square
of the object’s velocity (R(v) = —0.05v]v]), where the velocity is measured in
m/s. Find the maximum height acquired by the object.

14. One of the great discoveries in science is Newton’s universal law of gravitation,
which states that the magnitude of the gravitational force exerted by one point
mass on another is proportional to their masses and inversely proportional to
the square of the distance between them. In symbols,

GMm
\F| = ——5—> (3.14)
r
where G is a universal gravitational constant. This constant, first measured by

Lord Cavendish in 1798, has a currently accepted value approximately equal to
6.6726 x 10~ Nm?/kg?. Newton also showed that the law was valid for two
spherical masses. In this case, you may assume that the mass is concentrated at

the point at the center of each spbere.
Suppose that an object with mass m is launched from the earth’s surface

with initial velocity vo. Let y represent its position above the earth’s surface, as
shown in Figure 1.
(a) If air resistance is ignored, show that

dv GM

&~ TR 1

v

Figure 2 The object in Exercise
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(b) Assuming that y(0) = 0 ( ject |
] = 0 (the object is launch ’
v(0) = vy, solve equation (3. 15) to show thact e from carth's wurtace) and

7 2 1 1
V=105 -2GM | = — ——
5 (R R+y)' (3.16)
(¢) Show that the maximum height reached by the object is given by
_ ng
2GM/R - v}

\/EG\M
Uy = -
R

is the mini i j
ﬁelde é?;?lr;u;ll rgqmred for the object to “escape” earth’s gravitational
. : object “escapes” earth’s gravitational fi
. : : al field, the i-
mum height acquired by the object is potentially infinite. n the max

y

(d) Show that the initial velocity

15. Inside th i

A Fclzzli;tsl;, ttl';;a3 surroundmg mass exerts a gravitational pull in all direc-
othor dirocin ’fhe re is more mass towards the center of the Earth than an

the et (can‘ o magmt}lllfk?7 of this force is proportional to the distance fron);
Enth ot § mas}; ! grove t is? ). Suppose a hole is drilled to the center of the
locity Aill the oo ropped in the hole. Ignoring air resistance, with what ve-
soond o diffe:S stFrllke the center of the Earth? As a hint, write down the
i o o s oL
one involving v and x by using Lhe folalgwicr?gn ZZSatt}ilzndlfferemlal equation ino

d*x dv_dvdx dv

d T dr T dxdi dx
16. Anobj i i
Ject with mass m is released from rest at a distance of a meters above the

earth’s su i
pn s s lrflf;ctz (s}?e Figure 2). Use Newton’s universal law of gravitation (see
show that the object impacts the earth’s surface with a velocity

determined by
V= \/—zag—R
a+ R’

wher i ati i

radiu: ng :}sletgz r:l}(}:cialerauon due to gravity at the earth’s surface and R is the

o the eart.h | gnore any effectg due to the earth’s rotation and atmosphere

Hini: On s surface, explain why mg = GMm/R?, where M i he
e earth and G is the universal gravitational constant’ e

17. A2- .
frictif(:)r?t f!lflr(ligtt}}: of a 10-foot chain hangs off the end of a high table. Neglecti
thie proi)l .ehtlme required for. the chain to slide off the table Hintng 51 gl
fouowmge;];d\zztt_ a seciion((i1 order differential equation and then soive it u'sin; tlfe
lon of order technique: if x is the length of .
th i
off the table and v = dx/dt then dv/dt = (dv/dx)(dagc/dt) =i)(cc}1131/nd§2)mgmg

aletahisnisnatm
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18. A skydiver of mass 60 kg free-falls from an airplane at an altitude of 5000
meters. He is subjected to an air resistance force that is proportional to his
speed. Assume the constant of proportionality is 10 (kg/sec). Find and solve
the differential equation governing the altitude of the skydiver at time 7 seconds
after the start of his free-fall. Assuming he does not deploy his parachute, find
his limiting velocity and how much time will elapse before he hits the ground.

19. In our models of air resistance the resistance force has depended only on the
velocity. However, for an object that drops a considerable distance, such as the
parachutist in the previous exercise, there is a dependence on the altitude as
well. It is reasonable to assume that the resistence force is proportional to air
pressure, as well as to the velocity. Furthermore, to a first approximation the air
pressure varies exponentially with the altitude (i.e., it is proportional to ¢~ **,
where « is a constant and x is the altitude). Present a model using Newton’s
second law for the motion of an object in the earth’s atmosphere subject to such
a resistence force.

A first-order linear equation is one of the form
X =alt)x + fQ1). 4.1
If (1) = 0, the equation has the form
x' =a()x, 4.2)

and the linear equation is said to be homogeneous. Otherwise it is inhomogeneous.
The functions a(z) and f(r) in (4.1) are called the coefficients of the equation.
We will sometimes consider equations of the more general form

b()x =c(t)x + g(1). (4.3)

These are still linear equations, and they can be put into the form (4.1) by dividing
by b(r)—provided b(z) is not zero. The important point about linear equations is
that the unknown function x and its derivative x’ both appear alone and only to first
order. This means that we do not allow x2, (x)?, xx’, €*, cos(x”), or anything more
complicated than just x and x” to appear in the equation. Thus the equations

x' = sin()x,

y =e”y+cost, and

¥ =Gt +2x+12 -1
are all linear, while
x = tsin(x),
y =yy, and
y=1-y

are all nonlinear.

EXAMPLE 4.5 o

EXAMPLE 4.6
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Solutian of the homogeneous equation

Linear equations can be solved exactly,
Start Wlth the homogeneous equation (4.
equation. Following our method for sepa

and we will show how in this section. We
2). You will notice that this is a separable
rable equations, we have

dx
— =a(t)dt
X

Injx| = /a(t)dl +C
lxl — L)fn(r)rlH%ﬁ

- ()CC"«/A auyds

The cons Cj iti i it wi
stant ¢~ 1s positive. We will replace it with the constant A and we will allow

1t to DE p()QIUVe or anatlve SO ”ld[ wWE can get 1 d “le a )S()lule lelle. I[(:]l( c ‘]Ie
C & 1 Of

)C(f) — Aef”(”‘“.

(4.4)
Solve
x" = sin(f)x.
Using the method for separable equations,

dx .

= sin(t) dr
In[x| = —~cos(t) + C
Ix(t)! — e—cost+(7 — eCe—cost

or

X(1) = Ae™ ™!, g

Solution of the inhomogeneous equation

We will illustrate the solution method with an example.

'I;hgl principal P (1) in a bank account earns interest at a rate 7. Deposits are made
at the rate of D dollars per year, which we treat as being
f=}

fhe rate ’ made continuously.
principal can be shown to satisfy the linear equation by The

P =rp + D.
Solve this equation.

If we rewrite this as

P —rP =D, (4.7)
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then the left-hand side looks like the formula for the derivative of a product. In fact,
if we multiply equation (4.7) by ™', the left-hand side becomes the derivative of a

product
(e""PY =e P —re""P=De". (4.8)
We can now integrate both sides of this equation to get
e "P(t) = ——Be"’ +C.
or '
P(t) = —? + Cé'. (4.9)

This is the general solution to our linear equation. .

That worked pretty well. Can we always do this? Let’s start with the general
linear equation in (4.1) and go through the same steps. First we rewrite it as
x'—ax = f, (4.10)
in analogy to (4.7). Next, in analogy to (4.8), we want to find a function u(t), like
¢! in the previous example, such that
ulx' —ax) = (ux). (4.11)

We will call such a function an integrating factor.
Assume for the moment that we have found an integrating factor u. Multiplying

(4.10) by u, and using (4.11), we get
(ux) =u(x' —ax) = uf.
As we did for equation (4.8) in Example 4.6, we can integrate this directly to get

u(®x(r) = /u(f)f(t) dt+C,

or
1) ! / @O F@)de+ ¢ (4.12)
x(t) = ") u u(t)' .
which is the general solution to (4.1).
Thus, the key to the method is finding an integrating factor, a function u that

satisfies equation (4.11); that is,
ulx' —ax) = (ux)'.
If we expand both sides, this becomes
ux' —aux =ux'+u'x.
Clearly these will be equal if and only if
u' = —au. (4.13)

But this is a linear homogeneous equation, and, as we saw earlier in (4.4), a solution
is given by

u(t) = e Ja0, (4.14)

(Notice that we do not need the constant A that appears in (4.4) because we only
need one particular solution. Any solution to (4.13) will do for the present purpose.)
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Summary of the method
We have found a general method of solving arbitrary linear equations

X' =ax+ f. 4.15)
Let’s list the steps.
1. Rewrite the equation as

x'—ax = f
2. Find an integrating factor, which is any function u for which
(ux) = u(x' — ax). (4.16)

The integrating factor will b i
: ¢ any solution to the homo i !
—au. A solution is given by gecots equation

u(t) = ¢~ Jayar

After you have found the inte
that equation (4.16) is satisfied.

3. Multiply both sides of (4.15
have

(ux)’ = uf‘

4. Integrate this equation to obtain

u(t)x(t) = /u(t)f(l) dt + C,
whence

1 C
x(t) = — u

Let’s look at some examples.

E .
XAMPLE 4.17 & Findthe general solution to the equation

X' =x+e.

Let’s go about this very carefull

o . Th | i -
involving x to the left-hand side, - The first thing to do is to bring the term

R
N TTA=e (4.18)
ext we find an integrating factor . Sin
: 1 . ce alr) = ], .
equation ' = —u. A solution is given by ) we find u by solving the

u(t) = e J1dr — ot
Muliiply equation (4.18) by the integrating factor, getting

e —x) =7 (4.19)

grating factor u, it is always a good idea to check

) by the integrating factor. Then using (4.16) we
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Verify that the left
e lx(t), or

_hand side of (4.19) is the derivative of the product u(x() =

(e 'x(t)) =e ' (X —x)= e . (4.20)

We can now integrate both sides of (4.20),

e_tx(t) = f€—2t dt

= __l_e—Zt +C.
2

C . p .
Finally, we solve for x by multiplying both sides by €', getiing

1 _ 4.2}
x(1) = =3¢ ‘4 Ce. “.21)

Find the general solution of
¥ = xsint + 2te”
and the particular solution that satisfies x(0) = 1.

clearly in the linear form of (4.15) if we rewrite it as

i ion is more - .. .
This equat’o? ! tart to find the solution by rewnting the equation

x' = (sinf)x+2te” ' Againwes

as —¢ost?

x — xsint = 2te

i i i / — —(sint)u. A solution
This time a(¢) = sint, s0 the integrating factor satisfies u (sint)

18 — [sintdt __ peost

u(t)y=e¢

Ther (€>'x () = ! (x' — xsint) = 2t.

I[ntegrating, we get

x(£)e"® = Z[tdt = +C.

Therefore, the general solution is
x(t) = (12 + Ce” ™", (4.23)
The particular solution we want satisfies x(0) = 1, so
1=Ce! or C=e
Thus the solution to the initial value problem is

x(r) = (> +ee

—cost )
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EXAMPLE 4.24 & Find the general solution to

EXAMPLE

4.26 o

x' = xtant +sint,

and find the particular solution that satisfies x (0) = 2.
Rewrite the equation as

x’ — xtant = sint.

Then a(r) = tant¢, so an integrating factor is
u(t) = e—ftantdl - eln(cost) = cos L.
Multiplying by the integrating factor, we get
(xcost) =cost(x' —x tant) = costsint,

SO

2
cOs“t
*lic

x(t)cost =/costsintdt= —

Finally, we divide by cos ¢ to get

cost C
i)y =—+—.
2 cos ¢
This is the general solution. To find the particular solution with x(0) = 2, we
substitute this into the formula for the general solution and compute that C = 5/2.
Thus our particular solution is

(4.25)

o cost + 5
x(t) = ——— .
2 2¢cost

*

An alternate solution method

There is another method of solving linear equations that you might find easier to
remember and use. Let’s begin with an example.

Find the general solution of
y'=-2y+3. (4.27)

First, the solution to the associated homogeneous equation, y;, = —2yj is y; =

Ce™%. Replace the constant in the homogeneous solution with v = v(¢), a yet to be
determined function of ¢, so

y(t) = v(t)e . (4.28)

Then we substitute this expression for y into the inhomogeneous equation (4.27)
and solve for v.

(ve ?) = =2(ve ) + 3
2ve ¥ +ve = 20e7 +3
v = 3% (4.29)

32t
- = _|._
V= —¢ C
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Finally, substitute this last result into equation (4.28) to obtain the general solution
of equation (4.27).

3
y = (%ez’—l—C) e'z’=§+Ce_2’ *

Notice that the derivation in (4.29) left us with a formula for v, whicl} we only
needed to integrate to find v. It is fair to ask if this always happens. Let’s look at

the general case. '
We want to solve the linear equation

y =a@)y+ f1). (4.30)
We start by solving the associated homogeneous equation
Yh = a(O)yn- (4.31)
According to (4.4), a solution 18
V() = el 2O, (4.32)

Notice that this is a particular solution to the homogeneous gquation. In addition,
notice that because of its exponential form the function y, () is never equal to zero.
Hence we can safely divide by it. If y(¢) is any solution to (4.30), we can define

v(t) = _yﬁ)_ sothat  y(£) = v(t)ya (D).
Yr(t)
This is the key idea. We write an arbitrary solution to (4.30) in the form
y(1) = v(®)ya(D). (4.33)

The function v is as yet unknown. It is what is sometimes called a variable parame-
ter, and this method is called variation of parameters. To solve for v we substitute
the expression for y in (4.33) into the differential equation (4.30). We get

(vyn) =a(uyn) + f or
vy, + vy = avyy + f.

Remember that y; is a solution of the homogeneous equation (4.31). Hence, y; =
ayy, and proceeding, we get

avyy + v'yp = avyr + f,

vk =/, (4.34)
12 f
Vo=
Yh

From this, we can compute v by integration.

Use variation of parameters to find the general solution of

x' = xtant + sin¢, (4.36)

which we solved in Example 4.24.

2.4 Linear Equations

We can proceed either as we did in Example 4.26, or we can use (4.33) and

(4.34). We choose the latter technique. The associated homogeneous equation is
X, = X tant,
which has solution
xp(t) = 1/cost.

Hence we look for a solution of the form x — vx,. According to (4.34)

b1

we have
, sin ¢
v(t):iz =sintcost.
xp  1/cost
Hence
2
v(t) = /sinzcostdt = —00; ! + C.
Finally, our solution is
2
COs~ 1
x(1) = v(Oxp() = (— + C) /cosr = _Lost + ¢
2 2 cost’
which agrees with our previous answer. *

Structure of the solution

In (4.33) we wrote an arbitrary solution to the inhomogeneous linear equation

Y=ay+f
in the form
Y1) = v()y, (1),
where
(o) = el o

is a particular solution to the associated homo

. eneous equati ;
ing to (4.34), g quation and where, accord

Vi) = f@0/ () = fne T

Performing the integration, we see that

v(l)Z/f(t)e_f”md’dz+C_

We have added the constant C to this formula to em
stant of integration.

Hence, we can write an arbitrary solution as

phasize the presence of a con-

y(0) = v()ya(t)
= y(?) / F0e Ta0d g & Cy ). (437

Notice how the constant of inte

gration C appears in this formula. Tt i i
of the solution y, P a. Itis the coefficient

to the associated inhomogeneous equation.
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If we pick a particular solution y,(7), it will be associated with a particula
value of the constant C, say C,, so that

yp(t) = yu(t) f fye TN g 4 CLvy (). (4.38)

Comparing (4.37) and (4.38), we se¢ that the difference of the two solutions to the
inhomogeneous equation is

y(t) - yp(l) =(C —~ C,;))’h(l)-

Thus, the difference v — y, is a constant multiple of y, and is itself a SOlutt;](;It] ‘tﬁ
the h’omogeneous equation. Furthermore, if we set A =C-C,, wesee

arbitrary solution y can be written as
y(1) = yp() + Aya(0).

. . » fine
Thus, we have demonstrated the following result, showmg how the constant Of 1
tegration appears in the general solution to a linear equation.

HEOREM 4.39

Suppose that y,, is a particular solution to the inhomogeneous equation
y =a@)y+ f@),

. . en

and that y, is a particular solution to the associated homogeneous equation. Th
[ N ’

every solution to the inhomogeneous equation 1s of the form

y(1) = yp(1) + Anp (), (4.40)

where A is an arbitrary constant.

................

EXERCISES |
In Exercises 1—12, find the general solution of each first-order, linear equation.
Ly+yv=2 2.y —3y=5
3y +Q2/x)y= (cos x)/x* 4, y' + 2ty =5t
5.0 =2¢/(t+ D=+ 1D? 6. tx' =dx +1! o
7. (L4 x)y +y=cosx 8. (1+xHy =3xry+x"+x
9. L(di/dt)+ Ri = E, L, R, E real constants

10. y' = my + ¢ e™*, m.c real constants
11. v = cosx — ysecx.
! =e't" itive integer
12. x' — (n/)x = €'t", napositive In ‘ |
13. (a) The differential equation y' + ycosx = cosx is linear. Use the technique
of this section (integrating factor) to find the general solution. .
(b) The equation y’ + y cosx = COsX is also separable. Use th_e separation oli
variables technique to solve the equation and discuss any discrepancies (1
any) between this solution and the solution found in part (a).

24 Llinear Equations 63

In Exercises 1417, find the solution of each initial value problem.
4. y' = y+2xe™, y0) =3

15. (x> + D)y +3xy = 6x, y(0)=—1

16. (1+17)y +dty=0+)"2 y(1)=0

17. X'+ xcost = %sinZz, x(0) =1

In Exercises 18-21, find the solution of each initial value problem. Discuss the
interval of existence and provide a sketch of your solution.

18. xy' +2y =sinx, y(@/2)=0

19. Qx+3)y' =y +Qx+)2, y=H=0

20. y' =cosx — ysecx, y(0) =1

2. (M +1)x" + x =cost, x(—m/2) =0

22. The presence of nonlinear terms prevents us from using the technique of this

section. In special cases. a change of variable will transform the nonlinear
equation into one that is linear. The equation known as Bernoulli’s equation,

¥ =ax + f(Ox", n#£0,1,

was proposed for solution by James Bernoulli in December 1695. In 1696,
Leibniz pointed out that the equation can be reduced to a linear equation by
taking x'~" as the dependent variable. Show that the change of variable, ; =

£ will transform the nonlinear Bernoulli equation into the linear equation
d=U=-ma®)z+ 1 -n)f@).

Hint: If z = x'~" then dz/dt = (dz/dx)(dx/dt) = () — n)x "(dx/dt).

In Exercises 23-26, use the technique of Exercise 22 to transform the Bernoulli
equation into a linear equation. Find the general solution of the resulting linear

equation,
23y +x7ly =xy? 24 y'+y=)?
25. xy' +y =x%y? 26. P'=qP — bhP’
27. The equation
dy
dt
where ¥, ¢, and x are functions of 7, is called the generalized Riccati equation.

In general, the equation is not integrable by quadratures. However, suppose that
one solution, say y = yj, is known.

+ Yy + ¢y +x =0,

(a) Show that the substitution y = y; + 7 reduces the generalized Riccati equa-
tion to

dz
de
which is an instance of Bernoulli’s equation (sce Exercise 22).

+ Cniy + @)z + ¥zt =0,
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Prohlems

(b) Use the fact that y; = 1/1 is a particular solution of

2

dr_ 1y,

dr 12

to find the equation’s general solution. -
ining 1000 individuals. A flu ep1-
that you have a closed system containing 0 indi :
2 3;25? S:Earts Zet N (z) represent the number of infected 1nd1v1§uals mdt}.xe ;lq:ﬁld
in hat the rate at which the number of infecte individu-
system at time ¢. Assume t : : e e and
i ing is joi 1 to the number of infected 1ndiv
als is changing is jointly proportiona 0
i indivi . Furthermore, suppose that w
he number of noninfected individuals Furthe that :
;ﬁsivei;uals are infected, the rate at which individuals are.becommg mfcted Ills1
90 individuals per day. If 20 individuals arc infected at tlmhe t= t()h,a:vthe;r;ev&;re
i i int: The assumption here 1s
of the population be infected? Hint '
22;7; health)? isdividuals and sick individuals. Furtherrpore, the resulting model
can be solved using the technique introduced in Exercise 22.

29. In Exercise 35 of Section 2, the time of dpath of a murdgr v1ct1md1ih<ifit(tekr1{cmnrzt%
using Newton’s law of cooling. In particular, it was dlii:oalf;r% . pOsepwe
portionality constant in Newton’s lavy was k = In(5/4) ~ 0.22 .mrepOf RO
discover another murder victim at midnight Wltk} a blodyotempega.S et a
However, this time the air temperature at m}dmght.ls .0 C., 2n Rl lling o ¢
constant rate of 1°C per hour. At what time did the victim die? (Reme

the normal body temperature is 37°C.)

In Exercises 30-35, use the variation of parameters technique to find the general
solution of the given differential equation.

3.y +2y=5
330y 4y =4
35. v+ 2xy =4x

30. yy = -3y +4
3.y +(2/x)y =8
3. X' +2x =t

In Exercises 3641, use the variation of parameters techniq}le to find the genzr;l 1srcl)g
lution of the given differential equation. Then find the particular solution satisty

the given initial condition.
3.y ~3y=4. y0)=2
38. y+y=¢, yO=1
40. x' — 2/1Hx = 1/1%,

v0)y=1
y(0) =-1
x(0)=1

37. V+(/2)y =1,
39, y 4 2xy =207,

x(1)=0 41 (2+D)x' +4dix =1,

Consider a lake that has a volume of V = 100 km”. It is fed by a n'v}i:r thzliltl rijlg\a(/;
into the lake, and another that is fed by the lake at a rate which keeps the vo_eS oo
: i iver i hich we assume vari
onstant. The flow of the input river is r(t), w : !
;?r?l;ak\;’ec will measure time in years. The units for the input ﬂov.v are km /yea{‘tllln
addiéion there is a factory on the lake that introduces a pollutant into the lake at the

rate of 2 km®/year.

EXAMPLE 5.1 o

Figure 1 The tank in
Example 5.1.

3 gal/min
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Using the methods we discuss in this section, we can model how the amount of
pollutant in the lake varies with time. We can then make intelligent decisions about
the danger involved in this situation.

The problems we will discuss are called mixing problems. They employ tanks,
beakers, and other receptacles that hold solutions, mixtures usually containing water
and an additional element such as salt. While these examples might appear to be
inane, they should not be underestimated. They take on an urgency when the tanks
and beakers are replaced with the heart, stomach, or gastrointestinal systems, or
indeed by the lake mentioned earlier. We will return to the lake in the exercises.

We will illustrate the principles involved in a series of three examples.

A tank currently holds 100 gal of pure water. A solution containing 2 Ib of salt per
gallon of solution enters the tank at a rate of 3 gal/min. A drain is opened at the

bottom of the tank so that the volume of solution in the tank remains constant. How
much salt is in the tank after 60 min?

Let us begin by letting x(z) represent the number of pounds of salt in the tank
after 1 min. Consequently, dx /dt represents the rate at which the amount of salt is
changing with respect to time. It is very important to note that this rate is measured
in pounds per minute (Ib/min). Paying close attention to the units will increase your
success rate with mixture problems.

The rate at which salt is changing inside the tank is increased by the rate at
which salt is entering the tank and decreased by the rate at which salt is leaving
the tank. This idea leads to a classical balance law, which says that the net rate of

change of salt in the tank equals the rate at which salt enters the tank, minus the rate
at which salt is leaving the tank.

X .
—— = rate 1n — rate out
dt
Of course, the units must match on each side of this balance law, so dx /dt, the rate
in, and the rate out must each be measured in pounds per minute (Ib/min).
Let’s examine the rate at which the solution enters the tank. Solution enters the

tank at a rate of 3 gal/min. This is the flow rate. The concentration of salt in this
solution is 2 Ib/gal. Consequently,

rate in = flow rate x concentration
= 3 gal/min x 2 Ib/gal
= 6 Ib/min.

The rate at which salt leaves the tank is a little trickier. We still have
rate out = flow rate x concentration.

Since the volume is kept constant, we know that the solution leaves through the drain
at the bottom of the tank with a flow rate of 3 gal/min, but what is the concentration
of saltin the water leaving the tank?

At this point, the modeler must make some assumptions in order to continue.
Often, these first assumptions are pretty crude, but they do allow the modeler to
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continue toward a “solution” of the problem. The modeler gnkl‘st .thzrilszzgg:g 3,(1):;
i ity roblem situation. eis
well his results match the reality of the p ituat ' stied wit
3 blem, revise his assumptions, and try again,
the results, then he must return to the pro ) :
repeating this cycle until he constructs a model that adequately reflects the reality
f his problem situation. ' . ‘ .
° S(E) for our first assumption, we will assume that the mixture in the tank Is
“instan’taneously mixed” at all times. Granted, this is probab;y lnot an }alcc(:nt'flt; ilje
i it i i i implifies the model enough s
arting point and simplifies
sumption, but it is a good sta nd s| nodel enough 5o ihas we
i S he solution is perfectly mixed, .
can begin to get some results. If t y mi soncentre
i i : i is calculated by dividing the amoun
tion of salt in the tank at any time 7 is calcu 0L .
the tank at time ¢ by the volume of solution in the tank. The concentration at time f,
c(t), is given by

x(1)
= —— lb/gal.
()= 150 &

We can now determine the rate at which salt is leaving the tank.

. x(t) 3x(t) ]
rate out = 3 gal/min x 10 Ib/gal = <00 1b/min
Our discussion has led us to the differential equation
4x = rate in — rate out
dr
3x
dx _g_ 2%
dt 100

This equation is linear, having the form dx/dt = a(t)‘x + f'(t), s0 we c;m use
the technique of Section 2.4 to find its solution. First, we find an integrating factor,

- 37100
u(t) :e—f( 3100y dr __ /100

Next we multiply both sides of dx/dt + 3x/100 = 6.by the inFegr_ating factordandt
note that the left-hand side of the resulting equation is the derivative of a produc
(check this).

' 317100
L3100 (dx N 3x ) — 60 o (e¥/10) = M1,

dr ' 100

We integrate both sides of this equation to get

600
G100, /6(33’/“)04’1 — _3,631/100 e

To get the general solution, we solve for x:
x(1) =200+ Ce /M

Recall that 100 gal of pure water were present initially. The.re.fore', there was ng
salt present in the tank initially, so x(0) = 0. This initial condition is used to fin

our integration constant.
0 = x(0) =200 + Ce>'1® =200+ C

EXAMPLE 5.2 o

3 gal/min

Figure 2 The tank in
Example 5.2,

| gal/min
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Consequently, C = —200 and our final solution is
xX(r) = 200 — 200¢ ¥/100,
To find the amount of salt present in the tank after 60 min,

x(60) = 200 — 20030100 167 1. *

A 600-gal tank is filled with 300 gal of pure water. A spigot is opened above the
tank and a salt solution containing 1.5 Ib of salt per gallon of solution begins flowing
into the tank at a rate of 3 gal/min. Simultaneously, a drain is opened at the bottom
of the tank allowing the solution to leave the tank at a rate of | gal/min. What will
be the salt content in the tank at the precise moment that the volume of solution in
the tank is equal to the tank’s capacity (600 gal)?

This problem differs from Example 5.1 in that the volume of solution in the tank
ts not constant. Indeed, because the solution enters the tank at a rate of 3 gal/min and
leaves the tank at a rate of | gal/min, the tank begins to fill at a net rate of 2 gal/min.
Remember that the initial amount of solution in the tank is 300 gal. Consequently,
the volume of solution in the tank, at any time ¢, is given by V (r) = 300 + 2r.

This said, the solution of this example now parallels that of Example 5.1. The
rate at which the salt enters the tank is given by

rate in = 3 gal/min x 1.5 Ib/gal = 4.5 Ib/min.

If we again assume that the solution is “instantaneously mixed,” then the concentra-
tion of the solution in the tank is given by
X x{r
() = (1) _ (1)
Vi) 300+ 2t
Therefore, the rate at which salt leaves through the drain at the bottom of the tank is
given by

Ib/gal.

t t
rate out = | gal/min x O Ib/gal = X0 Ib/min.
300 + 2t 300 + 2r
The balance law now yields
dx .
—— = rate in — rate out,
dt
dx 5 X
dr 300+ 2t

This fast equation is linear, and the technique of Example 5.1 and Section 2.5 can
be brought to bear to calculate the following solution.

x(t) =450+ 31 + C(300 4 21)'/?

Again, the tank is filled with pure water initially, so the initial salt content is zero.
Thus, x(0) = 0 and

C
/ann’

0 = x(0) =450 + 3(0) + C (300 + 2(0))"1/2 = 450 +
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PLE 5.3

hks in

Consequently, C = —4500+/3 and
x(2) = 450 + 31 — 45005/3(300 + 2¢)~'/2.

We are left with the business of finding the salt content at the moment that the
solution in the tank reaches the tank’s capacity of 600 gal. The equation V() =
300 + 2t will produce the time of this event.

600 = 300 + 2t
¢ = 150 min
Hence the final salt content is
x(150) = 450 + 3(150) — 4500v/3(300 + 2(150)) /> ~ 582 Ib. *

Consider two tanks, labeled tank A and tank B. Tank A contains 100 gal of solutiqn
in which is dissolved 20 Ib of salt. Tank B contains 200 gal of solution in which is
dissolved 40 Ib of salt. Pure water flows into tank A at a rate of 5 gal/s. There is
a drain at the bottom of tank A. Solution leaves tank A via this drain at a rate of 5
gal/s and flows immediately into tank B at the same rate. A drain at the l?ottom of
tank B allows the solution to leave tank B, also at a rate of 5 gal/s. What is the salt

content in tank B after 1 minute?

If we let x(¢) represent the number of pounds of salt in tank A aft_cr t second.s,
then dx/dt represents the rate at which the salt content is changing in tank A (in
1b/s). We again reference the balance law,

dx .
— = rate in — rate out.
dt
Because pure water flows into tank A, the rate at which salt enters tank A is

rate in = flow rate x concentration
= 5 gal/s x 0O Ib/gal
=0.
Solution enters and leaves tank A at the same rate (5 gal/s), so the volume of solution

in tank A remains constant (100 gal). Once more we assume “perfect mixing,” so

the concentration of the salt in tank A at time ¢ is given by

t
X0y gal,
100

Consequently, the rate at which salt is leaving tank A is given by

calt) =

x(t 1
rate out = 5 gal/s x —18—3 Ib/gal = %x(t) Ib/s.

Substituting the rate in and the rate out into the balance law yields a differential
equation defining the rate at which the salt content is changing in tank A.

dx 1

dt 20"
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Because there is initially 20 1b of salt present in the solution in tank A, x(0) = 20.
Now, let’s turn our attention to tank B. The rate at which salt enters tank B is
equal to the rate at which salt is leaving tank A. Consequently,

1
rate in = —x lb/s.
ate in 20)( b/s

:Solution enters and leaves tank B at the same rate (5 gal/s), so the volume of solution
in tank B remains constant (200 gal). Assuming “perfect mixing,” the concentration
of salt in tank B at time ¢ is given by

t) = —= 1b/ .
CB( ) 20 Ib gal

Consequently, the rate at which salt is leaving tank B is given by

y(1) 1
rate out = 5 gal/ — —
gal/s x 00 b/gal 4-Oy(t) 1b/s.

Subst'ituting the rate in and the rate out into the balance law yields a differential
equation defining the rate at which the salt content is changing in tank B.

dy 1 1
dr 20" " 40”
Because there is initially 40 Ib of salt present in the solution in tank B, y(0) = 40,
Our discussion has led us to the system of first-order differential equations

dx 1

dar _%x’ 5.4)
dy 1 1

ar 20" w0 (5.5)

with initial conditions x(0) = 20 and y(0) = 40. Systems of equations will be a
major topic in the remainder of this book. However, because of the special nature
of this particular system, we do not need any special knowledge to find a solution,
We can solve equation (5.4) for x, then substitute the result into equation (5.5). This
will allow us to solve (5.5) with a minimum of difficulty.

Equation (5.4) is separable, so we can separate the variables

dx_ ldt
x 20

integrate, and solve for x, finding
x(t) = Cie7"/?0.
The initial condition x(0) = 20 yields C, = 20, so

x(1) = 20e™"/9, (5.6)
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We now substitute equation (5.6) into equation (5.5) and simplify to obtain the

equation

1
Ay _ gm0 _ (5.7)
dt 40

This equation is linear, and u(f) = ¢'/% is an integrating factor. Multiplying both
sides of equation (5.7) by u, we get

(61/40y)/ — % (i_\; + Zlay> — /% (e~z/20).

Integrating and solving for y, we get

et/40y = —4067,/40 + C?, or
y(t) = —40e™ + Cre™" Y.

The initial condition y(0) = 40 yields C; = 80 and
y(1) = —40e /20 1 80e . (5.8)

Finally, we can use equation (5.8) to find the salt content in tank B at ¢ =
1 min = 60 seconds, finding that
y(60) = —40e €072 1 80e~ /0 ~ 15.91b. .

................

EXERCISES |
1. A tank contains 100 gal of pure water. At time Z€ro, a sugar—water sol.ut1on

containing 0.2 1b of sugar per gallon enters the tank at a rate of 3 gal per mmute_.
Simultaneously, a drain is opened at the bottom of the tank allowing Fhe ;ugz;lr
solution to leave the tank at 3 gal per minute. Assume that the solution in the
tank is kept perfectly mixed at all times. .
(a) What will be the sugar content in the tank after 20 minutes?
(b) How long will it take the sugar content in the tank to reach 15 Ib?
(c) What will be the eventual sugar content in the tank?

2. A tank initially contains 50 gal of sugar water having a concentration of 2 12
of sugar for each gallon of water. At time Zero, pure water b.eg%ns pourl(;xg mh
the tank at a rate of 2 gal per minute. Simultaneously, a drain is opene att 13
bottom of the tank so that the volume of the sugar-water solution In the tan
remains constant.

(a) How much sugar is in the tank after 10 minutes? ‘ .
(b) How long will it take the sugar content in the tank to dip below 20 1b?

(c) What will be the eventual sugar content in the tank?

3. A tank initially contains 100 gal of water in which is dissolved 2 Ib of salt. A
salt-water solution containing 1 1b of salt for every 4 gal of solution enters the
tank at a rate of 5 gal per minute. Solution leaves the tank at the same rate,
allowing for a constant solution volume in the tank.
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(a) Use an analytic method to determine the eventual salt content in the tank.

(b) Use a numerical solver to determine the eventual salt content in the tank and
compare your approximation with the analytical solution found in part (a).

- A tank contains 500 gal of a salt-water solution containing 0.05 Ib of salt per

gallon of water. Pure water is poured into the tank and a drain at the bottom of
the tank is adjusted so as to keep the volume of solution in the tank constant.
At what rate (gal/min) should the water be poured into the tank to lower the salt
concentration to 0.01 Ib/gal of water in under one hour?

- A 50 gal tank initially contains 20 gal of pure water. Salt-water solution con-

taining 0.5 Ib of salt for each gallon of water begins entering the tank at a rate of
4 gal/min. Simultaneously, a drain is opened at the bottom of the tank, allowing
the salt-water solution to leave the tank at a rate of 2 gal/min. What is the salt
content (Ib) in the tank at the precise moment that the tank is full of salt-water
solution?

- A tank initially contains 100 gal of a salt-water solution containing 0.05 1b of

salt for each gallon of water. At time zero, pure water is poured into the tank
at a rate of 2 gal per minute. Simultaneously, a drain is opened at the bottom
of the tank that allows salt-water solution to leave the tank at a rate of 3 gal per
minute. What will be the salt content in the tank when precisely 50 gal of salt
solution remain?

. A tank initially contains 100 gal of pure water. Water begins entering a tank

via two pipes: through pipe A at 6 gal per minute, and pipe B at 4 gal per
minute. Simultaneously, a drain is opened at the bottom of the tank through
which solution leaves the tank at a rate of 8 gal per minute.

(a) To their dismay, supervisors discover that the water coming into the tank
through pipe A is contaminated, containing 0.5 1b of pollutant per gallon
of water. If the process had been running undetected for 10 minutes, how
much pollutant is in the tank at the end of this 10-minute period?

(b) The supervisors correct their error and shut down pipe A, allowing pipe B
and the drain to function in precisely the same manner as they did before the
contaminant was discovered in pipe A. How long will it take the pollutant
in the tank to reach one half of the level achieved in part (a)?

- Suppose that a solution containing a drug enters a bodily organ at the rate a

cm?/s, with drug concentration « g/em’. Solution leaves the organ at a slower
rate of b cm?/s. Further, the faster rate of infusion causes the organ’s volume to
increase with time according to V(1) = Vy + rt, with Vj its initial volume. If
there is no initial quantity of the drug in the organ, show that the concentration
of the drug in the organ is given by

ax Vi (b+ry)/r
c(t) = 1 — .
b+r Vo +rt

. A lake, with volume V = 100 km?, is fed by a river at a rate of r km3/yr. In

addition, there is a factory on the lake that introduces a pollutant into the lake at

the rate of p km®/yr. There is another river that is fed by the lake at a rate which
]
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10.

11.

12.

13.

keeps the volume of the lake constant. This means that the rate of flow from the

lake into the outlet river is (p + r) km*/yr. Let x(¢) denote the volume of the

pollutant in the lake at time ¢, and let c(t) = x(1)/V denote the concentration
of the pollutant.

(a) Show that, under the assumption of immediate and perfect mixing of the
pollutant into the lake water, the concentration satisties the differential
equation

pt+r D

C= —.
1% Vv

(b) It has been determined that a concentration of over 2% is hazardous for the
fish in the lake. Suppose that = 50 km3/yr, p = 2 km?®/yr, and the initial
concentration of pollutant in the lake is zero. How long will it take the lake
to become hazardous to the health of the fish?

d+

Suppose that the factory in Exercise 9 stops operating at time 1 = 0 and that
the concentration of pollutant in the lake was 3.5% at the time. Approximately
how long will it take before the concentration falls below 2%, and the lake is no
longer hazardous for the fish?

Rivers do not flow at the same rate year-around. They tend to be full in the
spring when the snow melts, and to flow more slowly in the fall. To take this
into account, suppose the flow of the input river in Exercise 9is

r =50+ 20cosu(t — 1/3)).

Our river flows at its maximum rate one-third into the year (i.., around the first
of April) and at its minimum around the first of October.

(a) Setting p = 2, and using this flow rate, use your numerical solver to plot
the concentration for several choices of initial concentration between 0%
and 4%. (You might have to reduce the relative error tolerance of your
solver, perhaps to 5 x 10~'2.) How would you describe the behavior of the
concentration for large values of time?

(b) It might be expected that after settling into a steady state, the concentra-
tion would be greatest when the flow was smallest (i.e., around the first of
October). At what time of year does it actually occur?

Consider two tanks, labeled tank A and tank B for reference. Tank A contains
100 gal of solution in which is dissolved 20 Ib of salt. Tank B contains 200 gal
of solution in which is dissolved 40 Ib of salt. Pure water flows into tank A at a
rate of 5 gal/s. There is a drain at the bottom of tank A. Solution leaves tank A
via this drain at a rate of 5 gal/s and flows immediately into tank B at the same
rate. A drain at the bottom of tank B allows the solution to leave tank B at a
rate of 2.5 gal/s. What is the salt content in tank B at the precise moment that
tank B contains 250 gal of solution?

Lake Happy Times contains 100 km? of pure water. It is fed by a river at a
rate of 50 km>/yr. At time zero, there is a factory on one shore of Lake Happy
Times that begins introducing a pollutant to the lake at a rate of 2 km’/yr. There
is another river that is fed by Lake Happy Times at a rate which keeps the
volume of Lake Happy Times constant. This means that the rate of flow from
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Lake Happy Times into the outlet river is 52 km3
. . m”/yr. In turn, the flow from thj
IoJutlet river goes Into another lake, Lake Sad Times, at an equal rate. Final};ls
ake Sad Tlmes feeds another outlet river at a rate that keeps the volume ¢
Lake Sad Times at a constant 100 km?. - o

(a) Find the amount of pollutant in Lake Sad Times at the end of 3 months

(b) At the end of 3 months, observers close the factory due to environmental
concerns and no further pollutant enters Lake Happy Times. How long will
it take fgr the pollutant in Lake Sad Times (found in part (a)) to be fut i
half? Hint: Plot the solution of pollutant versus time for positive time "

14. Two t.aI:lkS, tank I and tank II, are filled with V gal of pure water. A soluti
containing a Ib of salt per gallon of water is poured into tank I at a'rate of 2 lorl1
per minute. The solution leaves tank I at a rate of b gal/min and enters tankgEIlI
at the same rate (b gal/min). A drain is adjusted on tank IT and solution leave
tank II at a rate of b gal/min. This keeps the volume of solution constant in bot}?

tanks (V gal). Show that the am ion i
: V gal). ount of salt solution in tank II, as i
time 7, is given by aV — abte=®/V) _ gy o=/ V) (s function of
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EXAMPLE 6.2 o

In this section, we will consider differential equations that can be written as

dy
P(x, — =
(. y) + Qlx, V=0, (6.1)
:vhcf:r;P and Q are tunctions of both the independent variable x and the dependent
ariable y. This is a very general class of differential equations. As usual, a so-

lution will be a differentiable functi i i
! ‘ ction y(x) defined for x in an int
equation (6.1) is satisfied at each point in the interval. erval. such that

The differential equation

dy
xy+— =0
Y dx
. 2
has‘ Ehe func?lon y(x) = e™*/% as a solation on the whole real line. This can be
verified by direct computation, since y'(x) = —xe~*"/2 = —Xy *

Differential forms and differential equations

It will be convenient when dealing with differential equations of the generality cov-

ered by equation (6.1) to use the lan i i
. : . guage of differential forms. A dj; ]
in the two variables x and y is an expression of the type ) erential form

o= P(x.y)dx + Q(x, y)dy, (6.3)

where P and Q are functi i
difforemtiate 0 nctions of x and y. The simple forms dx and dy are called

Suppose that y = y(x). Then dy = y’ : o
differential form  in (6.3). we get y = y'(x)dx. If we substitute this into the

Plx,y)dx+ Q(x,y)dy = (P(x, y) + Q(x,y):—j%) dx.
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Thus, if y is a solution to the differential equation
dy 4
P(x,y)+Q(x,y)E=0, (64)

we also have 3
P(x,y)dx + Q(x, y)dy = 0. (6.5)

For this reason, we will consider (6.5) as another way of wri.ting the .differc.aﬁtit;i;
equation in (6.4). The differential form variant of a differential equation wi
used systematically in this section.

Solution curves and integral curves
Consider the differential equation

dy__i

w=xdx +ydy=0, or =y
This equation has solutions defined implicitly by the equation
x24+y'=C. (6.6)

This can be verified by differentiating formula (6.6) with respect to x, getting
2x +2yd—y =0, or xdx+ydy=0.
dx
Of course, we can solve (6.6) for y, obtaining two solutions
y(x) = £V C —x? 6.7)

fined for |x| < VC. .
« nThis ex|ar|nple illustrates some features that we V\éant t(z) point to becgusle thii/l
apply more generally. First, the level set defined by x + y- = C is the circ ehw1f
center at the origin and radius /C. (See Figure 1.) This levejl s(e6t 17$)n(r}t hthe ngl;z;ﬂ " ;)haa;
1 i i lutions in (6.7). This
function, but it contains the graphs of both of }he solu : s ¢
tlli: (1:e1\(/):1 set contains two solution curves, which motivates the following definition.

Yy Y .
A A
X * !
x4y:=C yx)y=/C=x? Yy =-vC-x

Figure 1 _The integral curve defined by (6.6) and the solution curves in (6.7).
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DEFINITION 6.8 Suppose that solutions to the differential equation (6.1) or
(6.4) are given implicitly by the equation

F(x,y)=C.

Then the level sets defined by F(x, y) = C are called integral curves of the
differential equation.

Thus, we have shown that an integral curve can contain two or more solution
curves as illustrated in Figure 1.

Exact differential equations

To be as general as possible in our approach, we will look for general solutions
to (6.4) or (6.5) that are defined implicitly by equations of the form

Fx,y)=2C, (6.9)

where C is a constant. Setting y = y(x) in (6.9) and differentiating with respect to
x, we gett

aF  3dF dy oF ar
dx ay dx o ax * ay Y (©.10)

Thus, functions defined implicitly by the equation F (x, y) = C are all solutions

of the differential equation in (6.10). We will give equations of this type a formal
definition.

DEFINITION 6.11 The differential of a continuously differentiable function
F is the differential form

aF aF
dF = —dx + — dy.
ax dy

A differential form is said to be exact if it is the differential of a continuously
differentiable function.

Let’s point out explicitly that the differential form P dx + Q dy is exact if and
only if there is a continuously differentiable function F(x, y) such that

oF oF
dF = —dx+ —dy = Pdx + Qdy.
ax dy
This means that the coefficients of dx and dy must be equal, or
oF oF
— =P — = . .
ix (x,y) and 3y Q(x, y) (6.12)

*In this section, we will frequently use results and methods of multivariable calculus. This is the only
section in this chapter where that is true.
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i ' 3y =
E6.13 ¢ Solve the equation 2x dx + 4y’ dy = 0.

i ion, it 1 i o discover
Because the variables are separated in the equation, it 1s not difficult t

e dxt+y") =2xdx + 4y* dy.
xdx + 4y dy is exact. Furthermore, the gen-

. . 2
Consequently, the differentia) form o 2 0'ie given by

: 3
eral solution to the equation 2x dx + 4y° d .
2+yt=C.
i i tial equa-
Example 6.13 illustrates that it is quite easy to solve an exact differen q
tion. However, two questions come to mind.

+ Qdy, how do we know if it is exact?

1. Given a differential form & = Pdx ch that dF =

2. If a differential form is exact, is there an easy way to find F su
Pdx+ Qdy?

Both of these questions are answered in the next result.

tinuously
i ial form where both P and @ are con

— Pdx + Qdy be adifferential

[HEOREM 6.14 Letow

differentiable.

(a) If w is exact, then ap ~ 8_Q_
5; T x

(b) If aP B,Q
_8; T oax

i i — dF in R, where
in a rectangle R, then w is exact 1n R. More precisely, o = d

F(x,y)is defined for (x, y) in R by the formula

F(x,y):fP(x,y)dx+¢(y), (6.15)
and ¢ satisfies

9 (6.16)

! : - — Ly)dx.

¢'(y) = Qx.y) 5 f P(x,y)dx

Proof To prove (a), suppose that @ = d F. Then
OF _p aa E_p. (6.17)
ox 3

so F is twice continuously differen-

Both P and Q are continuously differentiable, - vatives of F are equal. Conse-

tiable. This means that the mixed second-order de
quently,

EXAMPLE 6.18
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To prove (b), we need to find a function F satisfying both equations in (6.17). If

we integrate the equation 3 F/3dx = P, then by the fundamental theorem of calculus,
we must have

Fx,y) = / P(x,y)dx + ¢ (y),

where ¢ is a function of y only. This is equation (6.15). In this formula [ P(x,y)dx
represents a particular indefinite integral, and ¢ (y) represents the constant of inte-

gration. Since we are integrating with respect to x, this “constant” can still depend
on y.

To discover what ¢ is, we differentiate F as given in (6.15) with respect to y.

aF B ,
e —/P(x,>’)dX+¢ ).
dy  dy

The second formula in (6.17) says that 3 F /3y = Q, so we see that ¢ must satisfy
, a
¢ () = Qxy) 5/P(x, V) dx.

This is equation (6.16), and it can be solved by integration provided that the function
on the right does not depend on the variable x. The hypothesis of our theorem
guarantees that this is true. To see this, it suffices to show that the derivative of the
function on the right with respect to x is zero. We have

9 9 _80 a4
- (Q(m)— 5/P(x,y)dx) -2 (ay/mx,y)dx)

The statement of Theorem 6.14 gives us a method for solving exact equations.
Let’s look at an example,

Show that the equation e” dx + (xe” — sin y)dy = 0O is exact and find a general
solution.

Since

, 0 i .
—e =e’ = —(xe’ —siny),

dy dax

we know the equation is exact. To tind a general solution, we need to find a function
F(x, y) such that

— =¢ and — =xe’ —siny.
dx ay ¥
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We solve the first equation by integrating. getting
Fx,y) = /e"' dx +¢(y) =xe’ +o(y).

i GF /9y = xe¥ — siny, we get
Differentiating with respect 1o y, and using that dF/dy = xe y
xe¥ —siny =xe’ +¢'(¥).

Therefore. ¢'(y) = —siny, which has solution ¢ (y) = co0s y. Finally, F(x,y) =
xe' + cos’ y, and solutions are given implicitly by

‘ *
F(x,y) = xe' +cosy =C.

LE 6.19 & Isthe equation —y dx +xdy =0 exact?

In this case, P(x, y) = —y and Q(x.y) = x. Hence
. 30
P | and ==L
ay ax

ion 1 L 4
Since these are not equal, the equation 1s not exact.
Solutions and integrating factors
Now let’s look at a differential equation .
P(x.y)dx+Q(x.y)d)‘ =0, (6.

hich may or may not be exact Again we will Jook for general solutions that are
which m: ; .
defined implicitly by equations of the form

— (6.21)

WherSe S icfsi ;Olftifl(;) is defined by (6.21). Differentiating (6.21) with respect to
upp = g

X, we get
oF dFdy _0. or d_y:_aF/E)x' 6.22)
ox | dydx dx 9F /0y
On the other hand, notice that if y(x) is a solution to (6.20), we have
dy __Foy) (6.23)
dx Q@)
Comparing (6.23) with (6.22), we see that y is a solution provided that
aF/ox 5
oF /0y 0’
or
Lir_ 10E 20
P ox Q dy
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If we let pt = p(x, y) be defined as this common factor, we have

aF oF

— =P d — = .
oy — MP an By nQ
Then

iy dF
dF = de + ‘Tdy =uPdx+pQdy = pow.
x dy

This shows that pw is exact. Let’s make a definition.

DEFINITION 6.25 An integrating factor for the differential equation

w = Pdx + Qdy = 0is a function wu(x, y) such that the form Hw =
lx, yIP(x, yydx + u(x, y)Q(x, y)dy is exact.

We have shown that every differential equation for which there is a general

solution of the form F(x, y) = C has an integrating factor. This suggests a strategy
for finding a general solution to a differential equation

Pdx+ Qdy=0.
1. Find an integrating factor y, so that u P dx + nQdy is exact.
2. Find a function F such that d F = u P dx + nQdy.

Then a general solution is given implicitly by F(x, v) = C.

EXAMPLE 6.26 & Consider the equation (x + yYdx — x dy = 0. Show that the equation is not exact
and that 1/x? is an integrating factor. Find a general solution.

Since

8(-l—)—l d 8( )= —1
_ — a —_—f - - —
8yx Y n ox o ’

the equation is not exact. On the other hand, after we multiply the equation by 1/x2,
we get the equation
(x+y)dx dy
oo
x?2 x
For this equation, we have

D (x+yy L9/ 1
ay\ x2 ) x2 ax\ x)°

so the equation is exact and 1/x? is an integrating factor. To solve it, we set
q g g

; d
Fx,y) =f“+x# +é(y) =Inlx| — f +é ().

To find ¢, we differentiate this with respect to y, using the fact that 3 F /3y = —1/x.
We get

1 1
——=——+¢' ),
X X
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¢'(y) =0, and we can take ¢ (y) = 0. Consequently, our general sO
so¢’'(y) =0,

y
F(x.y) =In|x| =

I hlS can l)f: c lly SO ed O SO lt (6] solution as
1V f T y, €

y(x) = xInjx| - Cx.

reassuring to know that

gy in what follows. It is K ne.

but as we will see, it is not always easy t
%2 is not at all obvious.

We will exploit this strate

. <t
integrating factors always exist,
Evei in Example 6.26, the choice of 1/

Separahle equations
A differential equation of the form

P(x)dx + Q(y)dy =0
d. The coefficient P depends only on x, sO W€

i C = here
implicitly by the equation F(x,y) = C,wher
F(x,y)= f P(x)dx+ &),

is said to have its variables separate

and

8 { = .
ww=mw—5fmmw—Qm

Hence ¢(y) = [ Q(y)dy and
F(x,y):fP(x)dx+fQ(y)dy‘

is said to be separable if there is an integrating
© rtant are equations of the type

6.27)

factor

A differential equati.o ‘
that will separate the variables. Most impo

dy _px)
dx gy

1n differential notation, this becomes

PO g —dy = 0.
q(y)

Multiplication by the integrating factor g(y) yields
p(x)dx —g(y)dy =0,

«hich has its variables separated.
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EXAMPLE 6.28 o Solve the equation —y dx + x dy = 0.

EXAMPLE 6.31 o

In Example 6.19, we showed that the differential equation —ydx +xdy =0
is not exact. However, this equation is separable. If we multiply this equation by
1/xy, we get

dx d
Ty o 6.29)
x oy

Consequently, we can write down the solution using (6.27). To avoid problems with
division by zero, we must stay away from where x = 0 or y = 0. Let’s stay in the
first quadrant where both x and vy are positive. Then (6.27) becomes

F(x.,y) :—/i—x+ L;—) =—Inx+Iny = [n(y/x).
Thus, our general solution is In(y/x) = C.

This can be written more conveniently by exponentiating. Then with A = &€
we get y = Ax as our general solution. Of course, this solution is only valid where
both x and y are positive, but we can redo the analysis in each quadrant and we get
the same formula. Hence y = Ax is indeed the general formula, and the solution
curves are simply the straight half-lines through the origin. *

Separable equations are dealt with in some detail in Section 2.2, so we will not
spend any more time on them here.

Finding integrating factors

Although an integrating factor exists whenever there is a general solution, this fact
and its proof do not give us any insight into finding an integrating factor. In fact,
there is no general procedure for finding integrating factors. Finding them is a
genuine mathematical art.

One general way to search for an integrating factor starts from the criterion for
cxactness that we found in Theorem 6.14. Suppose w = Pdx + Q dy and we want
to find p such that pw = P dx + nQ dy is exact. According to Theorem 6.14, 1
must satisty

3 3
oy WP = r D (6.30)
y ox

This is a partial differential equation for . However, we only need to find one
solution, and sometimes we can make assumptions about 4 that make this equation
simpler. Here’s an example where this process is successful.

Solve the equation
(xy —2)dx + (x* — xy)dy = 0.

In this case, P/dy = x and 8Q/dx = 2x — y, so the equation is not exact.
Multiply both sides of the equation by an undetermined integrating factor.

plxy —2)dx + pu(x? — xy)dy = 0
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In order that this equation be exact, we need

9 (I
@(u(xy—'l))=z—);(u(x xy)), oOf

8—‘i(xy -2+ px = E.)—Mf(x2 — xy) + px = V).
ay ax

1al di i ation simplifies under
i tial differential equation simplifies
P e func lone. Then this simplifies to

i any other reaso .
Without any that p is a function of x a

the assumption, let’s assume
px = = xy) + p2x =y
u(y —x) = uwxx =y

w 1

wox
Hence we have arrived at an ordinary differential ejq_uat'ion for (;; v:/l;a}t( Il}r(l)\\/;)lt\t/:: i()Snzllir1
the variable x. Tt is solved by Inp = — lnx,or t = — /x,an

L on
integrating factor. Multiplying by u, we get the exact equatt

(y—%> dx + (x —y)dy =0

X

Thus, 7
- ) = 21 + o (¥).
F(x,y) = / (y - ;) dx + o(y) =Xy n x|

To find ¢, we differentiate with respectto y. using 0F Jdy = x — V-

x—y=x+¢Q) or ¢ () =—y

A solution is @(¥) = —y2/2, and the general solution is given implicitly by

F(x,y) =Xy —2lInix|— }12/2 =C.

We were pretty lucky in Example'6.3;. :

i i i tor that is a funclt
equation has an integrating fac : :

cgndition on P and Q that must be satisfied in order t(lilat s

can be found. With the assumption that p does not epen

becomes ap dn 40
p—=—-0+ T
ay X ox
Solving for the derivative of u, we get
dpu _ 1 (?ﬁ - ?2) W (6.32)
ax 0 \dy 9x

This differential equation for i w:111 have
independent of v only if the quantity

ay ax

0

¢
1t is not always true that a differen.tial
ion of only the variable x. There is a

uch an integrating factor
d on y, equation (6.30)

a solution that depends only on x and 18

1 <8P 8Q> 633)
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does not depend on the variable y and is a function of x only. If this is so, and we
let £(x) denote the quantity in (6.33), then to find the integrating factor p(x), we
solve the equation

du
dx
This equation is separable, and we find that a solution is

hu.

’[,L(x) — efh(x)dx'

Of course, we can also explore for the possibility that there is an integrating
factor that depends only on the variable y. In this case, equation (6.30) becomes

du 1 (8P 3Q
dy ~ P\ay ix "

Now to have a solution that is a function only of v, it is necessary that the quantity

1 /0P 3Q
P\ dy dx
depends only on the variable y. If this is true and we denote this quantity by g(v),

then the function
p(y) = e~ J8Ody

is an integrating factor.

Linear equations

Linear equations are equations of the special form
dy

Tx =ax)y + f(x). (6.34)
x

The key point is that both y and its derivative appear to first order, and not in any
more complicated way. Written as a differential form equation, this is

—(a(x)y + f(x)) dx +dy =0.

For this equation, the quantity in (6.33) simplifies to —a(x), which is a function
of x only. According to equation (6.32), we can find an integrating factor by solving
the equation

du )
— = —a\x .
dx #
This is a separable equation and has solution
ju(x) = e~/ e dx,

which is an integrating factor for the linear equation in (6.34).

Linear equations are discussed in some detail in Section 2.4, There we found
the same integrating factor in a different way. We will not spend more time on linear
equations here.
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LE 6.35 ¢

Homogeneous equations |
A function G(x, y) is homogeneous of degree n if
G(tx,ty) =1"G(x,y)

for all # > 0 and all x # 0 and y # 0. Thus the functions

_ - 2 2
In(y/x), 2x° 3x2y + 2xy2 y3, and x24y
x2 + yZ ’

are homogeneous of degrees —2, 0, 3, and 1, respect )
x4+ xy, sin(x), In@x+y+1D), and x —y—

jvely. The functions

are not homogeneous.
differential equation
A Pdx+Qdy=0 f
i ous 0
3 the coefficients P and Q are homogene
e o enation n be put into a form in which they can
here v is a new variable. Let’s look at

is said to be homoge .

the same degree. Homogeneous equations ¢a
i titution y = xv, W

be solved by using the subs : .

an example first and then we will examine the general case.

=0i ous and find a solution.
Verify that (x? + y*) dx + xy dy = 0 is homogene

uation is ho-
Both x2 + y? and xy are homogeneous of degree 2, so the eq e

. O — o
mogeneous. To solve the equation, we make the substitution y
dy = vdx + x dv, so the equation becomes

(2 + x2%) dx + x*v(vdx +xdv) = 0.
After canceling out the common factor +2 and collecting terms, this becomes
(1+ 2v*)dx + xvdv =0
Although this is not immediately solvable, it is separable. The integrating factor
1
x(1+209)
transforms the equation into the equation
dx vdv

— =0.
X + 1 + 202

ing, we get
Integrating g In [ 4+ (1 + 2w =k,

where k is a constant. If we multiply by 4 and exponentiate, this becomes
A+t = =C.
Substituting v = y/x, we get our final answer

2
42y =C.

pe—— . . o in Sec-
) i tion with a completely different meaning in
term homaogeneous differential equa ] ) ing in Sec-
5‘We2h :Ve[}lrffc?rtilsa::ly both \fsages have become standard. The meanings are sufficiently di
tion 2.4. ,

you should not have any difficulty, but keep your eyes ope.
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In working this example, we did two things. First we made the substitution
= xv, and then we looked for an integrating factor that will separate the variables.

These two steps will serve to find the solution for any homogeneous equation. To
see this, let’s start with

P(x,y)dx + Q(x, y)dy = 0,

where P and Q are both homogeneous of degree n. We make the substitution
Yy = xv, and we get

P(x, xv)dx 4+ Q(x, xv) (vdx + x dv) = 0.

The homogeneity means that Px,xv) = x"P(l,v) and Q(x, xv) = x"Q(1, v).

Using this, dividing out the common term x”, and collecting terms, our differential
equation becomes

(P(1,v)+vQ(1.v))dx +xQ(l, v)dv = 0.
We recognize that the integrating factor
1
x(P(1, vy +vQ(1,v))

will separate the variables, leaving us with the equation

dx 4 0, v)dv

x TPLutvony Y (6.36)

This equation has separated variables, so it can be solved. Finally, we substitute

y/x to put the answer in terms of the original variables. This verifies that
the method works in general. However, when working problems of this type, it is
usually better to make the substitution y = vx and then compute with the result,
rather than remember the formula in (6.36).

U =

................

EXERCISES
In Exercises 1-8, calculate the total differential dF for the given function F,
L F(x,y)=2xy+y? 2. F(x,y) =x?~xy+y?
3F.y) =2y 4 Fx,y)=1//xT5y2

5. F(x,y) =xy+tan~I(y/x) 6. F(x,y)=In(xy) + x2y?

7. Fx,y) =In(x* + y?) + x/y 8. F(x,y) =tan ' (x/y) + y*

In Exercises 9-21, determine which of the equations are exact and solve the ones
that are.

9. Cx+y)dx + (x —6y)dy =0
10. (1 — ysinx)dx + (cosx)dy =0

11. (1+%) dX—-%dy:O




First-Order Equations

X y
T dx+ ——=—=d
12. /XZ + y;’ /x2 + y2
dy 3x2+y
13. ol 32— x
dy X
4, — =
! dx x—Y
15. (u + v)du + (u —v)dv
2u d
d
16. u? 4 v° du -+ u? + v*?
dr Ins
17. ds r/s —2s
dy 2—y/u
18, & = ———
du Inu

19. sin2rdx + 2xcos2t —21)dt =0
2 4y _

20. 2xy? 4 4x? +2x%y = 0

21, 2r +Iny)dr +rydy =0

- i iply by the
In Exercises 22-25, the equations are not exact. HOIVVCVEI', if you :il'llllllp Yy by
given intevrating factor, then you can solve the resultlng exact equation.
=S
1

22. (y? —xy)dx +x2dy=0, plx.y)= x—v—z

]
23. (¢3y? - Dyde + (1 +xtyHxdy =00 pixy) = -2
y+1

4

24. 3(y + D dx —2xdy =0, plx,y) = "

25, (x2 4+ y? —x)dx —ydy =0, uix, y) = m
i i is a function
) — ) = tegrating factor thatis a
that y dx+ (x*y—x)dy = Ohasanin :

- ilf]ipgls(?nc (i g @ = p(x)]. Find the integrating factor and use it to solve the
differential equation. ' . .
S se that (xy — 1)dx + (x> — xy)dy = O has an 1qtegrat1ng factor thgttés

2 al]fﬁﬁgsion of x alone [i.e., u = p(x)]. Find the integrating factor and use it to
solve the differential equation. . .

) = i ting factor that is a function
t2vdx -+ (x + y)dy = 0 has an integra .

. i? I;IP:;)IS()entehz[ii e.'v U= /(L(y)]. Find the integrating factor and use it to solve the
differential equation. . ' |
Suppose that (y? + 2xy)dx — x*dy = 0 has an integrating factor that .1tsta

. ft?lfcption of y alone fi.e., p = p(y)]. Find the integrating factor and use it to
solve the differential equation.
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30. Consider the differential equation 2y dx 4+ 3xdy = 0. Determine conditions

on a and b so that p(x, v) = x“y” is an integrating factor. Find a particular
integrating factor and use it to solve the differential equation.

The equations in Exercises 31-34 each have the form P(x, y)dx+ Q(x,y)dy = 0.
In each case, show that P and Q are homogeneous of the same degree. State that
degree.

3 (x+y)dx + (x —y)dy =0

32. (x —xy —y)dx + 4xydy =0

3. (x—V/x¥+y2)dx —vdy =0

3. nx —Iny)dx+dy=0

Find the general solution of each homogeneous equation in Exercises 35-40.

35, (x* + ¥ dx —2xydy =0 36. x+y)dx+(y—x)dy=0
d.V xz + 2

37, Bx + y)dx +xdy =0 38 Yy

dx  xy? —2x3
40. (y+2xe ™ )dx —xdv=0
In Figure 2, a goose starts in flight ¢ miles due east of its nest. Assume that
the goose maintains constant flight speed (relative to the air) so that it is always
flying directly towards its nest. The wind is blowing due north at w miles per

hour. Let (x, y) denote the position of the goose in the coordinate frame shown
in Figure 2. 1t is easily seen (but you should verify it yourself) that

39, xy =2y? — 42
41.

dx

T —vgCcosh,
dy 09
—— = w — yysind.
dr v

vp cos 6

0.0

—p 1
(a. )

Figure 2 The geometry in Exercise 41.
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(a) Show that

, A Y
dy _y- kv + ¥ 637)
dx X

where k = w/ vy, the ratio of the wind speed to the speed of the goose.

(b) Solve equation (6.37) and show that

=107 -0)"

(¢) Three distinctly different outcomes are possible, each depending on the
value of k. Find and discuss each case and use a graphical program to
depict a sample flight trajectory in each case.

An equation of the form F(x, y) = C defines a family of curves in the plane. Fur-
thermore, we know these curves are the integral curves of the differential equation
aF dy oF [OF

dy=0 or — =

[ — (6.38)
3y dx dx [/ oy

dF
dF = —dx +
ax

A family of curves is said to be orthogonal to a second family if each member of
one family intersects all members of the other family at right angles. For example,
the families y = mx and x* + y? = ¢* are orthogonal. For a curve y = y(x) to be
everywhere orthogonal to the curves defined by F(x,y) = C.its derivative must be
the negative reciprocal of that in (6.38), or

dy OF [dF

dx oy /] ax
The family of solutions to this differential equation is orthogonal to the family de-
fined by F(x, y) = C.
42. Find the family of curves that is orthogonal to the family defined by the equation
y? = cx and provide a sketch depicting the orthogonality of the two families.
43. The equation x* + y? = 2cx defines the family of circles tangent to the y-axis
at the origin.
(a) Show that the family of curves orthogonal to this family satisfies the differ-
ential equation

(b) Find the orthogonal family and provide a sketch depicting the orthogonality
of the two families.

Knowing an integrating factor exists and finding one suitable for a particular equa-
tion are two completely different things. Indeed, as stated previously, finding an
integrating factor can be a genuine mathematical art. However, certain differential
forms can remind us of differentiation techniques that may aid in the solution of the
equation at hand. For example, seeing x dy + y dx reminds us of the product rule,
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asmd(xy) =xdx+ydy i i
. Y, and x dy — y dx might bring to mi imilari
quotient rule, d(x/y) = (ydx — x dy)/ y2. In the equatigon minda simiarity o the

xdy+ ydx +3xy*dy =0,

we are again reminded of the i i
L again product rule. In fact, if you multiply the equation by

o +3ydy =0,

d(lnxy)+3ydy =0,

Inxy + ;yz =C.

. 9 . . . -
g

44, — 20,2
4: xdx+ydy=y*(x*+y*)dy  Hin: Consider d(In(x% + y2)).
»xdy —ydx = y3(x2 4+ v?) dy Hinr: Consider d(tan~!(y/x)).
46. xdy+ ydx =x"y"dx, m #n—1
47. —~ydx = (x?
%dy ydx = (x> 4+ y))2(xdx + ydy) Hint: Consider d(x? 4 y?2)2
48. (xy + D(xdy — ydx) = yi(xdy + yvdx) o4

49. (x* =y (xdy + ydx) = 2xy(x dy — ydx)
50.

Hinr: Consider d(In(xy + 1)).

?hl;gbl;ta :ltu'atectil at a point in a plane sends out beams of light in all directions
$ in the plane meet a curve and are all reflected parallel to a line in thé

y=y)

-~

Figure 3 The reflector in Exercise 50.

(a) Show that tan @ = tan 2, then use trigonometry to show that
y 2y’

Pl (6.39)
(b) Use the quadratic fi 1 o
. ratic formula to solve equation (6.39), then s i
] . : : 39), olve th
first-order differential equation to find the equation of the reﬂecglfgsél\}trl\f:eg

Hint: You may want to m i
try so 4-4 .
colution e of Exercises 44-49 before attempting this
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plutions of (7.2)
0,0).

First-Order Equations

e and Unigueness of Solutions

We have now discovered how to solve a few differential equatioc;ls exp_lﬁ:at_lzéoz]’\;?
ions t be solved explicitly, and we will di
have also seen a few equations that canno : : . : !
that, unfortunately, most differential equations are of th1§ type.hIn thlsds;:it(;?ll;l :)vw
" i erties of solutions when we
begin the study of methods to discover prop . . Know
thfig solution explicitly. We will start with two very basic questions about an 1n1t1

value problem.
o When can we be sure that a solution exists at all? ,
+ How many different solutions are there to a given initial value problem’

These are the questions of existence and uniqueness.

Existence of solutions
We will start with an example.

Consider the initial value problem

tx' = x +3t2, with x(0)=1. (7.2)

The equation is linear and we find using Theorem 4.39 that every solution is of

the form \
x(t) = 3t + Ct, (7.3)

for some constant C. Notice that these solutions are.deﬁned for all valu;:ls of If,
including + = 0, and that x(0) = O for every solution. Furthermore, they are

solutions to (7.2) even for ¢ = 0. Consequently, if we Yvant to solye (7.2)]'1'WI'thi:?:1
initial condition x(0) = 1, we are out of luck. There is no solution to this in

value problem! (See Figure 1.) *
Initial value problems like that in Example 7.1 are anomalies. We recall that an
equation of the form
x'= f(t,x) (74)
is said to be in normal form. The reason for t.he nonexistence in Exgmple 71.31 beg{iﬁ:
to appear if we put the differential equation into normal form by dividing by ¢.
resulting equation,

.x/ == lx + 3t7 (7.5)
t

makes no sense at 7 = 0, since the coefﬁcieqt 1/t has an inﬁmtfa dlscont1nlu1grglte}:;

Most of the equations that we deal with are in normal.form. Itis 1e)f(trrfrrlnehytums hat

an equation that arises in applications cannot be put into p(})lrmg te0 Ce.

that for equations in normal form there 18 httl; problem .Wlt exis nl R defined by
We will assume that the function f(¢, x) is defined in a rectang 1:;1 cfined by

a <1 <b,and ¢ < x < d. Given a point (1o, ‘xg) € R, we want to know 1 s

a solution to (7.4) that satisfies the initial condition

x(fo) = Xg.
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THEOREM 7.6 (Existence of solutions) Suppose the function f(z, x) is defined and continu-

/{;})\

a t b

Figure 2 A solution to x'= f(t, x)
with x(4;) = x, exists in both
directions until it leaves the
rectangle R.

EXAMPLE 7.7 o

ous on the rectangle R in the tx-plane. Then given any point (7, xo) € R, the initial
value problem

x'=f(t,x) and x(19) = xq

has a solution x(¢) defined in an interval containing #,. Furthermore, the solution
will be defined at least until the solution curve t — (t, x(1)) leaves the rectangle R.

S

The results of Theorem 7.6 are illustrated in Figure 2.

Notice that it is required that the equation be written in normal form as displayed
in (7.4). Thus, in order to apply the theorem to an equation like that in (7.2), we first
have to put it into normal form, as we did in (7.5). For the case in (7.5) the function
on the right-hand side is

Fl,x) = §+ 3,

Since f is discontinuous when ¢ = 0, the existence theorem does not apply in any
rectangle including points (7, x) with + = 0. Hence, the nonexistence of a solution
to the initial value problem does not contradict the theorem.

On the other hand, according to the theorem the only condition on the right-
hand side is that the function f(z, x) be continuous. This is a very mild condition,
and it is satisfied in most cases.

The interval of existence of a solution

We defined the interval of existence of a solution in Section 2.1 to be the largest
interval in which the solution can be defined. Let’s examine what Theorem 7.6 has
to say about this concept.

Consider the initial value problem
x'=1+x* with x(©0)=0. (7.8)

Find the solution and its interval of existence.

The right-hand side is

fa,x)=1+x7
which is continuous on the entire tx-plane. Hence we can take our rectangle to be
the entire plane (@ = —o0, b = 00, ¢ = —00, d = 00). Does this mean that the

solutions are defined for —o00 < 1 < 00?

Unfortunately it is not true, as we see when we find that the solution to the
initial value problem is

x(t) =tant. (7.9)

Notice that x(¢) = tant is discontinuous at t = +7 /2. Hence the solution to the
initial value problem given in (7.8) is defined only for ~m/2 < t < m/2, so the
interval of existence of the solution is the interval (—m /2, 71/2). 4
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ution to
) = O becomes

bt /2.

LE 7.10 o

The last sentence in the existence theprem says that 'solutlonz 1067252811?;13)1;2?1
lution curve leaves the rectangle R. In this case the solution curve 1¢: throueh
the f f R ast — /2 from below, since x(#) — oo there. In addition,

glfotgghothe I;lattom as t — —ir/2 from above, since x(z) ;> —ooi.c i'tl;hfez) zl;est?lgzrgl

i ¢ rectangle R through any o : ,

o tha:hseo i)l:fllo?hglﬁgvtisatc ?2111?11‘;)232;1. Nevert%leless, it is important to reahzcﬁ tl}iiet

bult tt']at 1ssto veryynice equations, such as that in (7.8), can approach ﬂ:og 112: n;elm
:;)ml:loﬁ cannot be assumed that solutions exist for all values of the indep

i e facts are illustratcd in Figurg 3 -
VarlaAblseEI:sple 2 shows. the interval of existence of a solution cannot usually be

i ll \"% (0]
y y
€ ()f a S()]uti()” iS '() l”l(l an f:X])l[( it f()]lllllla I()I ‘Ilf: S()lll‘l()]l.

interval of existenc o orval of

At best, the existence theorem gives an interval that is a subset
existence.

Existence for linear equations
Linear equations have the special form

x =a()x + g().
This means that the right-hand side is of the special form

ft, x)=a()x + g@).
If a(z) and g(¢) are continuous on the interval b < t < c, the function f is contin-

- oo. In this case,
uous on the rectangle R defined by b < ¢ < ¢ @d 00 < X fhat < In s cae.
a stronger existence theorem can be proved, which guarantees

over the entire interval b <t < c.

Existence when the right-hand side is discoatinuous

There are times when the right-hand side of the 'equatlon in (7.4) 1s dslscoélg?lt]}?:se
yet we will want to talk about a solution to the initial value problem. Som

examples are important in applications as well.

~ Consider the initial value problem

y'=-2+f0
y(©0) =3,

a.11

where 0, ifr <1
5, otherwise.

f@)= l
Here f(¢) has a discontinuity at 1 = 1. Nevertheless w:a will ;eek'?h“ffgsﬁg :
iti tionis y = —2y wi
initial value problem. For0 < ¢t < 1, the equa ' -2y wi e
tczrltclfitlircl)ll?y 0) = g The solution in this smaller interval is y(¢) = 3e™%. Ats = 1,

we have y(1) = 3e™2.

7

Figure 4 The solution to the
initial value problem in
Example 7.10.
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Having found the solution up tot = 1, we now are left with a new initial value
problem for 7 > 1, namely

14

y ==2y+5
y(1) =3e 2.

This is a perfectly respectable initial value problem and can be solved easily. The

solution is y(t) = 5/2 + (3 — 5¢%/2)e*". Thus the initial value problem has a
piecewise defined “solution”

(l)~ 3€~2t7
= 524 3= se e,

forr < 1.

fors > 1. (7.12)

The function defined in (7.12) solves the differential equation in (7.11) every-
where except at t = [, and it is continuous everywhere. The solution is shown in
Figure 4. As might be gathered from the sharp peak in Figure 4, y fails to have a
derivative at t = 1. Example 7.10 shows that therc are cases whea the hypothesis of
Theorem 7.6 are not satisfied, yet solutions to initial value problems are desirable.
In cases that arise in applications, the equation is linear,

X' =al)x + f(0),

and the only discontinuity is in the f(7) term. In situations like this, we will agree
to accept as a solution a continuous function x(¢) that satisfics the equation except
where £ is discontinuous, 2

Uniqueness of solutions

It is interesting to contemplate the existence theorem in conjunction with the phys-
ical systems that are modeled by the differential equations. The existence of a so-
lution to an ordinary differential equation (ODE) simply reflects the fact that the
physical systems change according to the relationships modeled by the equation.
We would expect that solutions to equations that model physical behavior would
exist. Next we turn to the question of the number of solutions to an initial value
problem. If there is only one solution, then the physical system acts the same way
cach time it is started from the same set of initial conditions. Such a system is there-
fore deterministic. If an equation has more than one solution, then the physical
responsc is unpredictable. Thus the uniqueness of solutions of initial value prob-
lems is equivalent to the system being deterministic. It is not too much to say that
the success of science requires that solutions to initial value problems be unique.

Before we state our uniqueness theorem, we present an example that shows that
Wwe must restrict the right-hand side of the equation

X = f(t,x)

more than we did in the existence theorem in order to have uniqueness. Consider
the initial value problem

(7.13)

X' =x3 with x0) =o0. (710
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This is a separable equation, and you are encouraged to find a so
notice that

Jution. First we

x(t)y=0

is a solution. Next we define

20\ *?
— , t>0
y(t)y = (3)

O, r<0.

It is easily verified by direct substitution that y 18 alsp a §olution to (7.14})}((311’1’1((())1)]gf
technically it is necessary to use the definition of derivative to calculate that y =

0.

X

0.6 y 0.6¢ y (1)

x (1) .

- | -1
-02 —02%

Figure 5 Two solutions to the initial value problem in (7.14).

Thus. we have two solutions to the initial value problem (7.14) (see Figure 5).

i 173 is conti S refore satisfies the hy-
Notice that the function f(z, x) = x'/? is continuous and the

pothesis of the existence theorem. Consequently, we w1

ioht-hand side of (7.13) to ensure uniqueness. . .
> ttEl?hre:guniqueness theorem will follow easily from the following theorem, which

we will find useful in other ways.

Il need a stronger condition

'THEOREM 7.15

of .
i 1 i ivative — th continugus on
Suppose the function f(¢, x) and its partial derivative pp are bo
the rectangle R in the fx-plane and let
af
M = max ( a

(1.x)eR

Suppose (¢, xo) and (fo. yo) are in R and that

xX'(t) = f@t,x(), and x(1) = %o
V() = f(t, y(), and y() = Yo

Then as long as (7, x(¢)) and (¢, y(£)) belong to R, we have

L(£) ~ YOI < Ixg — yole L.
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The theorem provides an estimate of how much two solutions, x(7) and y(r),
to the same differential equation can differ depending on how close together their
initial values are—this is the |xo — yy| term—and on how far we are from the initial
points—this is the M=%l term. The special case when the initial values are equal is
of most interest to us at the moment. In this case, we have Xo = Yo, 50 |xg — yo| = 0.
Hence the theorem implies that |x(f) — y(¢)| < 0 for all ¢. Since the absolute value
is always nonnegative, we must have x(r) — y(&) =0,0rx(¢t) = y(¢) for all 1. This
is the uniqueness theorem, and we will state it separately.

EXAMPLE 7.17 o

THEOREM 7.16 (Uniqueness of solutions) Suppose the function f(r, x) and its partial deriva-

tive df/0x are both continuous on the rectangle R in the tx-plane. Suppose (fy, xp) €
R and that the solutions

x'=f@t,x) and y = f(@,y)

satisfy
x(1p) = ylty) = xo.

Then as long as (¢, x(¢)) and (¢, y(z)) stay in R, we have

x(t) = y(1).

There are several ways to look at the uniqueness theorem. The simplest is
just to rephrase the statement of the theorem. Roughly it says that, under suitable
hypotheses, two solutions to the same equation that start together stay together. The
upshot of this is that through any point (fy, xo) € R, there is only one solution curve.

It is important to realize that any point in R can be the starting point. For
example, suppose we have two solutions x(¢) and ¥(1) to the same equation in our
rectangle R and at some point ¢ the two agree, so x(f)) = y(f;). We can take r, as
our starting point (relabel it £, if you wish), and the uniqueness theorem says that
the two solutions nmust agree everywhere.

Consider the equation
x'=(x — 1)cosxtr

and suppose we have a solution x (¢) that satisfies x(0) = |. We claim that x() =1
for all 1. How do we prove it?

The key fact is the observation that y(7) = 1 is also a solution to the equation as
we see by direct substitution. We have x(0) = y(0) = 1, so the uniqueness theorem
implies that x(f) = v(r) = 1 for all r. ¢

This example illustrates a very typical use of the uniqueness theorem. The
tricky part of the example was the solution y(r) = 1, which we apparently pulled
out of a hat. This particular hat is available to everyone. The trick is to look for
solutions to a differential equation that are constant functions. In this case, we
looked for a constant ¢ such that

(c—1)cosct =0 forallzt.
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Clearly we want ¢ = 1. Then the constant function x(t) = ¢ (in our case, x(1) = 1)
is a solution to the differential equation.

Let's go over the more general case. We are looking for constant solutions
x(1) = c to the equation

x'= f(t, x). (7.18)

On the left-hand side we have x' = 0, since x(f) = ¢ is a constant function. To have
equality in (7.18), the right-hand side must also be equal to 0. Hence we need

ft,c)=0 forallz, (7.19)

Thus, to find constant solations x (¢) = ¢, we look for constants that satisfy (7.19).

Geometric interpretation of uniqueness

The uniqueness theorem has an important geometric interpretation. Let’s look at the
graphs of the solutions—the solution curves. If we have two functions x(¢) and y(7)
that satisfy x(f) = ¥(t) = xo at some point, then the graphs of x(¢) and y(r) meet
at the point (fy, xg). If in addition we know that x(¢) and y(¢) are solutions to the
same differential equation, then the uniqueness theorem implies that x(t) = y(t)
for all 7. In other words, the graphs of x(¢) and y(1) coincide. Stated in a different
way, two distinct solution curves cannot meet. This means they cannot cross each
other or even touch each other.

The geometric view of the uniqueness theorem illustrates how knowledge of one
solution to a differential equation can give us information about another solution
that we do not know as well. In Example 7.17, we discovered that y(r) = lisa
solution to

y = (y—1)cosyt.

Now consider the solution x of the initial value problem

x = (x—1Dcosxt, x(0)=2.

Is it possible that x(2) = 0?

If x(2) = 0, then since x(0) = 2 there must be some point # between 0 and
2 where x(ty) = 1. This is an application of the intermediate value theorem from
calculus, but it is most easily seen by looking at the graphs of x and y in Figure 6.
Thus, to get from the initial point (0, 2) to (2, 0), the graph of x must cross the graph
of y. The uniqueness theorem says this cannot happen. Consequently, we conclude
that x(2) # 0.

In fact, the same reasoning implies that we cannot have x(¢) < 1 for any value
of 1, and we conclude that

x(t) > 1 forallt.

Geometrically we see that the graph of x must lie above the graph of the solution y.
Thus, knowledge of the solution y(t) = 1, together with the uniqueness theorem,
gives us information about the solution x, or about any other solution.

In Figure 6, the numerical solution for the solution x is shown, verifying that
its solution curve lies above the graph of y(r) = L.
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0,2)

x = x(1)

y() =1

-4

Figure 6 The solutions to the initial value problems in
Example 5. Solution curves cannot cross, so x(2) # 0

Th . .
fOl]OWSe g:ometrlc' fact that solut_lon curves cannot meet will be important in what
SOluﬁon. ; curlye in the plane divides the plane into two separate pieces, so an
e erve mll(ns the space available to any other. This simple fact w;171 be ex)—l
P etomms of Is(l;rrl:r[hable variety of ways. When we study higher order equations and
. an one equation, this geometric int i
simply because curves in dimensi i 0 o mot divide sy e made
sions bigger than two do not divi :
arate parts. If there is a third dimensi i s oo
parts. ension available, it is al i
that direction to get around any curve, Hspossil
Compqter—drawn pictures can sometimes be misleadin
ness. Cor'181der the solution curves in Fi
the equation x” = x*—1. It seems as tho
right-hand part of the figure. However,

pace into sep-
¢ to move into

g with regard to unique-
gure 7. Here we are looking at solutions of
ugh three solution curves merge in the lower

they are only getting very close. In fact, they

X
4

Figure 7 Sometimes solution curves seem to run together.
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are getting exponentially c)o.
ponentially close, but the uniqueness

se. It happens frequently that solution curves get elyl<-
theorem assures us that they never actually

' i i s med to
meetln Figure 8, we magnify a portion of Figure 7 where the curve: dsieset:inct 0
overlap Notice’ that with this magnification, the solution curves ar .

= \
6
t

uniqueness requires.

-2.56

6.6 1

Figure 8 The solution curves can
be separated by magnification.

................

EXERCISES

i initi in Exercises |
Which of the initial value problems in .
tion by the hypotheses of Theorem 7. 167 Justify your answer.

Ly =4+y, yO0=1 2.y =y y&=0
4. @ =wsinw+s., w0)=-1

—6 are guaranteed a unique solu-

3.y =ttan"'y, y(0)=2

t 1
o ]9 hd y i y()
. /— X(O)—-O y -

] i following tasks.
| i | Exercises 7-8, perform each of the
e e e ulution of th rential equation. Sketch several members

- . e
Find the general solution of the di |
@ of the family of solutions portrayed by the general solution.

ii) Show that there is no s ' :
o why this lack of solution does not contradict the existe

8.1y =2y—1, yO)= 2

nce theorem.

7.1y —y= t2cost, y(@) =-3

. - b-
= 13 are both solutions of the initial value prol
= t) = t° ar¢ bo
et y(g)”_v&(/)hzlrl::i yy((()g = 0. Explain why this fact does not contradict

lem y' = 3y
Theorem 7.16.

10. Show that y(#) (
problem y' = ty'/?, where y(0)
Theorem 7.16.

In Exercises 11—
value problem. ‘
(i) Where does your solver‘ experience d
colution to estimate the interval of existence. )

olution satisfying the given initial condition. Explain

i initial value
= = (1/16)* are both solutions of the initial vah
T ey (=/0. Explain why this fact does not contradict

16. use a numerical solver to sketch the solution of the given initial

difficulty? Why? Use the image of your
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(i) For 11-14 only, find an explicit solution, then use your formula to determine
the interval of existence. How does it compare with the approximation found in
part (i)?

= =

ll%=ﬁ%yemﬂ
d

13.d—f=ma Yy =1
d

14'd_i:(7m’ y(0) =1
dy 212

15.d—i=m, ¥(0) = 0
dy .2

16 = o YO0 =3

An electric circuit, consisting of a capacitor, resistor, and an electromotive force can
be modeled by the differential equation

R+ o=, (7.21)

where R and C -are constants (resistance and capacitance) and ¢ = g(t) is the

amount of charge on the capacitor at time f. For simplicity in the following analy-

sis,let R =C = 1, forming the differential equation dq/dt + g = E(). In Ex-

ercises 17-20, an electromotive force is given in piecewise form, a favorite among

engineers. Assume that the initial charge on the capacitor is zero [¢(0) =0].

(i) Use a numerical solver to draw a graph of the charge on the capacitor during
the time interval [0, 4].

(i) Find an explicit solution and use the formula to determine the charge on the
capacitor at the end of the four-second time period.

5, if0<r<?2 0, if0<r <2
17. E(y = {7’ ’ 18. E()y =1 ’
® {0, ift >2 ® l3, ifr>2
2t, f0<t <2 0, if0<r <2
9. Emy=1"" ' 20. E(t)y=1" '
® {0, itr>2 ® {t, ifr =2
21. Consider the initial value problem
Y =3y y(0) =0. (722

It is not difficult to construct an infinite number of solutions. Consider

0, ifr <y,
0= - 23
Yo {(r —10)?, ift > 1, (7.23)
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where 1o is any positive number. It is €asy to calculate the derivative of y(7),
when t # o,

) = 0, ift < 1o, (7.24)
Y= N30 — 12, ift > 1o,

but the derivative at fo remains uncertain.

(a) Evaluate both

t)y — y(to)
. y(t) — y(to) and / = i Z(___;—-—,
/ _ PO }’-(fO) = lm —_
Yy (tO) - Il—lfll(} t—to =1y t fo
showing that
iy =19 ifr < f, (1.25)
YT N3¢ —19)2, ift > 1.

(b) Finally, show that y(t) is a solution of (7.22). Why doesn’t this example

contradict Theorem 7.167
22. Consider again the “solution” of equation (7.11) in Example 3,
3e ¥, fort <1, (7.26)
= 52+ @G- 5¢2/2)e=% forr > L.

(a) Follow the lead in Exercise 21 to calculate the derivative of y (7).

. . . 9
(b) In the sense of Definition 1 from Section 2.1, is ¥(¢) a solution of (7.11)?

Why or why not?
(c) Show that y(t) satisfies equation (7.11) for all t exceptt = 1.

23, Show that

") = 0, forr <0, (1.27)
Y= fore >0

is a solution of the initial value problem 1y’ = 4y, whqre y(0) = 01, in th(;1 setr;ls;:

of Definition 1 from Section 2.1. Find a second solution and explain why

lack of unigueness does not contradict Theorem 7.16. . .
24. Uniqueness is not just an abstraction de_signed to please th_eorencal m:t?ier?l;ilt;
For example, consider a cylindrical drum filled V.Vlth Watedr.t freuts
drain is opened at the bottom of the drum and _the water 1s alloge 0 f}gu have.
Imagine that you come upon the scene and w1tpess an empty drum. Jou hive
no idea how long the drum has been empty. Is it possible for you to a¢
when the drum was full? .

i ical intuition only, sketch several possible graphs f’f the height

@ ngItIIlli [»)\Elzteszic?rll the drum ve}rlsus time. Be sure to mark the time that you

appeared on the scene on your graph.

cians.

25.

26.

27.

28.

29,

30.
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(b) It is reasonable to expect that the speed at which the water leaves through
the drain depends upon the height of the water in the drum. Indeed, Tori-
celli’s law predicts that this speed is related to the height by the formula
v? = 2gh, where g is the acceleration due to gravity near the surface

of the earth. Let A and a represent the area of a cross section of the

drum and drain, respectively. Argue that A Ah = qv At, and in the limit,

Adh/dt = av. Show that dh/dt = —(a]A)/2gh.

By introducing the dimensionless variables @ = ah and s = Bt and then
choosing parameters

a::;ll; and ,3:(%)\/%,

where hg represents the height of a full tank, show that the equationdh/dt =
—(a/A)+/2gh becomes dw/ds = — /w. Note that when w = 0. the tank
is empty, and when w = 1, the tank is full.

(d) You come along at time s = sy and note that the tank is empty. Show that
the initial value problem, dw/ds = —/w, where w(sp) = 0, has an infi-
nite number of solutions. Why doesn’t this fact contradict the uniqueness
theorem? Hint: The equation is separable and the graphs you drew in part
(a) should provide the necessary hint on how to proceed.

(c

~—

Is it possible to find a function f(f, x) that is continuous and has continuous
partial derivatives such that the functions x;(r) = ¢ and x,(f) = sin ¢ are both
solutions to x’ = f (¢, x) neart = Q7

Is it possible to find a function f (¢, x) that is continuous and has continuous
partial derivatives such that the functions x;(f) = cost and x,(¢) = 1 — sin¢
are both solutions to x” = f (¢, x) near t = 7/2?

Suppose that x is a solution to the initial value problem

x'=xcos’t and x(0)=1.
Show that x(¢) > 0 for all ¢ for which x is defined.
Suppose that y is a solution to the initial value problem

Y= -3 and y(1) = 1.
Show that y(¢) < 3 for all ¢ for which y is defined.
Suppose that y is a solution to the initial value problem
Yy =0*=1e” and y(1)=0.

Show that —1 < y(f) < 1 for all 7 for which y is defined.
Suppose that x is a solution to the initial value problem
x = i

T 141242

Show that 0 < x(¢) < 1 for all ¢ for which x is defined.

and x(0) = 1/2.
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31. Suppose that x is a solution to the initial value problem
X =x—1t*+2t and x(0) =1

Show that x(¢) > ¢2 for all t for which x is defined.

32. Suppose that y is a solution to the initial value problem
y =y?—cos’t —sint and y(0) =2.

Show that y(r) > cos¢ for all ¢ for which y is defined.

ence of Solutions on Initial Conditions

Suppose we have two initial value problems involving the same differential equa-
tion, but with different initial conditions that are very close to each other. Do the
solutions stay close to each other? This is the question we will address in this
section. The question is important, since in many situations the initial condition
is determined experimentally and therefore is subject to experimental error. If we
use the slightly incorrect initial condition in an initial value problem, instead of the
correct one, how accurate will the solution be at Jater times?

There are two aspects to the problem. The first question is, Can we ensure that
the solution with incorrect initial data is close enough to the real solution that we
can use it to predict behavior? This is the problem of continuity of the solution
with respect to initial data. The second aspect looks at the problem from the other
end. Given that we have an error in the initial conditions, just how far from the true
situation can the solution be? This is the problem of sensitivity to initial conditions.

Everything we do in this section will follow from Theorem 7.15 in the previous
section. We will analyze its implications when the initial conditions of the two solu-
tions are not equal (i.e., when xg # yo). In this case, Theorem 7.15 provides limits
on how far apart the corresponding solutions can be as the independent variable
changes. It provides an upper bound on how the initial error propagates.

Continuity with respect to initial conditions

Let’s look at a specific example.

MPLE 8.1 ¢ Examine the behavior of solutions to
x' = (x — 1)cost. (8.2)

. )
In this case, f(t, x) = (x — )cost, and -éi = cost. Hence
X

M = max ’l = =1
(tx)eR | Ox
regardless of which rectangle R we choose. Therefore, we may as well take M = 1.
Suppose that we have two solutions x(7) and y(z) of (8.2) with initial conditions
x(tp) = xo, and y(fg) = yo. According to Theorem 7.15, with M =1,

lx () — y()| < 1xo — Yole" ™" forallz. (8.3)
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(8h125) 1;1tlr]lu.stfd'ted in E}gures I'and 2. The black curve in each is the solution to
. ith 1nitial condition x(0) = 0. The colored curves in Figure 1 show the

limits in (8.3) when |xq — < i in Fi
s n G IXo — Yol < 0.1, while those in Figure 2 show the limits when

o

Figure 1 A solution to (8.2) with Figure 2 A solution to (8.2) with

' .

T .
R is _Olt dlie ? c<0nlcrete example, suppose fy = 0 and the 7-dimension of the rectangle
Gx) e ez . (In this case, the x-dimension of R is not important.) Then if
; . we have [t — 1y| = [¢t| < 1, and (8.3) becomes

[x(0) = y(O)] < elxg — yo| iflt] < 1. (8.4)

If
thewiii:\i/aln??fto ensure Fh?t |x(¢) — y(t)| < 0.01 for |t] < 1, we should insist that
al ditference satisties |xy — yo| < 0.01/e. It is clear that we can ensure that

[x(¢) = y(1)] is as small a ish si :
enough. s we wish simply by making sure that (xy — yo| is small
4

Theorem 7.15 of the ious section impli
' ’ 15 previous section implies that what is seen i
1s true 1n general. If R = {(+, x)ja <t <bandc < x < d}, and ifn i the example

dJ
M = max _f((x)
(rver|dx

then for two solutions x(¢) and y(r) we have

L]

(1) = (O] < |xp — yole ! (8.5)
aslongas (1. x(f))and (¢, y i i )
o lone s (1. i ) (¢, y(¢)) stay in the rectangle R. In particular, since |1 — 15| <

| (1) = y(O] < M5y — g,
grrlcsmde(:l that (¢, x(t)) and (¢. v(1)) stay in R. As we did in the example, we can
Surur;lt at |x(t) — ¥(1)| < e by taking [xo — yo| < e™M* ¢ Thys we can be
Ov; th:ti rtlltlgr\t,:]o( Soi)u)tlt?ns stay very close (to be precise, within ¢ of each other)
a. ensuri N L .
el § O[her)_y ring that the initial conditions are very close (within

We sum up these thou i
. ghts by saying that the solutions ¢ i
with respect to the initial conditions. o anOPE are continuous
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Sensitivity of solutions to the initial condition | o
While our deliberations in the preceding section are reassuring, the_ ﬁ(tpgnfr; e uree
in (8.5) is a cause for concern. This term can get extremely large 1 0

For example, if M = 2 and |7 — fo] = 3, then

eMjf*tol = 66 ~ 403 .4,

while if |t — fp) = 10, then

eMU"O[ — 620 = 485 X 108-

Thus. we see that as |t — fo| gets large, the control given by equation (8.5) on the
us,

i tions rapidly gets weaker. .
dlffe(r)efn chuizgheeqsl?;fi(;g (8.5)pis a}rll inequality and therefore provides an upper bound

¢ » ior actuall
to the difference between the solutions. Does sugh worst czll]se ‘behli‘;c; " Sy
o(::cur" The next example shows that it does, and in some of the simp

Consider the exponential equation

X =X.
The solutions with initial values x(fp) = xo and y(&) = Yo are

x(t) =xpe' ™ and y(t) = yoe'°.

Hence
- i
x(1) = y() = (x0 — yo)e' ™. 8.7
Since for the exponential equation x’ = x the right-hand side is
fl,x)=x,

two solutions to
C = 1. We see therefore that the :

ve df/dx = 1. Hence M : uions 0
:;]12 lc:,z)l(ponefn/tia] equation give precisely the worst case behavior Il)rfﬁ,lﬁzebecgmes
inequality in equation (8.5). The difference between the two solu S
exponentially larger as ¢ increases.

i it does
Although this example shows that the worst case beha.wlioil does ;)rclzecrllltri,aitezua_
i ite phenomenon occurs with the exp
ays occur. Quite the opposite p _ s
gz;ailzv w}é let ¢ decrease from ¢g. Then (8.7) shows that Fhe. dlffireniizlbeé\;eomena
solutions actually decreases exponentially. If we are predicting physical p
.. L. ario.
initial conditions, this is the best case scenario. o - .
from/;mtt}l]zlsg examples show, the sensitivity of solutions to 1n1t1ia]l COHSI[]OI.I(Sl 1;11012111n
, ’ e said.
i ity i but beyond that not much can
i e inequality in Theorem 7.15, : at no ! §
g:(allsb }l;;g as al?oweg by Theorem 7.15, but in some situations it can be much bette
Let’s look at a more visual example.
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EXAMPLE 8.8 e Considerthe equation

x' = xsin(x) + 1.
Figure 3 shows solutions to three in
by 2 x 1073, The solution curves
they diverge pretty quickly after th

itial value problems with initial values differing
remain very close for 0 <t < 2. Nevertheless,
at, indicating sensitivity to initial conditions. 4

x(0y = -3.23208

(0) =-3.23209
-2

_ 6T x(0) =-3.23210

Figure 3 Sensitivity to initial conditions for solutions to
X'=xsin(x) + ¢t

Sensitivity to initial conditions is the idea behind the theory of chaos, which

has developed over the past 20 years. In chaotic situations, solutions are sensitive
to initial conditions for a large set of possible initial conditions. In the situations we

have examined, the sensitivity occurs only at a few isolated points. Such equations
do not give rise to truly chaotic behavior.

................

EXERCISES

Sensitivity to initial conditions is well illustrated b

y a little target practice with your
numerical solver. In Exercises 1-12,

you are given a differential equation x’ =
(¢, x) and a “target.” In each case, enter the equation into your numerical solver,
g q y

then experiment with initial conditions at the given value of #y until the solution of
x'= f(t, x), with x (1, x0), “hits” the given target.

We will use a simple linear equation, x" = x — t in Exercises 1-4. The initial
conditions should be at #; = 0. The target is

1. 3,0 2. 4,0
3. (5,0 4. (6,0

In Exercises 5-8, we use a slightly more complicated nonlinear equation, x’ =
X“ — 1. Again the initial conditions should be at fo = 0. The target is

5. (3,0 6. (4,0)
7. 5,0 8. 6.0



ion i "= xsi t. Again the
For Exercises 9-12, we use the equation 1n Example 8.8, x' = xsinx+ g
initial conditions should be at zp = 0. The target is

5. (3.0) 10. (4,0)

11. (5,0) 12. (6,0) | | . .
13. This exercise addresses a very common instance of a mo;:onetrhztn 1§ ls::l:he o
" initi 1 conditions. Flip a coin with your thpmb and forefinger, iy
m“(lia n a pitlow. The motion of the coin 1s governed by a system;) ordinasy
fiailt}fer(z:ntiall) equations. It is not immediate.ly important wha; thbat :1)1,; ienitial. s

ly important to realize that the motion is governed entlr.e y by il con.

ditio s he upward velocity of the coin and the rotauor.@ energy It p ¢
?lt;?I\;sh(éﬁe:x’t tiseﬂig))ped) If the motion were not sensitive to il{unatll clzg;irit;z:,tlo

0 . : : )
ssible to learn how to flip ten heads in a row. 1ry K
:)iv(;) ;]lrlli,b zn%()report the longest chain of he_:gds ﬁo:(l) a;:vibze rt;)nzzl:;et)i.tcome. .
ippi in is often considere : oute

fact &ergéﬁﬁnilsg d%ieilfl?ned by the initial conditions. It 1; the ;ng;g:;ty of the
result to the initial conditions that gives the appearance O ran, . .1) .

14. Let’s plot the error bounds shown 1n Flgu_re 1. First, 45041\176 i} e
' 0) = 0, and plot the solution over the 1nt§rval [—4,4]. < e

B 8.1 if v(¢) is a second solution with [x(0) — (O] < O.L.
Exampl’e .8’31) tiecomes lx(t) — ¥()] = 0.1, Solve this inequality for x(th),
meq}laht}(])t(lr.ﬁnal answer in the form e (f) < x(¢) < eq(t); then add thgo%ia& ast
plfacm(gtg)yand ey (1) to your plot. How can you use Theorem 71 th St(; s w et
?loesi)lution starting with initial condition |x(0) — y(0)| < 0.1 has any
of rising as far as indicated by eg (#)? . ‘
15. Draw tl%e error bounds shown in Figure 2. See Exercise 14 for assistance.

i i "= (x — 1)cost.
16. Consider the equation x' = (x . _
(a) Letx(¢) and y(t) be two solutions. What 1s th;e upper bound on the separa
tion |x (¢) — y(¢)| predicted by Theorem 7.157

i t
(b) Find the solution x(z) with initial value x(0) = 0, and the (S;(;l::t(i);yy t(h‘)3
with initial value y(0) = 1/10. Does the separation x(ty—y

inequality found in part (a)?

i i imum pre-
(c) Are there any values of ¢ where the separation achieves the maxy p
dicted?
17. Consider x' + 2x = sint.

. o
(a) Let x(¢) and y(¢) be two solutions. What is thqe upper bound on the separ
tion |x(t) — y(t)| predicted by Theorem 7.157

ith initi =— d the solution y(f)
1 ) th initial value x(0) = 1/_5, an ‘
® Fl::g F1lr1x§3tisa?lhi:allou[:axy(é()))le —3/10. Does the separation x(t) — y(t) satisfy
w -
the inequality found in part (a)?

. . UM pre-
(c) Are there any values of ¢ where the separation achieves the maximum p
dicted?
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18. Let x1(¢) and x1(z) be solutions of x’ = x2 — ¢ having initial conditions x, (0) =
0 and x,(0) = 3/4. Use Theorem 7.15 to determine an upper bound for
[x1(t) — x3(8)], as long as the solutions x,(z) and x5(¢) remain inside the rect-
angle defined by R = {(s, x) : —1 <r=1,-2<x <2}

. Use your numerical
solver to draw the solutions x (#) and x1(2), restricted to the rectangular region

R. Estimate maxg (x; (1) — x, (#)| and compare with the estimated upper bound.

2.9 Autonomous Equations and Stability

A first-order autonomous equation is an equation of the special form

x'= fx). 9.1

Notice that the independent variable, which we have usually been denoting by ¢,

does not appear explicitly on the right-hand side of equation (9.1). This is the defin-
ing feature of an autonomous equation.

In Section 2.3, we derived the differential equation for the velocity of a weight
dropping near the surface of the earth. It is

vV = ~g — kulul/m, (9.2)

where g is the acceleration due to gravity, m is the mass of the body, and & is a
proportionality constant. This is an autonomous equation. Other examples are

x' = sin(x), y' = y2 + 1, and 7 = ¢°.

The equations

x'=sin(tx), ¥y =3+t =1, and y = xy

are not autonomous. The presence of the independent variable on the right-hand
side of each equation implies that the equation is not autonomous.

Autonomous equations occur very frequently in applications. A differential
equation model of any physical system that is evolving without external forces will

be autonomous. It is usually the external forces that give rise to terms that depend
explicitly on time.

The direction field and solutions

Since the function £(z, x) on the right-hand side of (9.1) does not depend on ¢, the
slopes of the direction lines have the same feature. This is illustrated by the direction
field for equation (9.2) shown in Figure 1. The slopes do not change as we move
from right to left in this figure.

Because of this fact, we would expect the same behavior for the solution curves.

We would expect that one solution curve translated to the left or right would be
another solution curve. We can see this analytically.
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Figure 1 The direction field for equation (9.2).

Notice that an autonomous equation x’ = f(x) is separable and therefore it is
solvable, at least in principle. If we separate variables, we get

d
dx = dt.
fx)
Hence the solution is given by
dx
- =t4+C.
J(x)

If we let G(x) be an antiderivative of 1/f (x), then the solutions to (9.1) are defined
implicitly by the equation
Gx)y=t+C.

To solve this equation, we need an inverse G ! of G, and then our solutions are of
the form
x(H =G+ 0O).

" Notice how the arbitrary constant C occurs in this formula. We get different so-
lutions simply by translating the independent variable 7. This means that we get
different solution curves by translating one curve left and right. See Figure 2, which
displays several solutions to equation (9.4).

In this section, we will describe ways to discover the qualitative behavior of
solutions to autonomous equations, without actually finding the solutions. Although
autonomous equations are in principle solvable, finding the solutions explicitly may
be difficult and the results may be so complicated that the formula does not reveal
the behavior of the solutions. In contrast, qualitative methods are so easy that it
will be useful to study the solutions qualitatively in addition to finding the solutions
explicitly, when that is possible. In some cases, it might be sufficient to do the
qualitative analysis without finding exact solutions.

EXAMPLE 9.3 o

F) = —g —kvjul/m

figure 3 The graph of the
fight-hand side of equation (9.4).
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A4

Figure 2 Several solutions to equation (9.4),

Equilibrium points and solutions

‘ particular solutions =
omction <o) o utons. If f(xg) = 0, then the constant

x'(t)=0= F(x0) = f(x(@)).

Hence this constant function i i 9 We w 1
f(x ) t clion 1s a partlcular solution to ( 1) e will call a pOiIlt
X0 such that / U. Oa ) . /) point. The constant function X(I) Xg is

Find the equilibrium

_ points and equilibri i i
ity of a fallng by equilibrium solutions for the equation for the veloc-

v = —g — kvlv|/m.

(9.4)
The right-hand side is the function

f@) = —g —kvjv(/m.

Unraveling the absolute value, we have

Fo) = —g—kv’/m forv >0,
—g+kv’/m forv < 0.

The . -
graph of f is shown in Figure 3. If we compute the derivative. we see that

Sy = =2klvl/m <0 forall »
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quilibrium solution
D.4).

Hence f is nonincreasing, and for v # 0 it is decreasing. Therefore, it can be equal
) is negative when the velocity is positive, there are

to 0 at only one point. Since f (v
hen the velocity is negative, we get

no equilibrium points in that range. However, w
an equilibrium point when
v=—mg/k.

This is the only equilibrium point, and consequently

01 = —Jmg/k
equilibrium solution. The graph of this solution is shown in Figure 4. &
ibrium solution in conjunction with the unique-

ness theorem. For example, if we look at the solution to (9.4) with inttial value
v(0) = vy, where vy > ~mg/k, the uniqueness theorem tells us that its graph
cannot cross the line v = —+/mg/k. since this line is also a solution curve. Hence
we must have

9.5)

v(t) > —ymg/k foralls.

is the only
The next step is to use the equil

Now w
is nondecreasing, when v(r) satisties (9.5). we have f(v() <0, or

V(1) = —g — kujul/m <O forallr.

Because it has a negative derivative, v(f) is a monotone decreasing function.

Since v(f) ts monotone decreasing and v(t) > —Jmg/k for all 1, we know

mit as  — oo. It can be shown that this limit must be
—0o0. Hence

m, we know that the solution curves have the

that v(r) approaches a li
— Jmg/k. A similar train of thought shows that v(r) — ocast —

without solving the initial value proble

appearance shown in Figure 2.
Notice that we only learned threc things about the solution v(t):

1. v(¢) is monotone decreasing

2. v(t) > —J/mg/kast — 0

3. v(t) > o0ast —> —o0

We cannot say how fast v(f) — —Jmg/k ast — o0, or v(t) — oo as
¢ — —o0. For this reason, we have not included any tick marks along the 1 axis in

0) = vy < —/mg/k, then v(t) is increas-

ing to —/mg/k as 1 — oo, and tends to —oc asf — —00.
he physical implications of our qualitative

Figure 2.
The same reasoning shows that if v(

Let’s take a moment and discuss t
analysis. We have shown that as 7 Increases, the velocity always tends to

Verm = —V Mg/ k.

We reached the same result at the end of Section 3 3. Because of this fact, we called
Verm the terminal velocity. However, itis interesting to compare the amount of work

involved in the two different methods used. Qualitative analysis is almost always

casier when we want to discover the limiting behavior of solutions.

The analysis carried out above for equation (9.4) can be done for any au-

eanamans equation. Let's illustrate this with another example.

¢ go back to equation (9.4) and notice that because the right-hand side f(v)

EXAMPLE 9.6 o

F) =G =N -2
5

figure 6 The graph of the
right-hand side of (9.7).
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The uniqueness ;
tions. SinCeqS()lutionﬁ(];i?ileersnclzfnznfi of the keys to the qualitative analysis of solu
ot cross, the sraph : o e
valu . raph of a L
e between —1 and 1 cannot take on those V§lu§S Consscoql;l::trl) *(1) with initial
. y,

—l <x{t) <1 foralls. (9.8)
N t . o . -
€Xt we notice (see Figure 6) that f(x)>0if—] <x <« 1 Hence, fi 9.8
. , from (9.8)
X@) = f(x(@) >0 forallr
Th . . .
us, x(f) is a monotone increasing function of ¢, It can be shown that
. s a

x(t) — 1 ast — oo, and

.X(f)——).._] as f — —oc.

By the same g
condition £(0) xrglélilent, We can analyze the solution to (9.7) with anv initi
the equilibri “0. Everything is determined by the location of xp with res nital
num points. We have four cases. First Xp with respect to

Xo < ~1=x(1) < —1 forallf
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= x'(t) = f(x(t)) <0 forall?
x(t) isdecreasing

= {x()—> —1 ast — —00
x(t) > —o00 ast —> 0.

Next,
“1l<xg<1=-1 <x(t) <1 forallr
= x'(t) = f(x(1)) >0 for all ¢
x(t) isincreasing
= Ix(t) > —1 asti—> =X
x(t)y—>1 ast — 20.
Then,
l<xg<2=1 <x(t) <2 forall?
= x'(t) = f(x(1)) <0 for all 1
x(t) is decreasing
= lx(t) > 2 ast—> —X
x(t)—>1 ast— oo
Finally,

xg> 2= x()>2 for all ¢
= x'(1) = f(x(t)) >0 for all ¢

x(t) is increasing
=1x —>2 at—> -0 .
x(t) > oo ast — 0.

y predict the behavior of all solu-

. el .
Thus, for equation (9.7), we can qualitative P ed in e everal other

tions. In Figure 7, the equilibrium solutions are
solutions are plotted in black.

The phase line | | N
The behavior of the solutions t0 (9.7) can be gra_phlcally lcli}sgltaﬁl:cli( :ys%c,;ts hat
lied the phase line. This is simply a number line on'levb 111 r the key ot oL,
Cﬁ solutions are indicated (see Figure 8). Elrst, the equilibr " El s X = e
t ed 2 are plotted. Between equilibrium points the solutions aIz O ey =
direeti ' ifl <x <2, = f(
irection is indi row. For example, 1 <2
dlrzecuolI; (1 : mdé():atzd(? ys?)nra is decreasing, and this fact is 1nc2)1cated ibsyi ;\:r :arsricil“g/
(< — X — , b, s ‘ .
;()Xointing to the left. In the interval —1 < x < 1,x = f(x) > 0,80
i ight.
d the arrow points to the rig .
- The phase line for any autonomous equation

x' = f(x)
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y
AR,

IR

Figure 7 Some solutions of x'= (x2 ~ 1)(x - 2).

- - e — ¢ O+ &
-3 2 1 c :

Figure 8 The phase line for the equation x' = (x2 — Dix-2).

can be drawn easily if the pertinent information about f 1s available. What is needed
Is the location of the equilibrium points and the sign of f in the intervals between
equilibrium points. All of this information can be easily obtained from a graph
of f. See Figure 9 for an example. From the graph of f, we locate the equi-
librium points, which are the zeros of f. In an interval between successive equilib-
rium points the qualitative behavior of solutions is determined by the sign of f. If
f s positive, solutions are increasing and we insert an arrow pointing to the right.
If 1 is negative, the arrow points to the left.

The phase line incorporates enough information about the solutions to enable
us to visualize solution curves. Consider Figure 10. Here we have transferred the
phase line information from Figure 9 to a vertical line superimposed to the left of
a tx-plane on which we have plotted the graphs of the equilibrium solutions and of
several other solutions. Although the solution curves in Figure 10 were drawn by
a computer, we can predict the general pattern without the aid of a computer. The
arrows on the phase line show whether solutions increase or decrease. In any case,
we know that the solutions are asymptotic to the equilibrium solutions as 1 — =£o0.

The phase line is a number line, which can be realized in at least three different,
useful ways. The first is illustrated in Figure 9, where the phase line is shown as
the horizontal axis, because x is the variable in the function f(x). The second is in
Figure 8, where it appears by itself. Finally, the third way is depicted in Figure 10,

where it is the vertical axis, since x is the dependent variable as a solution to the
differential equation x’ = £ (x).
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Figure 9 The graph of f(x) and
the associated phase line.
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Figure 10 The phase line and
graphs of solutions.

It is important to understand the difteren
line, and why each of them is important.  We {
the properties of the phase line, as shown in Figure

information to an isolated phase : | 1
phase line information to the vertical axis of a tx-plo

sketch the graphs of solutions, as shown in Figure 10.

’ 3 2
MPLE 9.9 @ Skeich the solutions of X" = x3—2x% 4+ x.
We can factor the right-hand side as f(x) =

ce between these three uses of th? phase
We use the graph of f(x) to dlscovgr
9. We can then transfer this

line, as shown in Figure 8. Finally, we transfer the
: t and use the information to

x(x — 1)%. Hence 0 and 1 are

2.9 Autonomous Equations and Stabitity 115

With all three realizations of the phase line arranged as in Figure 11, the rela-
tionships between them should be more obvious. L g

Stability

Some equilibrium points have the property that solution curves which start near
them approach the equilibrium point as 1 — oo, These are called asymptotically
stable equilibrium points. There are also equilibrium points where some solutions
move away. These are called unstable.® If we focus our attention on the phase line
near an equilibrium point, then we see that it is an asymptotically stable equilibrium
point if and only if both adjacent arrows point toward the point. In fact, since each
arrow can have only two directions, there are a total of four possibilities, only one
of which represents an asymptotically stable equilibrium point.

9._/4 -

(xp.0) (x0. 0)

(b)

. . W
equilibrium points. We need to find the.phase hne tor f. 11;‘ Flgr\:lreil 101f, \;/et 5:1:6 !
the three versions of the phase line. Figure 11(a) shpws the g Ii)t o e
90° counterclockwise. This makes the x-axis the.: vertical .ax1s., 50 e maly
appearance as the phase line all by itself, which is shown in Figure . ,

/ (a)
L@/ (x0. 0)
-+ >

(xo. )

(c)

()

Figure 11(c) shows several solutions
is a copy of the phase line.

o
b

.
JNL

1
\

#

fx) «— J)o

i
L

Figure 11 The three versions of the phase line.

plotted in the tx plane. In this plot, the x-axis

Figure 12 Possible configurations of equilibrium
points.

These possibilities are shown in Figure 12, together with an indication of what
the graph of f looks like near the associated equilibrium point. Notice that only
Figure 12(b) depicts an asymptotically stable equilibrium point. Examining the
possibilities, we see that an equilibrium point xo for x’ = f(x) is asymptotically
stable if and only if f is decreasing at xo. We can use this fact to derive a first
derivative test for stability. In the figures in this section, we have systematically

indicated asymptotically stable equilibrium points with solid points, and unstable
equilibrium points with open circles.

®Consider the equation ¥ = 0. For this equation, every point is an equilibrium point, and every solution
is a constant function. These solutions do not move nearer to the equilibrium points, nor do they move
away. The property of “not moving away” is described by saying that the equilibrium points are stable.
In dimension |, the equation ¥ = 0 provides essentially the only example of stable equilibrium points
that are not asymptotically stable. In higher dimensions, the concept of stability is more interesting.
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Suppose that xg is an equilibrium point for the differential equation x' = f(x),
where f is a differentiable function.

1. If f'(x0) < 0, then f is decreasing at xp and xg is asymptotically stable.
2. If f'(xo) > 0O, then f is increasing at xo and xp is unstable.

3. If f/(x0) = 0, no conclusion can be drawn.

Classify the equilibrium points for the equation
X = - D —-2)

from Example 9.6.

We saw in Example 9.6 that the equilibrium points are —1, 1, and 2. We can
analyze these by looking at Figure 7 and noticing that the solutions starting near —1
or near 2 are driven away from these values. Hence these are unstable points. On
the other hand, the solutions starting near 1, either above or below, are drawn toward
1 ast — oo. Thus 1 is an asymptotically stable equilibrium point.

We could have also classified these equilibrium points by looking at the graph
on the right-hand side in Figure 6. The right-hand side f(x) = (x* — 1)(x — 2) is
decreasing when it passes through 1, but increasing as it passes through the other
two. Hence 1 is asymptotically stable and the others are unstable.

Finally, a third way is to use Theorem 9.10. We compute that f’(x) = 3x? —4x.
At the equilibrium points, we have f'(~1) =7, f'(1) = —1, and f'(2) = 4. Thus
—1 and 2 are unstable and 1 is asymptotically stable. *

Classify the equilibrium points for the equation
X =x—2x +x

from Example 9.9.

In Example 9.9, we found that the equilibrium points are 0 and 1. Looking at
Figure 11, we see that x? —2x% + x is increasing through 0. It has a local mini-
mum at 1, so it is not decreasing there. Hence both of these equilibrium points are
unstable. *

................

EXERCISES

In Exercises 1-6, if the given differential equation is autonomous, identify the equi-
librium solution(s). Use a numerical solver to sketch the direction field and super-
impose the plot of the equilibrium solution(s) on the direction field. Classify each
equilibrium point as either unstable or asymptotically stable.

1. P/ =0.05P — 1000
2.y =1-2y+y?

¥3‘.7x’ =% — x?

i .
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4. P = 0.13P(1 — P /200)
5.9 =02~ g)sing
6. Y =(1-y)cost

In Exercises 7-10, the

the equilibrium points

each equilibrium point
7.

graph of the right-hand side of Y = f(y)is shown Identify

and sketch the equilibrium solutions ;
' solutions in the ty pla i
as either unstable or asymptotically stable. prne. Classif

VALY
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13. o

3.0)

14. S

(0,0) @.0)

L

In each of Exercises 15-22, an autonomous differential equation is given in the form

y" = f(y). Perform each of the following tasks without the aid of technology.
(1) Sketch a graph of f(y).

(ii) Use the graph of f to develop a phase line for the autonomous equation. Clas-
sify each equilibrium point as either unstable or asymptotically stable.

(iii) Sketch the equilibrium solutions in the 7y plane. These equilibrium solutions

divide the 7y plane into regions. Sketch at least one solution trajectory in each
of these regions.

IS. y=2~y

16. y' =2y —7

1.V =G+ Diy—-4)
18. y/ =6+ y—?

19, y' =9y — 3

20. ' =(y + D2 -9
21. y' =siny

22. y'=cos2y
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10 The Daredevil Skydiver
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Figure 1 Linear interpolation.
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Hint: Do not use technology, do not solve any differential equations. Simply
rely on your understanding of the physical model to craft your sketches. You
might find qualitative analysis useful. Keep in mind that you do not have to
draw the graphs in the order listed. This is much harder than it iooks. Once
your drawings are complete, put them aside and save them for comparison once
you’ve completed item #4.

2. Inorder to cstablish time limits on the problem, examine the two extreme cases.
In the first, the skydiver never pulls the ripcord, and in the second, the ripcord
is pulled immediately, so t; = 0. An intelligent skydiver would avoid each
of these strategies, but they serve to put upper and lower limits on the general
problem.

For each of these cases use a numerical solver to estimate the time it takes
the skydiver to impact the ground. You should verify this result analytically
(you will have to solve an implicit equation to find the time). What is the
velocity at this moment? How close is this velocity to the terminal velocity?

3. Suppose that the skydiver deploys the chute by pulling the ripcord #y = 20's
after leaving the airplane. Use a numerical solver to find an estimate of the time
when the person hits the ground. What is the velocity at this moment? Verify
thesc results analytically. Compare the final velocity with the terminal velocity.
Hint: You will get better numerical results jf 74 is one of the points at which the
solver computes an approximate solution.

4. Using the numerical data from item #3, plot three graphs: the distance the sky-
diver falls versus time, the velocity versus time, and the acceleration versus
time. Compare these graphs with those You created in item #1.

5. Recall that we made the assumption that the parachute deploys instantaneously.

[T L)

In aviation parlance, the unit of acceleration is a g”, which is equal to the
acceleration due to gravity near the surface of the earth. How many “g”s does
the skydiver experience at the instant the chute opens? You can use the plot of
the acceleration made in item #4 or you can compute this analytically. Do you
think a skydiver could withstand such a Jolt? Do some research on this question

before answering.

6. Special gear allows the skydiver to land safely provided that the impact veloc-
ity is below 5.2 m/s. Do some numerical experimentation to discover approxi-
mately the last possible moment that the ripcord can be puiled to achieve a safe
landing.

7. Let’s change our assumption about chute deployment. Suppose that the chute
actually takes T = 3 s to deploy. Moreover, suppose that during deployment,
the proportionality constant varies linearly from k; = 14 kg/s to k, = 160 kg/s
from the time #; that the ripcord is pulled to the time t; + t when the chute
is fully deployed (see Figure 1). Repeat the numerical parts of items 3, 4, 5,
and 6 with this new assumption. (The analytical parts are not so easy with this
assumption about the proportionality constant.)

There are a number of fascinating adaptations you can make to this model.
For example, suppose that k varies between tz and #; + T according to some cubic
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Modeling and Applications

The discovery of the calculus occurred at the beginning of the scientific revolution
in the seventeenth century. This discovery was not a side issue in the revolution.
Rather, it was the linchpin on which much of what followed was based. For the first
time, humankind had a systematic way to study how things changed. In many cases,
the study of change has led to a differential equation, or to a system of differential
equations through the process known as modeling.

We have explored a few applications, and we have constructed the correspond-
ing models in Chapter 2. In this chapter, we will look carefully at the modeling
process itself. The process will then be used in several applications. Along the way,
we will also consider some examples of modeling that are faulty.

The main idea in the modeling process is explained easily. Suppose x is a
quantity that varies with respect to the variable t. We want to model how it changes.
From the mathematical point of view, the rate of change of x is the derivative

/_dx
NPT

Building a model of the process involves finding an alternate expression for the rate
of change of x as a function of ¢ and x, say f(t, x). This leads us to the differential
equation

dx
ar = f(t,x).

This equation is the mathematical model of the process.
The problem, of course, is discovering how the rate of change varies, and this
means discovering the function f (7, x). Let’s look at some examples.
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