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Exercises

8. The initial value problem to be solved is

y′′(t) + 144y(t) = cos(11t), y(0) = y0, y′(0) = 0.

The solution of this IVP is

y(t) =
1

23

(

cos(11t)− cos(12t)
)

+ y0 cos(12t) =
2

23
sin

(

1

2
t

)

sin

(

23

2
t

)

+ y0 cos(12t)

Figures 1 through 6 show the solutions for the indicated initial values. We notice that the “fast” oscillations
are still present while the “slow” oscillations are less and less pronounced as y0 increases.
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Figure 1: y0 = 0

0 Π

����

2
Π 3 Π

��������

2
2 Π 5 Π

��������

2
3 Π 7 Π

��������

2
4 Π

-0.4

-0.2

0

0.2

0.4

Figure 2: y0 = 0.1
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Figure 3: y0 = 0.2
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Figure 4: y0 = 0.3
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Figure 5: y0 = 0.4
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Figure 6: y0 = 0.5
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9. The initial value problem to be solved is

x′′(t) + 4x(t) = 4 cos(ωt), x(0) = 0, x′(0) = 0.

Here we assume that ω 6= 2. The solution of this initial value problem is

x(t) =
4

ω2 − 4

(

cos(2t) − cos(ωt)
)

This function written in the “beats” form is

x(t) =
8

ω2 − 4
sin

(

ω − 2

2
t

)

sin

(

ω + 2

2
t

)

From this formula we see that the envelope of the beating motion is the determined by

8

ω2 − 4
sin

(

ω − 2

2

)

, and − 8

ω2 − 4
sin

(

ω − 2

2

)

In Figures 7 and 8 the envelope is pictured in blue.
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Figure 7: ω = 2.2
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Figure 8: ω = 2.1

10. The initial value problem to be solved is

x′′(t) + 25x(t) = 4 cos(5t), x(0) = 1, x′(0) = 0.

The general solution of the corresponding homogeneous equation is

xh(t) = C1 cos(5t) +C2 sin(5t), or, in complex form, xh(t) = C1e
−5it + C2e

−5it.

The first guess for the particular solution would be ae5it, but since this function is a part of xh, we should
try

zp(t) = ate5it,

z′p(t) = ae5it + ia5te5it = ae5it
(

1 + 5it
)

z′′p (t) = a5ie5it
(

1 + 5it
)

+ a5ie5it = ae5it
(

10i− 25t
)

Substituting in the given equation we get

ae5it
(

10i − 25t
)

+ 25ate5it = 4e5it,

which simplifies to

10ai = 4, a = −2

5
i

2



Hence the complex particular solution is

zp(t) = −2

5
ite5it

But we are interested in the real part only. Hence

xp(t) =
2

5
t sin(5t)

The general solution of the given equation is

x(t) = xh(t) + xp(t) = C1 cos(5t) + C2 sin(5t) +
2

5
t sin(5t)

To find the solution of the initial value problem we need

x′(t) = −5C1 sin(5t) + 5C2 cos(5t) +
2

5
sin(5t) + 2 t cos(5t)

Hence
1 = C1, 0 = 5C2.

Thus the solution of the initial value problem is

x(t) = cos(5t) +
2

5
t sin(5t)

The function 2
5 t sin(5t) oscillates between the lines 2

5 t and −2
5 t. This constitutes the resonance, since the

amplitude grows without bound.

12. The characteristic polynomial of the given differential equation is

P (λ) = λ2 + λ+ 4.

We calculate
P (2i) = −4 + 2i+ 4 = 2i = 2exp

(

i
π

2

)

.

Hence, the transfer function is

H(2i) =
1

P (2i)
=

1

2
exp

(

−i
π

2

)

Therefore the complex particular solution is

zp(t) =
1

2
exp

(

−i
π

2

)

3 exp(2it) =
3

2
exp

(

(2t− π

2
)i
)

We are interested only in the real part

xp(t) =
3

2
cos
(

2t− π

2

)

=
3

2
sin(2t).

This is the steady state solution.

14. The characteristic polynomial of the given differential equation is

P (λ) = λ2 + 2λ+ 4.

We calculate

P (2πi) = −4π2 + 4πi+ 4 = 4
(

(1− π2) + πi
)

= 4
√

(1− π2)2 + π2 exp(iφ).
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Here φ = arg
(

(1 − π2) + πi
)

. Since 1− π2 < 0 we can not use the function arctan directly, but we can use
arccos, or we have to add π to arctan:

φ = arccos

(

1− π2

√

(1− π2)2 + π2

)

= π + arctan

(

π

1− π2

)

≈ 2.8012

Hence, the transfer function is

H(2πi) =
1

P (2πi)
=

1

4
√

(1− π2)2 + π2
exp(−iφ)

Therefore the complex particular solution is

zp(t) =
1

4
√

(1− π2)2 + π2
exp(−iφ) 2 exp(2πit) =

1

2
√

(1− π2)2 + π2
exp
(

(2πt− φ)i
)

We are interested only in the imaginary part

xp(t) =
1

2
√

(1− π2)2 + π2
sin(2πt− φ) .

This is the steady state solution.

16. The initial value problem to be solved is

x′′(t) + 5x′(t) + 4x(t) = 2 sin(2t), x(0) = 1, x′(0) = 0.

The general solution of the corresponding homogeneous equation is

xh(t) = C1e
−4t + C2e

−t.

The guess for the particular solution is ae2it. This guess leads to the equation involving the characteristic
polynomial of the given differential equation:

P (λ) = λ2 + 5λ+ 4,

that is aP (2i) = 2. Since
P (2i) = −4 + 10i + 4 = 10i = 10ei

π

2 .

Hence the complex particular solution is

zp(t) =
1

5
e−iπ

2 e2it =
1

5
e(2t−

π

2
)i

But we are interested in the imaginary part only. Hence

xp(t) =
1

5
sin
(

2t− π

2

)

= −1

5
cos (2t)

The general solution of the given equation is

x(t) = xh(t) + xp(t) = C1e
−4t + C2e

−t − 1

5
cos (2t) .

From the initial conditions we find the particular solution of the IVP:

x(t) = −2

5
e−4t +

8

5
e−t − 1

5
cos (2t) .
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The transient term of the solution is

−2

5
e−4t +

8

5
e−t

and the steady state solution is

−1

5
cos (2t) .

Figure 9 shows the solution of the IVP and the steady state solution.

2 4 6 8

-1

-0.5

0.5

1

Figure 9: Problem 16

18 and 22. The initial value problem to be solved is

x′′(t) + 2x′(t) + 2x(t) = cos(2t), x(0) = 0, x′(0) = 2.

The general solution of the corresponding homogeneous equation is

xh(t) = C1e
−t cos t+ C2e

−t sin t.

The guess for the particular solution is ae2it. This guess leads to the equation involving the characteristic
polynomial of the given differential equation:

P (λ) = λ2 + 2λ+ 2,

that is aP (2i) = 1. Since

P (2i) = −4 + 4i+ 2 = −2 + 4i = 2
√
5eiφ, where φ = arg(−1 + 2i) = arccos

(−1√
5

)

≈ 2.0344

Hence the complex particular solution is

zp(t) =
1

2
√
5
e−iφ e2it =

1

2
√
5
e(2t−φ)i

But we are interested in the real part only. Hence

xp(t) =
1

2
√
5
cos (2t− φ)

5



The general solution of the given equation is

x(t) = xh(t) + xp(t) = C1e
−t cos t+ C2e

−t sin t+
1

2
√
5
cos (2t− φ) .

From the initial conditions we find the particular solution of the IVP:

x(t) =
1

10
e−t cos t+

17

10
e−t sin t+

1

2
√
5
cos (2t− φ) .

The transient term of the solution is

1

10
e−t cos t+

17

10
e−t sin t =

√
1 + 172

10
e−t cos

(

t− arctan(17)
)

and the steady state solution is
1

2
√
5
cos (2t− φ) .

The time constant TC = 1. It is important number here is
√
1 + 172

10
e−4 ≈ 0.03119.

Figure 10 shows the transient term and the values −0.03119 and 0.03119. It is clear that for t > 4 = 4TC

the absolute value of the transient term is < 0.03119.
Figure 11 shows the solution of the IVP and the steady state solution.
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Figure 10: Problem 22, the transient term
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Figure 11: Pr.18, the IVP sol. and the st. st. sol.

24. The equation to be solved is

x′′(t) + 2x′(t) + 4x(t) = 3 cos(2t).

Here are the solutions of the given initial value problems:

x(t) = 2e−t cos(
√
3t) +

√
3

6
e−t sin(

√
3t) +

3

4
sin(2t) solves x(0) = 2, x′(0) = 0,

x(t) = e−t cos(
√
3t)−

√
3

6
e−t sin(

√
3t) +

3

4
sin(2t) solves x(0) = 1, x′(0) = 0,

x(t) = −
√
3

2
e−t sin(

√
3t) +

3

4
sin(2t) solves x(0) = 0, x′(0) = 0,

x(t) = −e−t cos(
√
3t)− 5

√
3

6
e−t sin(

√
3t) +

3

4
sin(2t) solves x(0) = −1, x′(0) = 0,

x(t) = −2e−t cos(
√
3t)− 7

√
3

6
e−t sin(

√
3t) +

3

4
sin(2t) solves x(0) = −2, x′(0) = 0,

6



Clearly the steady state solution is
3

4
sin(2t). Figure 12 shows the five solutions of the initial value problems

together with the steady state solutions. It clearly shows that all these solution approach the steady state
solution.
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Figure 12: Problem 24

26. The characteristic polynomial of the given differential equation is

P (λ) = λ2 +
1

5
λ+ 1.

To determine the transfer function and the gain we calculate

P (iω) = −ω2+
1

5
iω+1 = 1−ω2+

1

5
ωi =

1

5

√

25(1 − ω2)2 + 1eiφ, where φ = arccos

(

1
√

25(1 − ω2)2 + 1

)

.

Thus the transfer function, the gain and the phase are as follows:

H(iω) =
5

√

25(1 − ω2)2 + 1
e−iφ, R(ω) =

5
√

25(1 − ω2)2 + 1
, φ(ω) = arccos

(

1
√

25(1 − ω2)2 + 1

)

.

The particular values for ω = 1 are

H(i) = 5e−iπ
2 , R(1) = 5, φ =

π

2
.

The steady state response is

Re
(

5e−iπ
2 eit

)

= Re
(

5 e(t−
π

2
)i
)

= 5cos
(

t− π

2

)

= 5 sin(t).

Figure 13 shows the driving function cos t in black and the steady state response in gray. The gain can be
seen as a ratio of the amplitude of the steady state response (which is 5) and the amplitude of the driving
function (which is 1). The phase can be seen as a smaller distance between consecutive zeros of the state
response (for example t = π) and the driving function (for example t = 3π/2). Thus the phase is π/2.
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Figure 13: Problem 26

30. I estimate that the first zero of cos t in Figure 6 in the book is

8π +
π

2
≈ 26.7035.

The closest zero of the steady state response x(t) is

8π +
5π

6
≈ 27.7507.

Therefore I estimate that the phase is given

φ =
π

3
≈ 1.0472.

For simplicity I estimate that the amplitude of the steady state response x(t) is 2.25. Thus, the gain is
R = 2.25 = 9/4. Figure 14 is a reproduction of Figure 6 in the book.
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Figure 14: Problem 30

The easiest way to calculate c and ω0 in the equation

x′′(t) + 2cx′(t) + ω2
0x(t) = cos(t).

is from the equation

P (i) = −1 + 2ci + ω2
0 = ω2

0 − 1 + 2ci =
1

R
eiφ =

4

9
ei

π

3 .

Hence

ω2
0 − 1 + 2ci =

4

9

(

1

2
+ i

√
3

2

)

.

Therefore,

ω2
0 − 1 =

2

9
, 2c =

2
√
3

9
,

that is,

ω0 =

√
11

3
, c =

√
3

9
,

31 and 35. The equation to be discussed is

x′′(t) +
1

100
x′(t) + 49x(t) = A cos(ωt).

The characteristic polynomial of the equation is

P (λ) = λ2 +
1

100
λ+ 49.

To calculate the gain as a function of λ we calculate

|P (iω)| =
√

(49− ω2)2 +
( ω

100

)2
.

9



The gain is the reciprocal of this quantity. The maximum gain occurs at the following frequency (see formula
(7.20) on page 227 in the book)

ωres =

√

49− 2

(

1

200

)2

≈ 6.999996429.

The maximum gain is

G(ωres) =
1

√

(

49− (ωres)2
)2

+
(

ωres

100

)2
≈ 14.2857

This is confirmed by the plot of the gain:
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Figure 15: Problem 31, the gain as a function of ω

32 and 36. The equation to be discussed is

x′′(t) +
1

2
x′(t) + 4x(t) = A sin(ωt).

The characteristic polynomial of the equation is

P (λ) = λ2 +
1

2
λ+ 4.

To calculate the gain as a function of λ we calculate

|P (iω)| =
√

(4− ω2)2 +
(ω

2

)2
.

The gain is the reciprocal of this quantity. The maximum gain occurs at the following frequency (see formula
(7.20) on page 227 in the book)

ωres =

√

4− 2

(

1

4

)2

≈ 1.968501969.
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The maximum gain is

G(ωres) =
1

√

(

4− (ωres)2
)2

+
(

ωres

2

)2
=

8

3
√
7
≈ 1.00791

The calculations are confirmed by the plot of the gain in Figure 16.
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Figure 16: Problem 32, the gain as a function of ω

Remark. We see that the maximum gain is negligible. The reason for this is that the resistance is relatively
high. In fact if the resistance was even higher, for example 2c = 1, then the gain would be less then 1.
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