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Exercises

8. The initial value problem to be solved is
y"(t) + 144y(t) = cos(11t), y(0) =yo, y'(0)=0.

The solution of this IVP is

1 2 1 2
y(t) = 2—3(cos(llt) — cos(12t)) + yo cos(12t) = %3 sin<§t> sin<73t> + yo cos(12t)

Figures 1 through 6 show the solutions for the indicated initial values. We notice that the “fast” oscillations
are still present while the “slow” oscillations are less and less pronounced as g increases.
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9. The initial value problem to be solved is
2" (t) + 4z(t) = 4cos(wt), z(0)=0, 2'(0)=0.

Here we assume that w # 2. The solution of this initial value problem is

x(t) = ﬁ(cos(%) — cos(wt))

This function written in the “beats” form is

8 . fw—=2)\ .  (w+?2
x(t) = o sm< 5 t> sm<Tt>

From this formula we see that the envelope of the beating motion is the determined by

8 o fw—2 d _ 8 D fw—2
u)2_4$1n 5 , an w2_4sm 5

In Figures 7 and 8 the envelope is pictured in blue.
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10. The initial value problem to be solved is
2"(t) + 25z (t) = 4cos(5t), =(0)=1, 2'(0)=0.
The general solution of the corresponding homogeneous equation is

x(t) = Oy cos(5t) + Cysin(5t), or, in complex form, a5,(t) = Cre " 4 Cye ™",

The first guess for the particular solution would be ae®®, but since this function is a part of z,, we should

try
2p(t) = ate®™,
zy(t) = ae®™ +ia5te” = ae® (1 + 5it)

2y (t) = abie™ (1 + bit) + abie®™ = ae”" (10i — 25¢)

Substituting in the given equation we get
ae® (10i — 25t) + 25ate” = 4¢™",

which simplifies to

10ai = 4, =2
al a 51



Hence the complex particular solution is

But we are interested in the real part only. Hence
2, .
zp(t) = R t sin(5¢)
The general solution of the given equation is
2
z(t) = zp(t) + xp(t) = Cy cos(5t) + Cysin(5t) + R t sin(5t)
To find the solution of the initial value problem we need
2
2'(t) = —5C1 sin(5t) + 505 cos(5t) + 5 sin(5t) + 2t cos(5t)

Hence
1=Cq, 0=5Cs.

Thus the solution of the initial value problem is
2, .
x(t) = cos(5t) + R t sin(5t)

The function %tsin(5t) oscillates between the lines %t and —% t. This constitutes the resonance, since the
amplitude grows without bound.

12. The characteristic polynomial of the given differential equation is
PA\) = A2+ A +4.

We calculate -
P(2i) = —4+2i+4=2i =2exp <z§> .

Hence, the transfer function is

1 1
H(2) = —— = —exp (—z‘—)
Therefore the complex particular solution is

1

2p(t) = 5 exP (—z%) 3 exp(2it) = g exp ((2t — g)z)

We are interested only in the real part

3 3
xp(t) = 5 cos (275 - g) =3 sin(2t).

This is the steady state solution.

14. The characteristic polynomial of the given differential equation is
P(\) = M\ 4+ 2\ + 4.
We calculate

P(2mi) = —Ar* + Ami4+ 4 = 4((1 — 7) + mi) = 4/ (1 — 72)%2 + 72 exp(i¢).



Here ¢ = arg((l —72) + m’). Since 1 — 72 < 0 we can not use the function arctan directly, but we can use
arccos, or we have to add 7 to arctan:

1— 2
¢ = arccos T = 1 + arctan _T ~ 2.8012
(1—72)2 4 72 1—m2

Hence, the transfer function is

. 1 1 .
H(2mi) = Pomi) ~ 1 T exp(—i¢)

Therefore the complex particular solution is

1 . N 1 Y
2p(t) = N o exp(—i¢p) 2 exp(2mit) = N exp((2mt — ¢)i)

We are interested only in the imaginary part

1
xp(t) = N sin(2nt — ¢) .

This is the steady state solution.

16. The initial value problem to be solved is
2"(t) + 52’ (t) + 4z(t) = 2sin(2t), x(0) =1, 2/(0) =0.
The general solution of the corresponding homogeneous equation is
zp(t) = Cre ¥ + Cohe.

The guess for the particular solution is ae?*. This guess leads to the equation involving the characteristic
polynomial of the given differential equation:

P(X\) = A2 + 5\ +4,

that is aP(2i) = 2. Since '
P(2i) = —4 + 10i + 4 = 10i = 10’2

Hence the complex particular solution is
Zp(t) = le_i% e2it = %e(2t_g)i

But we are interested in the imaginary part only. Hence

1 1
zp(t) = R sin <2t - g) =~ cos (2t)

The general solution of the given equation is
1
a(t) = zp(t) + zp(t) = Cre™ " + Coe™" — = cos (2t).

From the initial conditions we find the particular solution of the IVP:

2 8 1
“em M —eTt — — cos (2t).

) =3 59 75



The transient term of the solution is
_2 —at , 8

5 5
and the steady state solution is
1
—= 2t).
E cos (2t)

Figure 9 shows the solution of the IVP and the steady state solution.
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Figure 9: Problem 16

18 and 22. The initial value problem to be solved is
2" (t) + 22/ (t) + 2x(t) = cos(2t), z(0)=0, 2'(0)=2.
The general solution of the corresponding homogeneous equation is
xp(t) = Cre "t cost + Cye 'sint.

The guess for the particular solution is ae?®*. This guess leads to the equation involving the characteristic
polynomial of the given differential equation:

P(\) =M\ 4+ 2\ +2,

that is aP(2i) = 1. Since
. -1
P(2i) = —4+4i + 2= —2 +4i = 2v/5¢", where ¢ = arg(—1 + 2i) = arccos <ﬁ> ~ 2.0344

Hence the complex particular solution is

1 b 9 1 .
p( ) _ e—zd) e2zt _ e(2t—¢>)z

2v/5 2v/5

But we are interested in the real part only. Hence

xp(t) = b cos (2t — o)

2V5



The general solution of the given equation is

x(t) = zp(t) + 2,p(t) = Cre " cost + Cae 'sint + 1 cos (2t — @).

2V/5

From the initial conditions we find the particular solution of the IVP:

1 17 1
z(t) = —e 'cost+ —esint + —= cos (2t — ).

10 10 25

The transient term of the solution is

17 V14172
—t —t —t
T0¢ cost + T0¢ sint = —0 ¢ cos(t — arctan(17))
and the steady state solution is
1
——= cos (2t — @) .
2v/5 (2 =)
The time constant T = 1. It is important number here is
V14172
;rio e~ ~ 0.03119.

Figure 10 shows the transient term and the values —0.03119 and 0.03119. It is clear that for ¢ > 4 = 4T¢
the absolute value of the transient term is < 0.03119.
Figure 11 shows the solution of the IVP and the steady state solution.
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Figure 10: Problem 22, the transient term Figure 11: Pr.18, the IVP sol. and the st. st. sol.

24. The equation to be solved is
2" (t) + 22/ (t) + 4z (t) = 3 cos(2t).

Here are the solutions of the given initial value problems:
z(t) = 2e~* cos(V/3t) + %e tsin(v/3t) + —sm(2t) solves  z(0) = 2, 2/(0) = 0,
z(t) = et cos(V/3t) — ie tsin(V/3t) + —sm(2t) solves x(0) =1, 2/(0) =0,
x(t) = —g tsin(v/3t) + —Sln(2t) solves  z(0) =0, z/(0) =0,
z(t) = —e ! cos(V3t) — *b‘f tsin(V/3t) + —Sm(2t) solves z(0) = —1, 2/(0) = 0,
z(t) = —2e "t cos(V/3t) — fo tsin(V/3t) + —Sm(2t) solves  z(0) = —2, z/(0) = 0,



3
Clearly the steady state solution is — sin(2t). Figure 12 shows the five solutions of the initial value problems

together with the steady state solutions. It clearly shows that all these solution approach the steady state
solution.
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Figure 12: Problem 24

26. The characteristic polynomial of the given differential equation is
9 1
PA) =\ —i-g)\—kl.

To determine the transfer function and the gain we calculate

1 1 1 ~ 1
P(iw) = —w? 4 Ziw+1 = 1—w?+-wi = =/25(1 — w?)2 + 1€'®, where ¢ = arccos )
(i) 5 5 5‘/ ( ) ? V25(1 —w?)? +1

Thus the transfer function, the gain and the phase are as follows:

) — 0 e~ w) = o w) = arccos =
H(Zw) o \/25(1 _ O‘)2)2 +1 ’ R( ) \/25(1 - w2)2 + 17 ¢( ) (\/25(1 - ("')2)2 + 1) .

The particular values for w =1 are

The steady state response is
Re (56_i%€it> = Re (5 e(t_%)i> = 5cos (t - g) = 5sin(t).

Figure 13 shows the driving function cost in black and the steady state response in gray. The gain can be
seen as a ratio of the amplitude of the steady state response (which is 5) and the amplitude of the driving
function (which is 1). The phase can be seen as a smaller distance between consecutive zeros of the state
response (for example ¢ = 7) and the driving function (for example ¢ = 37/2). Thus the phase is 7/2.
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Figure 13: Problem 26

30. I estimate that the first zero of cost in Figure 6 in the book is
0
8T+ 5 ~ 26.7035.
The closest zero of the steady state response x(t) is
5
87 + % ~ 27.7507.
Therefore I estimate that the phase is given
T
= — &~ 1.0472.
¢ 3

For simplicity I estimate that the amplitude of the steady state response z(t) is 2.25. Thus, the gain is
R =2.25 =9/4. Figure 14 is a reproduction of Figure 6 in the book.



1
© ©
P OO O Rk 0N O

1
.
N O

24 25 26 27 28 29 30 31 32 33
Figure 14: Problem 30

The easiest way to calculate ¢ and wq in the equation
2" (t) + 2ca’ (t) + wiz(t) = cos(t).

is from the equation

1 . 4 .
Hence
4(1 /3
2 . )
—14+2ct=—-| = A
wo +2a 9<2+z 2)
Therefore,
2 2v/3
2
W 97 c 9 )
that is,
Vi1 V3
wy = — C = —
0 3 9

w3

34

31 and 35. The equation to be discussed is

(1) + riox/(t) + 492(t) = A cos(wt).

The characteristic polynomial of the equation is
P(\) =\ + Lyt
B 100 '

To calculate the gain as a function of A we calculate

|P(iw)| = \/(49 —w?)? 4 (1%0)2




The gain is the reciprocal of this quantity. The maximum gain occurs at the following frequency (see formula
(7.20) on page 227 in the book)

1 \2
Wres = /49 — 2 <%> ~ 6.999996429.

The maximum gain is

G(Wres) = ~ 14.2857
2

This is confirmed by the plot of the gain:
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Figure 15: Problem 31, the gain as a function of w

32 and 36. The equation to be discussed is

2" (t) + %x'(t) + 4z(t) = Asin(wt).

The characteristic polynomial of the equation is
2 1
PA) =) +§)\—|—4.
To calculate the gain as a function of A we calculate

|Piw)| = \/(4 —w?)? 4 (g)z

The gain is the reciprocal of this quantity. The maximum gain occurs at the following frequency (see formula
(7.20) on page 227 in the book)

1 2
Wres = /4 — 2 <Z> ~ 1.968501969.

10



The maximum gain is

G(Wres) = = ~ 1.00791
37

The calculations are confirmed by the plot of the gain in Figure 16.
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Figure 16: Problem 32, the gain as a function of w

Remark. We see that the maximum gain is negligible. The reason for this is that the resistance is relatively
high. In fact if the resistance was even higher, for example 2¢ = 1, then the gain would be less then 1.
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