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Chapters 1-5. Chapter 11 on Green's functions for the heat and \vave equation is
an exception since it requires Chapters 9 and 10.

New to this edition is Chapter 14 which primarily discusses dispersive waves.
Chapter 14 is more advanced, and, unlike the rest of the text, has been written very
concisel:\'. Nonetheless, it is mostly self-contained and hence accessible to strong
undergraduates. Topics discussed include group velocity and envelope equations
for linear diHpersive waves and solitary waves and solitons for nonlinear dispersive
waves. In addition, instability and bifurcation phenomena for partial differential
equations are discussed as well as perturbation methods (multiple scale and bound­
ary layer problems). In Chapter 14, the author has attempted to show the vitality
of the contemporary study of partial differential equations in the context of physical
problem~.

The author has made an effort to preserve the second edition so that previous
users will find little disruption. The chapter on numerical methods is now Chap­
ter 6 and all subsequent chapters have been moved back one. Nearly all exercises
from the previolls edition have been retained with no change in the order to facili­
tate a transitioll for previous users. There are over 200 figures to illustrate various
concepts, which were prepared for this edition by the author using MATLAB. Mod­
ern technolog:y is especially important in its graphical abilities, and I have tried to
indicate throughout the text places \vhere three-dimensional visualization is helpful.

Overall my object has been to explain clearly many fundamental aspects of
partial differential equations a.s an introduction to this vast and important field.
After achieving a certain degree of competence and understanding, the student can
use this text as a reference, but for additional information should be prepared to
refer to other books such as the ones cited in the bibliography.

Finally, it is hoped t.hat. this text enables the reader to find enjoyment in the
study of the relationships between mathematics and the physical sciences.
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vVe wish to discuHs the solution of elementar~' problems involving partial differ­
entia.I equations, the kinds of problems that arise in various fields of science and
engineering. A partial differential equation (PDE) is a mathematical equation
containing partial derivatives 7 for example,

1

2. Solution

3. Interpretation

We begin by formulating the equations of heat flow describing the transfer of
thermal energy. Heat energy is caused by the agitation of molecular matter. Two
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Heat Equation

au auat + 3 ar = O. (1.1.1)

We could begin our study by determining what. functions u (x, t) sat.isfy (1.1.1).
However, we prefer to start by investigating a physical problcrIl. We do this for
two reasons. First, our mathematical techniques probably will be of greater inter­
est to you when it becomes dear that. the.'5e methods analyze physical problem.,.
Second, we \vill actually find that physical considerations will motivate many of our
mathematical developments.

Many diverse subject area.5 in engineering and the physieal sciences are domi­
nated by the study of partial differential equations. No list could be all-inclusive.
However, the following exa,mples should give you a feeling for the type of areas
that are highly dependent on the study of partial differential equations: acoustic6: 1

aerodynamics, elasticity, electrodynamics, fluid dynamiC's, geophysics (seismic wave
propagation), heat transfer, meteorology, oceanography, optics, petroleum engineer­
ing, plasma physics (ionized liquids and gases), quantum mechanics.

We will follow a certain philosophy of applied mathematics in which the analysis
of a problem will have three stages:

1. Formulation

1.1 Introduction

PrefaceXIV
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since diP volume of a .slice is A .6..x.

heat energ:v = e(J;, t)A ~:r,

~:£ is excpedillgl~'{ small, then el:r, t) may be approximat.t'd a5 a. c()n~tant thnmghuut
t.he volume so that

Heat flux. Thermal energ;y flows to the right or left in a one - dimensional
rod. V\-'e introduce the heat flux

heat energy geller~
illside per unit. tir:. J+

heat energy flowing
across boundaries
per unit time

heat flux (the amount of thermal energy pel' unit
t'ime flowing to the right per unit surface un:;a).

¢(;d)

rate of change
of heat energ,}'
in Limp

Thb is called conservation of heat energy. For the small slice. the rate of change
of heat f'llergy is

a .at [e(x. t)A fl.,! ,

where the partial derivative J)t, is llsed hecause x b being held fix(~d.

Conservation of heat energy. The heat energy belwem .r awl ;1' + fl.;r
changes in time du(~ onl.y to heat energy flowing a.croBs the edges (::r and :r +~x) and
heat. energy generated in::-;ide (duE' to positive or negative sources of heat, ellt,'rgy).
No heat energ)T changefoi are due to flow across the lateral surface, since we }W,\'\'

a.'>::;umf'd t.hat the lateral surface b insulaterl. Tlw fundamental heat fim\' process is
<1e~c:rihed by the word cquat,ion

fix, t) "" thermal energy den'itY.l

basic proce~ses take place in order for thermal energy t.o move: cOllductioll and con­
vection. Conduction ref-mUs from the collisions of neighboring molc('ulc~ in which
the kinetic energy of vibration of Olle molecule is transferred to its nearest. neighbor.
Thermal energ,y is thus spread by conduction even if the lIlolecule:~; thelnselvE':-; do
not move their location appreciably. In addition, if a vibrating molecule move.s from
one region to another. it takeH its thermal energy with it.. This type of movement
of thermal enE'rgy b taIled convection. In order to begin our study with relatively
~implp problems, \\'C will stud.'" heat flow only in cases in which the conduction of
heat energy is much morc significant than its convection. \Ve ,vill tllU~ think of
heat flow primaril.y in the case of solids, although heat. transfer in fluids (liquids
and ga::-ps) is also primarily by conduction if the fluid volocity is sufficiently sInal I.

1.2 Derivation of the Conduction of Heat
in a One-Dimensional Rod

vVe &,;[";urne that all thermal quantities (\re constant acrOl-iS a section; the rod is one­
dimensional. The simplel-it way thif-i may be accomplished is to insulate perfectly
the lateral surface area of t,he rod. Then no thermal energy can P<'\."lS through the
lateral surface. Thf' dependence on x and t corresponds to H. situation in which
the rod is not uniformly heated; the thermal energy density varies from one cross
section to another.

Thermal energy density. We lwgin by con,idering a rod of constant cr(),,~

sectional an'a A, oriented in the x-direction (from:£ = 0 to :r = L) as illustrated
in Fig. 1.2.1. \V(, temporarily' introduce the amount of thf'rmal energy per ullit
volume as an unknown variable and call it the thermal energy density:

Figure 1.2.1: OllP- dimensional rod \\iith heat energy flowing into and out of a thin
slice.

¢(x + ~x.t)
A

x=Q

¢(x,t)

x x +.6.x :r=L

If ¢(x, t) < 0, it means that heat energy is flowing to t.he left.. Heat energy flowing
per unit time across the boundaries of the slice is ¢(x, t)A - ,p(x + fl.x, t)A, since the
heat flux is the flow per unit. surface area and it IIlust be multiplied by' the surface'
area. If ¢(x. t) > 0 and ¢(x + fl.:r, t) > 0, as illustrated in Fig. 1.2.1. t.hen t.he heat.
energy flowing per unit time at x contributes to an iIH~rease of the heat. energy in
the slice, whereas the heat flow at x + ll~' decreases the heat energy.

Heat sources. We also allow for internal sources of thermal energy:

Heat energy. We cOllsider a thin slice of t.he rod contained between x and x+
fl.x as illustrated in Fig. 1.2.1. If the thermal energy density is constant. throughout
the volume, then the total energy in the slice is the product of the thermal energy
density and the volume. In general, the energy density is not constant. However, if

Q(x. t) = heat energy per unit volume generated per unit time,
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perhaps due to chemical reactions or electrical heating. Q(x, t) is approximately
constant in space for a thin slice, and thus the total thermal energy generated per
unit time in the thin slice is approximately Q(x, t)A Llx.

Conservation of heat energy (thin slice). The rate of change of
heat energy is due to thermal energy flmving across the boundaries and internal
sources:

o x=a x= b L

Figure 1.2.2: Heat energy flowing into
and out of a finite segment of a rod.

1
b

(De D1> )
a Dt + Dx - Q dx = o.

This integral must be zero for arbitmry a and b; thE' area under the curve must be
zero for arbitrary limits. This is possible only if t.he integrand itself is identically
zero2 Thus, we rederive (1.2.3) as

1
b D¢

1>(a, t) -1>(b, t) = - -dx,
a AX

(t.his1 being valid if ¢ is cont.innously differentiable). Consequently,

if a and b are constants (and if e is continuous), This holds since inside the int.egral
the ordinary derivative now is taken keeping x fixed, and hence it must be replaced
by a partial derivative. Every term in (1.2.4) is now an ordinary integral if we notice
that

(1.2.1)

(1.2.2)

:t [e(x, t)A Llxl "" 1>(x, t)A - 1'(". + Llx, t)A + Q(x, t)A Llx.

De _ I. ¢(x, t) - ¢(x + Llx, t) Q( )
-D - 1m A + x, t ,

t t>.x--+O ux
where the constant cross-sectional area has been cancelt:-d. Vie claim that this
result is exact (with no small errorsL and hence we replacE' the ~ in (1.2.1) by = in
(1.2.2). In this limiting process, Llx -4 0, t is being held fixed. Consequently, from
the definition of a partial derivative,

Equation (1.2.1) is not precise because various quantities were assumed approxi­
mately constant for the small cross-sectional slice. \Ve clailn that (1.2.1) becomes
increasingly accurate as 6x ----t O. Before giving a careful (and mathematically rigor­
ous) derivation, we will just attempt to explain the basic ideas of the limit process,
6x ---1- O. In the limit a') .6.x -----;. 0, (1.2.1) gives no interesting information, namely,
o = O. However, if we first divide by Llx and then take the limit as Llx ~ 0, we
obtain

De D¢
-=--+QDt Dx .

(1.2.3) (1.2.5)

d 1b 1b

Dedt a edx= a otdx ,

Technically, an ordinary derivative d/dt appears in (1.2,4) since J: e dx depends
only on t, not also on x. However,

Conservation of heat energy (exact). An alternative derivation of
conservation of heat energy has the advantage of our not being restricted to small
slices. The resulting approximate calculation of the limiting process (Llx ~ 0) is
avoided. We consider any finite segment (from x = a to x = b) of the original one­
dimensional rod (see Fig. 1.2.2). We will investigate the conservation of heat energy

in this region. The total heat energy is I: e(x, t)d:r, the sum of the contributions of
the infinitesimal slices. Again it changes only due to heat energy flowing through
the side edges (x = a and x = b) and heat energy generated inside the region, and
thus (after canceling the constant A)

Equation (1.2.4), the integral conservation law, is more fundamental than the
differential form (1.2.5). Equation (1.2.5) is valid in the usual case in which the
physical variables are continuous.

A further explanat.ion of the minus sign preceding D¢/Dx is in order. For exam­
ple, if D¢/Dx > 0 for a <: x <: b, then the heat flux ¢ is an increasing function of
x. The heat is flowing greater to the right at x = b than at x = a (assuming that
b> a), Thus (neglecting any effects of sources Q), the heat energy must decrease
between x = a and x = b, resulting in the minus sign in (1.2.5),

Temperature and specific heat. We usually describe mat.erials by
their temperature,

IThis is one of the fundamental theorems of calculus.

2M~st proofs of this result are inelegant. Suppose that f(x) is continuous and J: f(x)dx = 0

for arbitrary a and b. We wish to prove f(x) = 0 for all x. We can prove this by assuming that
there exists a point Xo such that f(xo) '# 0 and demonstrating a contradiction. If f(xo) '# 0 and
f(x) is continuous, then there exists some region near XQ in which f(x) is of one sign. Pick a

and b to be in this region, and hence J: j(x)dx '# 0 since j(x) is of one sign throughout. This

contradicts the statement that J: j(x)dx = 0, and hence it is impossible for f(xo} '# O. Equation
(1.2.5) follows.

(1.2,4)d lb 1b

- e dx = ¢(a, t) - ¢(b, t) + Q dx.
&.a a



e(x, t)A t.x = c(x)u(x, t)pA t.x.

7

(1.2.7)

(12.6)

(1.2.8)

e(.r, t) = c(x)p(x)n(x, t).

au aq,
c(x)p(.r)- = --I) + Q.at x

1.2. Conduction of Heat in One-Dimensiun

2. If thE'fe are temperature differences: the heat energy flows from the hotter
region to the colder region.

1. If the temperature is constant in a region, no heat energy flows.

This states that the thermal energy per unit volume equals the thermal energy
per unit lIla,;;.., per unit degree tiInes the temperature times the matls density (mass
per unit volume). When the thermal energy density is elirninated using (1.:!.Ei).
conservation of thermal energy, (1.2.3) or (1.2.5), becomes

4. The flow of heat, energy will vary for diffE'fent materials, even with the same
tempentture differences.

In t.his way we have E'xplained the basic relationship bet\vepn thermal energy and
temperature:

3. The greater the ternpf'ratllrc differences (for the same material), the greater
is the flow of heat energy.

Fourier's law. (Jsually, (1.2.7) is regarded as one equation in two unknowns:
the temperature u(x, t) and the heat flux (flow per unit surface area per unit time)
¢(x, t). How and \vhy does heat. energy flow? In other words, we need an expression
for the dependence of the flow of heat energy on t.he temperature field. First we
summarize certain qualitative properties of heat flow with which we are all familiar:

Fourier (1768 - 1830) recognized properties 1 through 4 and summarized them (as
well as numerous experiments) by the formula

known as Fourier's law of heat conduction. Here 8u/Dx is the derivative of
the temperature; it is the slope of the temperature (as a function of x for fixed t);
it represents temperature differences (per unit length). Equation (1.2.8) stat.es that
the heat flux is proportional to the temperature difference (per unit length). If the
temperature u increases as x increases (i.e., the temperature is hotter to the right),
au/ax> 0, then we know (property 2) that heat energy flows to the left. This
explains the minus sign in (1.2.8).

Chapter 1. Heat Equation

u(x, t) = temperature,

specific heat (the heat energy that must be supplied to a unit
mass of a substance to raise its temperature one unit).

c

In general, from experiments (and our definition) the specific heat c of a material
depends on the temperature n. For example, the thermal energy necessary to raise
a unit mass from DOC to 1°C could be different from that needed to raise the mass
from 85°C to 86°C for the same substance. Heat flow problems with the specific
heat depending on the temperature are mathematically quite complicated. (Exer­
cise 1.2.1 briefly discusses this situation.) Often for restricted temperature intervals,
the specific heat is approximately independent of the temperature. Ho\veverJ exper­
iments suggest that different materials require different amounts of thermal energy
to heat up. Since WE' would like to formulate the correct equation in situations
in which the composition of our one- dimensional rod might vary from position to
position, the specific heat will depend on x, c = c(x). In many problems the rod is
made of one material (a uniform rod), in which CaEe we will let the specific heat c
be a constant. In fact, most of the solved problems in this te,,:t (as well as other
books) correspond to this approximation, c constant.

allowing it to vary with x, possibly due to the rod being composed of nonuniform
material. The total mass of the thin slice is pA t.x. The total thermal energy in
any thin slice is thus c(x)u(x, t) . pA t.x, so that

Thermal energy. The thermal energy in a thin slice is e(x, t)A t.x. How­
ever, it is also defined as the energy it takes to raise the temperature from a reference
temperature 0° to its actual temperature u(x, t). Since the specific heat is inde­
pendent of temperature, the heat energy per unit mass is just c(x )u(x, t). We thus
need to introduce the mass density p(x):

p(x) = mass density (mass per unit volume),

not their thermal energy density. Distinguishing between the concepts of tempera­
ture and thermal energy is not necessarily a trivial task. Only in the mid-170Gs did
the existence of accurate experimental apparatus enable physicists to recognize that
it may take different amounts of thermal energy to raise two different materials from
one temperature to another larger temperature. This necessitates the introduction
of the specific heat (or heat capacity):

6
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Heat equation. If Fourier's law, (1.2.8), is substituted into the conservation
uf heat cueq..,ry- equation, (1.2.7), a partial differential equation results:

We designate the coefficient of proportiona.Iity !f(j. It measures the ability of the
material to conduct heat and is called the therIllal conductivity. Experiments
indicate that. different materials conduct heat Jifferf'nt.ly; [((I dCpCIlCh; on the partic­
ular material The larger K o is~ the greater thf~ flow of heat energy with the same
temperature differences. A material with a low value of K o ,",,"ouJd be a poor con­
ductor of heat energy (and ideally snited for hOII1C insulation). F(l[ a rod composed
of different materials, K o will be a. function of :1'. Furthermore, experiments show
that the ability to conduct heat for most. materials is different at different temper­
atures, Kn(x, 11,) . However- jll.st a.... \\'ith the specific heat (', t.he dependence on the
temperature itl often not important in part.icular problclIltl. Thutl, throughout this
text we will assume that t.he thermal conductivit.y' [{(1 only depends on x, Ko(x).
Usually, in fHd. we "vill clitlcUSS uniform rods in \vhich [(0 is a constant.

iJ11. iJ ( iJU)ep-,- = -. K o- +q.
iJ t iJx iJx

(1.2.9)

(such a..., perfumeH and pullutants) satisfi{~s the diffusion equation (1.2.8) in certain
one - dimensional situatioIls.

Initial conditions. The partial differential equations describing the flow of
heat energy, (1.2.9) or (1.2.10), have one time derivative. When an ordinary differ­
ential equation has one derivative l the initial vahle problem consists of solving the
differential equation with one initial condit.ion. Newt.on's la\\' of motion for the posi­
tion x of a particle yields a second-order orrliwu,\' difff'rential equation, md'2.r/dt2 =

forces. It involves second derivatives. The init.ial value problpIIl consist!; of solving
the differential equation with two initial conditions, the initial position x and the
initial velocity d:r/dt. From these pieces of information (including the knowledge of
the forces), by solving the differential pqnatiol1 with the initial conditions, we can
predict the future motion of {l particle in the x-diredion. We wish to do the same
process for our partial differential equation, that is. predict the future temperature.
Since the heat equations have on(' time df'ri v<-1ti VE', we mUtlt. be given one initial
condition (Ie) (usually at t = 0), the initial temperature. It is possible that the
initial temperature is not constant, bnt depends on :1'. Thus, we must be given the
initial temperature distribution,

n(x, 0) = f(.I:).

If, in addition, there are no tlources, Q = 0, then after dividing by the constant cp,
the partial diffprential equation becomes

iJn iJ'11.
ep iJt = K oiJx' + q.

iJ 1"iJb " f(x)dx = f(b),

derive the heat equahon (1.2.9).

(a) Show that the heat energy per unit mass necessary to raise the temper­
ature of a thin slke of thickness t.x from 0° to n(x, t) is not e(x)u(x, t),
but instead Jo" c(x, u)du..

(b) R.ederive the heat equation in this case. Show that (1.2.3) remains un­
changed.

EXERCISES 1.2

Is this enough information to predict the future temperature? \Ve know the initial
temperature diHtribution and that the temperature changes according to the partial
differential equation (1.2.9) or (1.2.10). However, we need to know that happens
at the two boundaries, J: = 0 and x = L. \\lithout knowing this informat.ion, we
cannot predict the future. Two conditions are needed corresponding to the second
spatial derivatives present in (1.2.9) or (1.2.10), usually one condition at each end.
We discuss these boundary conditions in the next section.

1.2.1. Suppose that the specific heat is a function of position and temperature,
c(x, 11.).

1.2.2. Consider conservation of thermal energy (1.2.4) for an.y ,segment of a one­
dimensional rod a. :::; x :s; b. By using the fundamental theorem of calculus

(1.2.10)(}U=k 02
U.

iJ t iJ.r' .

where the constant k.

\Ve u:-:;ually think of the sources of heat energy Q as being given, and the only
unknown being the temperature u(x, t). The thermal coefficients c, p, K n fill depend
on the material and hence may be functions of x. In the special case of a uniform rod,
in which c, p, K o are all constants, the partial differential equation (1.2.9) becomes

k = K o

ep

is called the thermal diffusivity, the thermal conductivity divided by the product
of the specific heat and mass density. Equation (1.2.10) is often called the heat
equation; it corresponds to no sources and constant thermal properties. If heat
energy is initially concentrated in one place, (1.2.10) will describe how the heat
energy spreads out, a physical process known a5 diffusion. Other physical quan­
tities besides temperature smooth out in much the same manner, satisfying the
same partial differential equation (1.2.10). For this reason (1.2.10) is also known
a" the diffusion equation. For example, the concentration u(x, t) of chemicals



1.3 Boundary Conditions

1.2.4. Consider a thin one - dimensional rod without sources of thermal energ}'
,.....hose lateral surface area is not insulated.

Prescribed temperature. In certain situations, the temperature of the
end of the rod, for example :r = l\ lllay be approximat.ed by a prescribed tenl­
perature,

11

(1.3.3)

(1.3.4)

(1.3.5)
AU

-Ka(L) ax (L, t) = H[u(L, I) -lIB(I)],

where ¢(t) is giV€Il. This is equivalent to giving one condition for the first derivative,
Du/D.T, at .r = n. The slope is givc'll at :r = O. Equatioll (] .:3.2) cannot be integrated
in :t becau~c the slope is knowlI onl.v at one value of ;1;. The simplest example of the
prescribed heat flow boundary condition is when an end is perfectly insulated
(somctiIIH-'-" we omit the "perfectly"). In thi:-> case there is no heat flow at the
boundruy. If:1' = 0 is insulated. then

8'1L .
-.(0,1) = a.
ax

1.3. Dowldary (.'nndi tiOllS

3For another sit.uation in which (1.3.4) is valid, see Berg and McGregor [1966].

-](0(0) ~u (a, t) = -H[lI(O, t) -"n(t)l.
u.T

where the proportionalit), constant H is called the heat transfer coefficient (or
the convection coefficient). This bOllndary condition:1 involves a linear comhination
of 11 and o11/8:r. vVe lllUHt bE' careful with the sign of proportionality. If the rod
is hotter thml the bath [u(O. I) > UB(t)], then usually heat flows out of the rod at
x = O. Thus, heat iH flowing to the left, and in this case the heat flow would be
negative. That is why we introduced a minuo oign in (1.3.4) (wit.h H > 0). The same
conclusion would have been reached had we assumerl t.hat u(O, t) < 'UB(t). Another
way to nnderst.and the signs in (1.3.4) is to again assnme that u(O, i) > UIJ(t). The
temperature is hotter to the right at x = 0 and we should expect the temperature
to continue to increase to the right. Thus, au/ax should be positive at x = 0.
Equation (1.3.4) is consistent with this argument. In Exercise 1.:).1 you are a.'3ked
to derive, in the same manner, that the equation for Newton's law of cooling at a
right end point :1' = L is

Newton's law of cooling. \Vhen a one - dimellsional rod is in contact at
the houndary ""ith a moving fluid (e.g.. air), then neither the prescribed temperature
nor t.he prc:->nibec! heat flow rnay be appropriate. For example) let ll~ imagine a
very wann rod in contact with cooler moving air. Heat will leav{~ the rod) heat.ing
up the air. Tht~ air will then carry the heat away. This process of heat transfer is
called convection. However, the air will be hotter near the rod. Again, this is a
complicated problem: t.he air temperature will actually vary with distance from the
rod (ranging between t.he bath anc! rod temperatures). Experiments show that, as a
good approximation, tIlE' l1l'at flow leaving the rod is proportional t.o the temperature
differellce between the bar and the pl'e:-:;cribcd external temperature. This boundary
conditioll is called Newton's law of cooling. If it is valid at ;r = 0, then

where UB(t) is the external tetuperature at x = L. We immediatel~' note the
significant. sign difference between the left boundary (1.3.4) and the right boundary
(1.3..5).

The coefficient H in Newton's law of cooling is experimentally determined. It
depends on properties of the rod as well as fluid propert.ies (including the fluid

(1.3.2)

(1.2.11)au a ( . 011) Pcp- = - K o-.- - -[u(J', t) - 'Y(:IO, t)]h(x),
at OJ: ax A

where h(x) is a positive x-dependent proportionality, P is the lateral
perimeter, and A is the cross-sectional area.

Compare (1.2.11) to the equatioll for a one - diml~ll~ional rod whose lat­
eral surfaces are insulated, hut ",'ithout heat soun·l;-'~.

Specialize (1.2.11) to a rod of circular cross section with COll~tant thermal
properties and 0° outside kmperature.

Consider the assumption~ in part (d). Suppose that the temperatllre
in the rod is uniform [i.e., u(x. t) = u(i)]. Determine u(t) if initially
ufO) = 110'

As;.;urne that the heat energy flowing out of the lateral :-:lide:-:l per unit. ~ur­
face area per unit time is w(x, t). Derive the partial differential equation
for the temperat.ure u(x, t).

Assume that w(x, t) is proportional to the klllperature difference be­
tween the rod u(:r, t) and a known outside temperature "·y(x, t). Derive
t.hat

(e)

(a)

(d)

(b)

*(e)

Insulated boundary. In other situations it is possible to preocribe t.he
heat flow rather than the temperature,

au
-Ko(O) ax (0, t) = <I>(t),

In solving the heat equation, either (1.2.9) or (1.'2.10), one boundary condition
(Be) is needed at each cud of t.he rod. The appropriate condition depends on t.he
phYHical mechanism in effect at each end. Oft.en the condition at the boundar}'
depends on both the material inside and olltHide the rod. To avoid a l110re difficult
mathematical problem, we ,,,,ill aHHUllW t.hat the outside Pllvironment is known, not
oignificantly alt.ered by the rod.

u(O, t) = UB(t). (1.3.1)

where UB(t) io the temperatlll'e of a f1nid bat.h (or reservoir) with which t.he rod is
in contact.

10 Chapter 1. Heat Equation

/1.2.3. If u(x, t) is known. give an expression for the total thermal pnergy contained
in a rod (O<x<L).
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velocity). If the coefficient is very small, then very little heat energy flows across
the boundary. In the limit a~ H ---+ 0, Ne\vton's law of cooling approaches the
insulated boundary condition. vVe can think of Newton\:; law of cooling for H # 0 at;
representing an imperfectly insulated boundary. If Ii ---+ ::0, the boundary condition
approaches the one for prescribed temperature, u(lL t) = un(t). This i:-:; most ea."ily'
seen by dividing (1.3.4), for example, by H:

*1.3.3. Consider a bath containing a fluid of specific heat ('f and mass density Pf
which surrounds t.l1P end x = L of a one - dimPll:-iional rod. Suppose that the
batb is rapidly' stirred in a manner such that. the bath tl?lI1peratllre i~ Clp­
proximately uniform throughout, equaling the temperat.ure at .1' = L, u(L, i).
Asmme that the bath it; thermally insulated except at its perfect thermal
contact with the rod, where the bath Ill<":\' be heated or cooled by the rod.
Determine all equation for the tempen1Jure in the bath. (This will he a
b"undary condition at the end:c = L,) (Hint: Sec Exercise L3,2,)

Thus, H ---+ 00 corresponds to no insulation at all, 1.4 Equilibrium Temperature Distribution

Summary. We have described three different kinds of boundary conditions.
For example, at x = 0:

ufO, I)

-Ko(0)1)~(0,t)

- K (0)"" (0 I)u {'x '

us(t) prescribed temperature

¢(t) prescribed heat flux

-Hlu(O, I) - "B(t)] Newton's law of cooling

1.4.1 Prescribed Temperature

Let us now fOrIIHllate a simple, hut ty'pical, problem of heat fiow. If the ther­
mal coefficients are constant and there are 1l<J sources of thprmal energy. then the
t.E:'.rnperature u(x, t) in a one- dimensional rod 0 S; :r ~ L satisfies

(lA1I

The solutiou of this partial differential eqwltiol1 must satisf}T the initi"l condition

and oue boundary condition at each end. For example, each end might be in conta.ct
with different large baths, such that the temperature at each entl. is prescribed

(U4)

(14,;))

(U2)

and

~J
~

,,(x, 0) = f(:r)

u(O, I)
U(L, I)

ufO, t) = T,

Equilibrium temperature distribution. Before we begin to attack
sueh an initial and boundary value problem for partial differential equations, W(~

discuss a physically related question for ordinary differential equations. Suppm;p
that the boundary conditions at x = 0 and .r = L were steady (i.e .. independent
of time),

One aim of this text is to enable the reader to solve the problem sp<-'Cified by (1.4.1
- 1,4:3).

where T] and T2 are given constants. vVe define an equilibriunl or steady-state
solution to be a temperature dist,ribution that <-loeH not depend on time, that is,
u(x, I) = u(x), Since a/al u(x) = 0, the partial differential equation becomes
k(8 2 u./8x2

) = 0, but partiRI derivatives arC' Hot necessa.ry, and thus

u(O, t) = 100 - 25 cos I,

and for the right end, x = L, to be insulated,

and no heat energy is lost at x = Xo (i.e., the heat energy flowing out of
one flows into the other). What mat.hematical equation represents the latter
condition at x = xo? Under what special condition is au/ax continuous at
x = xo?

u(xo-, I) = u(.[o+, I)

These same conditions could hold at x = L, noting that the change of sign (-H
becoming Ii) is necessary for Newton's law of cooling. One boundary condition
occurs at each boundar)'. It is not necessary that both boundaTip;.; ;.;atisfy the same
kind of boundary condition. For example, it is possible for x = {) to have a prescribed
oscillating temperature

EXERCISES 1.3

1.3.1. Consider a one-dimensional rod, 0::; x ::; L. Assump that the heat energy
V flowing out of the rod at x = L is proportional to the temperature difference

between the end tempE'rature of the bar and the knmvn external t.emperature.
Derive (1.3,5) (briefly, physically explain why H > 0),

$' *1.3.2. Two one - dimensional rods of different materials joined at 2' = Xu are said
to be in perf€ct thermal contact if the temperature is continuous at x = xo:
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The boundary conditions are distribution, since the boundary conditions are independent of time:

In doing steady-st.ate calculations, the initial conditions are usually ignored. Eqlla­
tion (1.4.4) is a. rather trivial second-order ordinary differential equation. Its gen­
eral solution may be obtained by integrating twice. Integrating (1.4.4) yields
du/dx = C 1 , and int.egrating a second time shows that 1.4.2 Insulated Boundaries

In Sec. 7.2 we will ,olve the time-dependent problem and show that (1.4.9) is
satisfied. However, if a .steady state is approached, it is morp pasil)' obtained by
directly solving the equilibrium problem.

u(O) = T 1

u(L) = T 2 .
(1.4.5)

. ( ( T2 - T j
hmux,I)=ux)=T, + x.

t--+CXi L ( lA.9)

(1.4.14)

(1.4.15)

(1.4.16)

~u(O) = 0
(X

du .
: -(L) = 0

dx '
BC2

BCl

082u
ODE: -. =0

dxz

PDE:
au alIt
f) I = k o.r' (1.4.10)

IC: U(.L 0) = f(x) (1.4.11)

BCl:
f)u
~(O, t) = [) (1.4.12)x .

BC2:
au
ax (L,I) = O. (1.4.13)

As a second example of a steady-state calculation, we consider a one - dimensional
rod again with no sources and with constant thermal properties, but this time with
insulated boundaries at x = 0 and x = L. The formulation of the time - dependent
problem is

The equilibrium problem is derived by setting a/a I = O. The equilibrium tempera­
ture distribution satisfies

u = C,x + C2 . (1.4.17)

The boundary conditions imply that the slope must be zero at both ends. Geo­
metrically, any straight line that is fiat (zero slope) will satisfy (1.4.15, 1.4.16) as

where the initial condition is neglected (for the moment). The general solution of
d2u/ih;2 = 0 is again an arbitrary straight line,

(1.4.8)

(1.4.7)

(1.4.6)

Figure 1.4.1: EquilibriuIll tempera­
ture distribution.

implies T1 = C2

implies Tz = C,L + C2 .

x=L

u(O) = T j

u(L) = Tz

x=O

It is easy to solve (1.4.7) for the constants C2 = T j and C, = (T2 - TJl/ L. Thus,
the unique equilibrium solution for the steady-state heat equation with these fixed
boundary conditions is

Approach to equilibrium. For the time- dependent problem, (1.4.1) and
(1.4.2), with steady boundary conditions (1.4.5), we expect the temperature distri­
bution u(x, t) to change in time; it will not remain equal to its initial distribution
f(;-r). If ·we wait a very, very long time, we would imagine that the influence of the
two ends should dominate. The initial conditions are usually forgotten. Eventually,
the temperature is physically expected to approach the equilibrium temperature

u(x)

We recognize (1.4.6) as the general equation of a straight line. Thus, froIll the
boundary conditions (1.4.5) the equilibrium temperature distribution is the straight
line that equals T j at x = 0 and Tz at x = L. as sketched in Fig. 1.4.1. Geomet­
rically there is a unique equilibrium solution for this problem. Algebraically, we
can determine the two arbitrary constant.s, C 1 ami Cz, hy appl)'ing the boundary
conditions, u(O) = T j and u(L) = T2 :



illustrated in Fig. 1.4.2. The solution is any constant temperature. Algebraically,
from (1.4.17), dujdx = C j and both boundary conditions imply C j = o. Thus,

•
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* (a) Q =0, 11(0) = 0, u(L) = T

(b) Q =0, u(O) = T, alL) = 0

(c)
au

1I(L)=TQ =0, 9(0) = 0,
ex

au
* (d) Q =0, 11.(0) = T, -(L) =0'

ax

(e) ~=1 ,,(0) = T j , 1I(L)=T2K o '

* (I) ~ =x' u(O) = T, aU(L) = °
K o ' ax

(g) Q =0, 11(0) = T, ~.~ (L) + u(L) = 0

* (h) Q =0, ~: (0) - [11(0) - TJ = 0, au (L) ="
ox

1.4. Equilibrium Temperature Distribution

*(a) Determine the heat energy generated per unit time inside the entire rod.

(b) Determine the heat energy flowing out of the rod per unit time at x = 0
and at x = L.

(c) What relationships should exist between tbe answers in parts (a) and
(b)?

/1.4.3. Determine the equilibrium temperature distribution for a one-dimensional
rod composed of two different materials in perfect thermal contact at x = 1.
For 0 < x < 1, there is one material (cp = 1, K o = 1) with a constant source
(Q = 1), whereas for the other 1 < x < 2 there are no sources (Q = 0, cp =
2, Ko = 2) (see Exercise 1.3.2) with 11(0) = 0 and u(2) = o.

J1.4.4. If both ends of a rod are insulated, derive from the partial differential equa­
tion that the total thermal energy in the rod is constant.

the average of the initial temperature distribution. It is as though the initial
condition is not entirely forgotten. Later we will find a u(x, t) that satisfies (1.4.10
- 1.4.13) and show that lilllt _ x , "(1·, t) is given by (1.4.21).

In these you may assume that ,,(.r, 0) = f(l·).

\/"1.4.2. Consider the equilibrium temperature distribution for a uniform one- dimensional
rod with sources Q/ K o = x of thermal energy, subject to the boundary con­
ditions u(O) = 0 and u(L) = O.

EXERCISES 1.4

/1.4.1. Determine the equilibrium temperature distribution for a one-dimensional
rod \vith constant thermal properties with the follO\\'ing sources and boundary
conditions:

(1.4.19)

(14.21)

(1.4.20)

(1.4.18)

Chapter 1. Heat Equation

Figure 1.4.2: Various constant equi­
librium temperature distributions
(with insulated ends).

1I(X) =C,

x=L

1 rL

u(x) = C2 = L Jo f(x) dx,

x=o

d rL au a1l
dt Jo cpu dx = -Koax (0, t) + K oax (L, t).

Since both ends are insulated,

1L

cpu dx = constant.

One implication of (1.4.20) is that the initial thermal energy must equal the fi­

nal (limt_=) thermal energy. The initial thermal energy is cp JoL
f(x)dx since

u(x,O) = f(x), while the equilibrium thermal energy is cp JoL C2dx = cpC2 L since
the equilibrium temperature distribution is a constant u(x ,t) = O2 . The constant
O2 is determined by equating these two expressions for the constant total ther­
mal energy, cp j~L f(x)dl: = cpC2L. Solving for C2 shows that the desired unique
steady-state solution should be

if we wait long enough a rod with insulated ends should approach a constant tem­
perature. This seems physically quite reasonable. However, it does not make sense
that the solution should approach an arbitrary constant; we ought to know what
constant it approaches. In this case. the lack of uniqueness was caused by the com­
plete neglect of the initial condition. In general , the equilibrium solution will not
satisfy the initial condition. However, the particular constant equilibrium solution
is determined by considering the initial condition for the time- dependent prob­
lem (1.4.11). Since both ends are insulated, the total thermal energy is constant.
This follows from the integral conservation of thermal energy of the entire rod [see
(1.24)1:

for any constant C2 . Unlike the first example (with fixed temperatures at both
ends), here there is not a unique equilibrium temperature. Any constant tempera­
ture is an equilibrium temperature distribution for insulated boundary conditions.
Thus, for the time - dependent initial value problem, we expect

lim u(x, t) = C2 ;
t~=

16



j
where the heat energy within an aTbitrary subregion R is

simpler ones) so that when we do di~("uss techniques for the .:;olutions of PDEs, we
will have Illore than one example to \\tork with.

heat energy = ffI cpu dV,

R

1!l

heat energy generated
inside per unit time,_ -...

heat energy flowing
across the boundaries +
per unit time

rate of change
of heat energy

l.b. Heat .t!.·quatlOIl 111 Two OT '1 'ilree 1JlllWI1SiOllS

Heat energy. We begin our derivation by considering any arbitrary subre.glOu
R a.s illustrated in Fig. 1.5.1. As in the one- dimensional ease. conservation of lWiit
energy is summarized by the following word equation:

18 Chapter 1. Heat t;quatioll

/1.4.5. Considel a oue-dimensional rod 0 < x < L of knmvn length and known
con.:;tant thermal properties without sources. Suppu::;e that the temperature
is an unknown constant T at x = L. Determine T if v·/e know (in the steady
state) both the temperature and the heat Row at x = O.

1.4.6. The two ends of a uniform rod of length L are insulated. There i::; a constant
source of thermal energy Qu i- 0 and the temperature b initiall.y u(.r. 0) =

f(x).

(a) Show mathematically that there does not exbt any equilibrium temper­
ature distribution. Briefl)' explain physically.

(b) Calculate the total thermal energy in the entire rod.

1.4.7. For the following problems, determine an equilibrium tempf'rature distri­
bution (if one exists). For what values of ,13 aI'(=' t.lwre solutions? Explain
phy,ically.

Introduction. In Sec. 1.2 we showed that for the conduction of heat in a
one-dimensional rod the temperature u(x, t) satisfies

...

Figure 1.5.1: three- diInensiollal suhregion R.

Heat flux vector and nonnal vectors. We need an expression for
the flow of heat energy. In a one - dimensional problem the heat Rux ¢ is defined
to the right (q) < 0 means flowing to the left). In a three-dimel"ional problem
the heat flows in some direction, and hence the heat flux is a vector 4>. The
magnitude of 4> is the amount of heat energy Rowing per unit time per unit snrface
area. However) in considering conservation of heat energy it is oIlI~v the heat Rowing
across the. bO'llndaries per unit time that is important. If, a." at point A in Fig. 1.5.2.
the heat flow is parallel to the boundary, then there is no heat ellergy cTO.'Jsing th~
boundary at that point. In fact, it is only the normal component of the heat flow
that contributes (as illustrated by point B in Fig. 1.5.2). At any point there are two
normal vectors, an inward and an outward normal n. \Ve will use the cOIlvention
of only utilizing the unit outward normal vector n (where the' stands for a
unit vector).

Conservation of heat energy. At each point the amount of heat energy
fiowmg out of the region R per unit time per unit surface area is the outward normal
component of the heat flux vector. From Fig. 1.5.2 at point B, the outward normal
component of the heat flux vector is 14>1 cos e= 4> •n/lnl = 4> . n . If the heat flux
~ector 4> is directed inward, then 4> • n< 0 and the outward flow of heat energy
IS nega.tive. To calculate the total heat energy flowing out of R per unit timf'. we

instead of the one dilnensional integral used in Sec. 1.2.
iJu iJ'u iJu an (

*(a) ---+1 n(x,O) = fIx), a(o. I) = 1. ax L,I)=(3
iJl - ax' ' l' .

au a2u
u(:!',O) = f(x),

an iJn
(b)

iJt=Ux" ax (0, t) = 1, -(L, t) = (3
a:r

an iJ'n a·u Uu
(e) 3t = iJx' +:C - 13. u(x,O) = f(ll ax (0, t) = 0, a(L.I) = 0

~r

where k = K o/ cpo Before we solve problems involving these partial differential
equations. we will formulate partial differential equations corresponding to heat flow
problems in two or three spatial dimensions. We will find the derivation to be similar
to the one used for one - dimensional problems, although important differences will
emerge. We propose to derive new and more complex equations (before solving the

In case~ in which there are no sources (Q = 0) and the thermal properties are
constanL the part.ial differential equation becomes

1.5 Derivation of the Heat Equation
in Two or Three Dimensions

au a ( . au)cp-u. = -,- 1\0-.- + Q.
t Ux iJx

..
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B
A

JI/\7.A dV ~.1fi A· n d8.
R

( 1.5.3)

Figure 1.5.2: Outward normal component of heat flux vector.

(1.5.4)

(1.5..5)

(1.5.6)
au

CPat = -\7.</>+ Q.

:t1 cpu dV = -I \7.</> dV +1 Q dV
R R R

1JJ[cP~~+\7'</>-Q] dV=O.
R

Since this integral is zero for all regions R, it follows (as it did for one-dimensional
integrals) that the integrand itself must be zero:

We note that the time derivative in (1.5.4) can be put inside the integral (since R
is fixed in space) if the time derivative iH changed to a partial derivative. Thus, all
the expressions in (1.5.4) are volume integrals over the Harne volume, and they can
be combined into one integral:

This is also known as Gauss's theorem. It can be used to relate certain surface
integrals to volume integrals, and vice versa. It is very important and very useful
(both innnediately and later in this text). We omit a derivation, which may be based
on repeating the one - dimensional fundamental theorem in all three dimensions.

Application of the divergence theorem to heat flow. In partic­
ular, the closed surface integral that arises in the conservation of heat energy (1.5.1),
corresponding to the heat energy flowing across the boundary per unit time, can
be written as a volume integral according to the divergence theorem, (1.5.3). Thus,
(1.5.1) becomes

au
cp at + \7.</>- Q = 0

Of, equivalentI;y,

Equation (1.5.6) reduces to (1.2.3) in the one- dimensional case.

Fourier '8 law of heat conduction. In one - dimensional problems,
from experiments according to Fourier's law, the heat flux ¢ is proportional to the
derivative of the temperature, ¢ = -Koau/ax. The minus sign is related to the
fact that thermal energy flows from hot to cold. au/ax is the change in temperature
per unit length. These same ideas are valid in three dimensions. In an appendix,
we derive that the heat flux vector </J is proportional to the temperature gradient

( \7u = 8ui + i1..!!.1~ + aUk).- ax By 8% •

(1..5.2)

(1.5.1)

a a a
\7·A"" -Ax + -aAy + -aA,.ax y z

Note that the divergence of a vector is a scalar. The divergence,theorem s~ates

that the volume integral of the divergence of any contmuously dIffer­
entiable vector A is the closed surface integral of the outward normal
component of A :

that is the flow through the boundaries can be expressed as an integral over the
entire ;egion for one - dimensional problems. We claim that the d~vergence theorem
is an analogous procedure for functions of three V'<1riable~. The dlver~ence ~heore!U

deals with a vector A (with components Ax> Ay and A,; I.e., A = Axt+Ay]+A,k)
and its divergence defined as follows:

4Sometimes the notation ¢n is used instead of 4J • fl., meaning the outward normal component
of ¢ .

Divergence theorem. In one dimension, a way in which we derived a
partial differential relationship from the integral conservation law was to notice
(via the fundamental theorem of calculus) that

l "a¢
¢(a) - ¢(b) = - a ax dx;

must multiply </J ' n by the differential surface area dB and "surn" over th: entire
surface that encloses the region R. This4 is indicated by the closed surface mtegTal
~ ¢ . n dS. This is the amount of hea:t energy (per unit time) leavi~lg .the region
R and (if positive) results in a decreasmg of the total heat euergy wlthm R. If Q
is the rate of heat energy generated per unit volume, then the total heat energy
generated per unit time is JfJR Q dV. Consequently, com;ervation of heat energy
for an arbitrary three - dimensional region R becomes

•
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(1.5.7)!1=-KOVU,\

known as Fourier's law of heat conduction, where again K o is called the thermal
conductivity. Thus, in three dimensions the gradient Vu replaces au/ax.

Heat equation. When the heat flm, vector, (1.5.7), is substituted into the
conservation of heat energy equation, (1.5.6), a partial differential equation for the
temperature results:

Initial boundary value problem. In addition to (1.5.8) or (1.5.11),
the temperature sH.tisfies a given initial di.stributioll.

u(:r, y, z, 0) = i(":. y. 0).

The temIH:'rature also Hatisfies a boundary condition at every point on the surface
that encloses tIK' region of interest. The boundary condition call be of various types
(as in the one-dimensional problem). TIlE' temperature could be prescribed,

u(x, y, z, t) = T( x. y, Z, t),

(1.5.12)-J(oVu·il = H(u -11,,).

ever,vwhere on the bonndary w}wrE' T is a known functiun of t at each point of
the boundary. It. is also possible that the flow across the boundary is prescribed.
Frequently, we might have the boundary (or part of the boundary) insulated. This
means that there is no heat flow aeros.s that portion of the boundary. Since the
heat flux vector is - J("o \In, the heat flowing out wjJl be the unit outward normal
component of the heat flow vectoL - K o\lu·ii, where ii b (l unit outward normal
to the boundary surface. TIlllS, at an insulated surface,

Note that usually the proportionality constant H > 0, since if u > HI)] then we ex­
pect that heat energy will flow out and - J(o '\7u·ii will be greater thall zero. Equa­
tion (1.5.12) verifiE's the two forms of Newton's law of cooling for one-dimensional
problems. In particular, at x = 0, il = -i and the left-hand ,ide (1.h.8.) of (1.0.12)
becomes KOal1/aX, while at :e = L, il = i and the 1.h.s. of (1.5.12) hecomes
-Koa,,/ax [Dee (1.3.4) and (1.3 ..5)].

Recall that \lu·ii is the directional d(~rivative of 'U in the ontward normal direction:
it is also called the normal deriv'dtive.;3

Often Newton '8 law of cooling lH it more realistic condition at the boundar)'.
It states that thE' heat energy flowing out per unit time per unit Hnrface area is
proportional to the difference between the t,cll1pcrature at thl' surface ~{ and the
temperature outside the surface U/;o Thus, if Newton's Imv of cooling b valid, then
at the boundary

Vu·il = o.

0= V·(KoV,,) +Q.

Steady state. If the boundary conditiolls and any sources of thermal energy
are independent of time, it is possible that there exist steadY-Htate solutions to the
heat equation satis(ying t.he given steady boundary condition:

5Sometimes (in other books and references) the notation a ulan is used. However, to calculate
aulan one usually calculates the dot product of the two vectors, Vu and ii. Vu,n, so we will not
use the notation aulan in this text.

Note that an equilibrium temperature distribution u(x, y, z) satisfies a partial differ­
ential equation when more than one spatial dimension is involved. In the case with

(1.5.9)

(1.5.8)

(1.5.11)a" _ k,",2- v u.at

au
- = kV·(Vu),at

epau = V.(KoVu) + Q.at

a, a, a.
v =0 ax' + ayJ + az k.

Note that V" is V operating on ", while V·A is the vector dot product of del with
A. Furthermore, V 2 is the dot product of the del operator with itself or

Equation (1.5.11) is often known as the heat or diffusion equation in three spatial
dimensions. The notation \72u is often used to emphasize the role of the del operator

V:

a (au) a (au) a (au)
V·(Vu) = a,. a.r + ay ay + az az =

operating on u, hence the notation del squared, \72
.

(1.5.10)
This expression \72 u is defined to be the Laplacian of u, Thus, in this case

where k = Ko/ep is again called the thermal diffusivity. From their definitions, we
calculate the divergence of the gradient of u:

In the cases in which there are no SOllices of heat energy (Q = 0) and the thermal
coefficients are constant, (1.5.8) becomes
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constant thermal properties, the equilibrium temperature distribution will satisfy Polar and cylindrical coordinates. The Laplacian.

(1.5.13)
(1.5.17)

Sometimes (1.5.16) is called Green's theorem, but we prefer to refer to it as tbe two­
dimensional divergence theorem. In this way only one equation need be familiar to
the reader, narnely (1.5.15); the conversion to two - dimensional form involves only
changing the number of integral signs.

(1.5.18)

(1.5.19)

(1..5.20)

rcose
rsine

z z,
y

V2u = ~~ (r au) + a
2
urar ar az2.

V2u = ~~ (r aU )rar 8,.

the Laplacian can be shown to equal t,he following formula:

There may be no Heed to memorize this formula, as it can often be looked up in a
reference book. As an aid in minimizing errors, it should he noted that every term
in the Laplacian has the dimension of u divided by two spatial dimensions Uust as
in Cartesian coordinates, (1.5.17)]. Since e is measured in radians, which have no
dimensions, this remark aids in remembering to divide 8 2ulae2 by r2 . In polar
coordinates (by which we mean a two - dimensional coordinate system with.:: fixed,
usually z = 0), the Laplacian is the same as (1.5.19) with iJ'u/az2= 0 since there
is no dependence on z. Equation (1.5.19) can be derived (see the exercises) using
the chain rule for partial derivatives, applicable for changes of variables.

In some physical situations it is known that the temperature does not depend
on the polar angle e; it is said to be circularly or axially symmetric. In that
case

is important for the heat. equation (1.5.11) and its steady-state vcrsion (1.5.14), as
well as for other significant problem:,:, in science and engineering. Equation (1.5.17)
written as above in Cart.esian coordinates is most useful when the geometrical region
under investigation is a rectangle or a rectangular box. Other coordinate systems
are frequently llsefuL In practical applications, one may need the formula that
expresses the Laplacian in the appropriate coordinate system. In circular cylindrical
coordinates, with r the radial distance from the z-axis and () the angle

Spherical coordinates. Geophysical problems as well as electrical prob­
lems with spherical conductors are best solved using spherical coordinates (p, e, ¢).
The radial distance is p, the angle from the pole (z-axis) is ¢, and the cylindrical
(or azimut.hal) angle is e. Note that if p is constant and the angle ¢ is a constant a

(1.5.16)

(1.5.15)

(1.5.14)

If V·A dS = fA' it dT.
R

Jf/ V·A dV = iJA. it dS.

R

is valid in two dimensions, taking the form

2 a2u a2u
V u = ax2 + a y2 = 0,

since 8 2u18::;2 = O. two- dimensional results can be derived directly (without taking
a limit of three- dimensional problems), by using fundamental principles in two
dimensions. We will not repeat the derivation. HO\,.lever, we can easily outlinE' the
results. Every time a volume integra,} (jJfn ... dV) appears, it must be replaced by a
surface integral over the entire two-dimensional plane region (JR'" dB). Silnilarly,
the boundary contribution for three - dimensional problems. \vhich is the closed
surface integral 11> ... dS, must be replaced by the closed line integral f ... dT, an
integration over the boundary of the two - dimensional plane snrface. These results
are not difficult to derive since the divergence theorPIIl in three dimensions,

Two - dinlensional problems. All the previous remarks about thrce­
dimensional problems are valid if the geometry is such that the temperature only
depends on x, y and t. For example, Laplace's equation in two dimensions, x and
y, corresponding to equilibrium heat flow with no sources (and COIlst.ant thermal

properties) is

the Laplacian of the temperature distribution is .,;ero. Equation (1.5.14) is knuwn
as Laplace's equation. It is also known as the potential equation, since the
gravitational and electrostatic pot.entials satisfy (1.5.14) if there are no sources. v'le
will solve a number of problems involving Laplace's equation in later sections.

IV
2
u = 0; I

known as Poisson's equation.
If, in addition, there are no sources (Q = 0), then



circle is generated with radius psin¢ (as shown in Fig. 1.5.3) so t.hat. Consider the polar cuordinates
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The angle from the pole ranges from () to rr (v,..hilc the usual c.vlinclrical angle ranges
from 0 to 211"). It can be shown that the Laplacian satisfies

1.5.1. Let c(x, y, z, t) df'note the concentration of a pollutant (the amollnt per unit
volume).

and{lr = sin B. Be = case
2t/ By r'

:D = rcos()

y = r..,in().

Since 1'2 = x 2 + y2. show that (:,. r = co.., fJ., ' <.:r
iJe _ -~ille

D.I: - l'

(a)

*(a) if the outer radil.L5 is at temperature Tz and the inner at T
1

•

(b) if the outer radius is insulated and the inner radius is at temperature T1 .

,I' 'I7u·fi dB = a

(it) Show that the total heat energy is 211" J: cpur dr.

(h) Show that the flow of heat energy per unit time out of the annulus at
r = b is -211"bKooujo,. Ir~b. A similar resnlt holds at T = a.

(c) Use parts (it) and (b) to derive the circularly symmetric heat equation
without sources:

(b) Show that l' = cos oi + sin 0] and 0 = - sin oi + cos 0].
(c) Using the chain rule, show that. '1'11 = %"<'i" + ~~~9.

(d) If A = A,.f+ A80, show that 'I7·A = ~ ;" (rA") + ~ ,;~ (AoJ. since 81' j 88 =

oand iJO j 80 = -1' follows from part (b).

( ) Show that '12 ,u = lJL (r~) + I i)'11/.e 1'81' <.1r ~~

0.5.4. Using Exercise 1.5.3(a) rind the chain rule for partial derivatives. derive the
special case of Exercise 1.5.3(c) if u(I') OIlI}·.

11.5.5. AssUl~le th,at the temperature is drcnlarly s}·mnH:'tric. 11 = u(1', t), where
V - 1'2 = x 2 + y2. \Ve will derive the heat eqnation for this problem. Consider

allY C'ircular annulus a. :S r ::S b.

for any closed surfare. (Hint: Use the divergence theorem.) Give a ph)'sical
/ interpretation of this re~;nlt (in the context of heat flow).

\/"1.5.9. Determine the equilibrium tE'lllperature distribution inside a circular annulus
(r1 S r S r2)'

8u = ~.!!- (r 8U)
iJt ,. ar Or .

lvI'.'dify Exercise 1.5.5 if the thermal properties depend on r.

1.5.7. Derive the heat equation in two dimensions by using Green's theoreHl
l

(1.5.1G),
the two - dimensional form of the divergence theorem.

',0'5.8. If Laplace's equation is satisfied in three dimensions, show that

(1.5.22)

(1.5.21)
p sin dJ cos ()
psin ¢ sin e
(J cos 1)·

y
z

x

What is an expressiull for the tuta.I amount of pollutant in the region R?

Suppose that the flow J of the pollutant is proportional to the gradient
of the concentratioll. (Is this rea.50nable'?) Express conservation of the
pollutant.

(c) Derive the partial differential equation governing the diffusion of the
pollutant.

(a)

(b)

:~ p
psin¢ _

--iJ

x=L

Figure 1.5.3: Spherical coordinates.

~"
magnified

? 1 0 ( ?ou) 1 8 ( . .ou) 1 iJ'lI
'I7-u = 2""'-) Vc;- + ,. . c;" sm<p-;:;-:- + 2 . '~. Dn"p (p vp P sm<p V<y v'!J p 8m <y v

*1.5.2. For conduction of thermal energy, the heat flux vector is <p = - KoVu.
If in addition the molecules Hlove at an average velocity V a process called
convection, then briefly explain why </J = -Ko'l7u + cpuV. Derive the cor­
responding equation for heat flow) including both conduction and convection
of thermal energy (assuming constant thermal properties with no sources).

EXERCISES 1.5
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(1.5.26)

(1.5.24)

av.- au- au­
\1tl =' -i +-j + -k,

ax ay az

1 [ a a () 'J\1.p= I h.h -a (h"h",p")+-a. (h"h",p")+,.,---(h"h,.p,,.)
tu l' "I/} 11 V u til

An expression for the divergence is more difficult to derive, and we ·will jw;t
state that if a vpd,or p is expressed in terms of this new coordinate s:rstem
p = Pueu + !Jl,e l, + Pwew, then the divergence satisfies

6Examples of nonisotropic materials are certain crystaJ and grainy woods.

Appendix to 1.5: Review of Gradient and a
Derivation of Fourier's Law of Heat Conduction

. t:.u au au au
bm ~ = ai-a +"2- +"3- = a·\7u,

.6..,~---+O uS X By 8z

where it has been convenient to define the following vector:

au au au
t:.u = u(x + t:.x, t) - u(x, t) '" -at:.x + "t:.y + -t:.z.x uy a2

Experimentally, for isotropic6 materials (i.e., without preferential directions) heat
flows from hot to cold in the direction in which temperature differences
are greatest. The heat flow is proportional (with proportionality C'"on~tant K o, the
thermal conductivity) to the rate of change of temperature in t.his direction.

The change in the temperature ~u is

In the direction & = 01 ~ + 0'2} +D:3k, ~x = .6..80, where ~s is the distance between
:z: and x + Llx. Thus, the ratE' of change of the temperature in the direction 0: is
the directional derivative:

called the gradient of the temperature. From the property of dot products, if a
is the angle between & and '\lu, then the directional derivative is I''\lul cos () sillce

1.5.19. Using (1.5.25), derive the Laplacian for cylindrical coordinates.

1.5.20. Using (1.5.25), derive the Laplacian for spherical coordinates.

1.5.18. Using (1.5.23) and, (1.5.24) derive the Laplacian in an orthogonal clII"Vi­
linear coordinate system:

(1.5.23)

a.<r<bau = ~.!!..- (r au)
at rar aT

au au
v(r,O) = f(r), -(a,t) =(3, and -a(b,t) = 1.

ar r

Using physical reasoning, for what value(s) of (3 does an equilibrium temper­
ature distribution exil->t?

subject to

1.5.15. Determine the scalt~ factors for cylindrical coordinates.

1.5.16. Determine the scale factors for spherical coordinates.

1.5.17. The gradient of a scalar can be expressed in terms of the new coordinate
system \1g = aar/au + bar/a v + car/a w, where you will determine the
scalars a, b, c. Using dg = '\l9 . dr, derive that the gradient in an orthogonal
curvilinear coordinate system is given by

*1.5.13. Determine the steady-state temperature distribution between two concen­
tric ."phcres with radii 1 and 4, respectively, if thE' temperature of the outer
sphere is maintained at 80 0 and the inner sphere at. 0° (Sf'f' Exercise 1.5.12).

1.5.14. Isobars are lines of constant temperature. Show that i~obar~ are perpen­
dicular to any part of the boundary that is in5ulated.

Orthogonal Curvilinear Coordinates. A coordinate system (u, v, w)
may be introduced and defined by x =x(u,v,w),y=y(u,,'.w) and z = z(u,v,w).
The radial vector r .::::: xi + Yl + zk. Partial derivatives of r with respect to a
coordinate are in the direction of the coordinate. Thus, for example, a vector in the
u-direction aT/{) u can be made a unit vector €u in the u-direction by dividing by
its length h" = la,./a ul called the scale factor: e" = h'u a,./ au.

*1.5.11. Consider

1.5.12. Assume that the temperature is spherically symmetric 1 v. = u(1'1 t), \vhere
r is the distance from a fixed point (r2 = .r' + y2 + Z2). Consider the heat
flow (without sources) betwf'en any two concentric spheres of radii a and b.

(a) Show that the total heat energy is 471" J~ CpUT2 dr.

(b) Show that the flow of heat energy per unit time out of the spherical shell
at r = b is -471"b2 K"a 11/a r I c~b' A similar result holds at r = a.

(c) Use parts (a) and (b) to derive the spherically syrmnetric heat equation

a tL =!':....!!...- ("(2au) .
at T'ar ar

1.5.10. Det.E'rmine the equilibrium temperature distribution inside a circle (r :s TO)

if the boundary is fixed at temperature To.

/

/

!I



:JO Chapter 1. Heat Equation 1.5. Heat Equation in Tn-'o or Three Dimensions 31

1&1 = 1. The largest rate of change of 11 (the largest directional derivative) is
Iv"l > 0, and it occurs if e = 0 (i.e., in the direction of the gradient). Since this
derivative i.s positive, the temperature increase i1'l greatest in the direction of the
gradient. Siuce heat energy flO\\'s in the direction of decreasing temperatures, the
heat flow vector is in the opposite direction to the heat gradient. It follows
that

(1.5.27)

We have thus learned two properties of the gradient, vu:

1. Direction: 'Vu is perpendicular to the surface u = const.ant. \7u i":l also in the
direction of the largest directional derivative. u increase~ in the direction of
the gradient.

2. Magnitude: IVI1I is the largest value of the directional derivative.

since l\7ul equals the magnitude of the rate of change of 11 (in the direction of the
gradient). This again is callcu Fourier's law of heat conduction. Thus, in three
dimensions, the gradient \711 replaces au/Dx.

(1.5.28)

(1.5.29)vl1·(dxi + dyJ + dzk) = o.
or

(
f)U~ aU. ~ au~) . . .
"---J i + -c-j + -3k '(dxi + dyj + dzk) = 0
'.r dy z

__-40°

4.5°

.50°

dxi + dyJ + dzk represents any vector in the tangent plane of the level surface.
From (1.5.29), its dot product with VI1 is zero; that is, vu is perpendicular to the
tangent plane. Thus, 'Vu is perpendicular to the surface u = constant.

Another fundamental property of the gradient is that it is normal (perpendicu­
lar) to the level surfaces. It is easier to illustrate this in a two~ dimensional problem
(see Fig. 1.5.3) in which the temperature is constant along level curves (rather than
level surfaces). To show that the gradient is perpf'ndicular. com,ider the surface all
which the temperature is the constant To, u(x, Y,Z, t) = T,J. We calculate the dif­
ferential of both sides (at a fixed time) along the surface. Since To is constant,
dI;l = O. Therefore, using the chain ;rule of partial derivatives,

Figure 1.5.4: The gradient is perpendicular to level ~urfaces of the temperature.

Equation (1.5.28) can be written w

•




