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2.2 Linearity

As in the study of ordinary differential equations, the concept of linearity will be
very important for liS. A linear operator L lJy definition satisfies
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for any two functions '/1,1 and 112, where Cl and ('2 are arhitrary constants.
a 2/ax' are examples of linear operators since they satisfy (2.2.1):

is also a linear operator.
A linear equation fora it is of the form

L(u) = J,

It can be shown (see Exercise 2.2.1) that any linear combination of linear operators
is a linear operator. Thus, the heat operator

where L is a linear operator and f is known. Examples of linear partial dijjerentinl
equations are

Examples of nonlinear partial differential equations are

The u· and uau/ax terms are nonlinear; they do not satisfY (2.2.1).
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t > 0

t > 0
0< x < L,

0<.,. < L,

u(O, t) = T, (t)

u(L, t) = T2 (t).

u(x, 0) = f(x),

au ~ k a 2u + Q(x, t)
at - ax' cp'

Introduction

The method of separation of variables is used when the partial differential equation
and the boundary conditions are linear and homogeneous, concepts we now explain.

and two boundary conditions. For example, if both ends of the rod have prescribed
temperature, then

must be solved subject to the initial condition,

In Chapter I we developed from physical principles an lmderstanding of the heat
eqnation and its corresponding initial and boundary conditions. We are ready
to pursue the mathematical solution of some typical problems involving partial
differential equations. \Ve \-vilt use a technique called the method of separation of
variables. You will have to become an expert in this method, and so we will discuss
quite a fev.; examples. v~,fe will emphasize problem solving techniques, but \ve must
also understand how not to misuse the technique.

A relatively simple but typical, problem for the equation of heat conduction
occurs for a one - dimensional rod (0 ::; x .::; L) when all the thermal coefficients are
constant. Then the PDE,

Method of Separation
of Variables

2.1
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Only (2.2.12) is satisfied by n '" 0 (of the linear conditions) and hence is homoge­
neous. It is not necessary that a boundary condition be u(O, t) = 0 for u :::::: °to
satisfy it.

(2.3.3)

(2.3.1)

(2.:l.2)
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2.2.2. (a) Show t.hat L(11,) = S~ [l\-(}(:r)i;~] is a linear operator.

(b) Show that usually L(11) = (~: [K(1(X111)~~] is not a linear operator.

2.2.3, Show that ~~' = k!f;f + q(I/...r, t) is linear if q = n(x, t)·u + i3(x, t) and in
addition homogeneous if ,l(.f, t) = 0

2.2.4. In t.his exercise WE~ derive ~iUpel'posit.ionprinciples for nonhomogeneous pn,h­
lenL5.

(<i) Consider L( ,,) = f. If 11." is <i particular sol ut.ion. L (np ) = I, <ind if 11.j "nd
U2 are homogeneous solutions, L(u l ) = n, shO\v t.hat u = up +CI '11] +('"Jn~

is another particular solution.

(b) If L(u) = it + 12 where 11p i is a particular ~olllt.i()n corresponding to Ii,
\vhat is a particular solution for h + 12 '?

2.2.5 If L is a linear operator, show that L (L;~~l Cr,UT!) = L~=l cnL(un). Use

this re~mlt. t.o show that the principle of superpo.."it.ion lIlay he extended to any
finite numlwr of homogeneous solutions.

EXERCISES 2,2

2.3.1 Introduction

2.3 Heat Equation with Zero Temperatures
at Finite Ends

2.2.1. Show that any linear combination of linear operators is a linear operator.

Partial differential equation (2.1.1) is linear but it is hornogeneolls only if there are
no sources, q(x, t) = O. The boundary conditions (2.1.:l) are also linear. and they
too are homogeneous only if Tj (I) = 0 and T,(t) = O. We thus first propose to
study
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A nonlinear' boundary condition, for example, would be

Principle of Superposition
If HI and 11,2 satisfy a linear homogeneous equation, then an arhitrar:v linear
combination of them, CI'lI1 + C21t2, also satisfies the same linear homogeneous
equation.

The proof of this depends on the definition of a linear operator. SllPPo,sC' that 111 and
1},2 are two solutions of a linear homogeneOll~ eqnation. That means that. L(ud = 0
and £(U2) = o. Let us calculate L(cIU] +C2U2). From the definition of a linear
operator,

L(cjuj +C2"') = cjL(1J.Il+c2L(u2).

Since 111 and 112 are homogeneons solutions, it follows that L(CI U1 +C2U2) = O. This
mean~ that ('I'lli + C2U2 satisfies the linear homogeneous eqnation £(11) = 0 if UI
and /f."2 satisfy the same linear homogeneous equation.

The concepts of linearity and homogeneity also apply to boundary conditiolls,
in which ca.5e the variable.':> are evaluated at specific points. Examples of lineal'
boundary conditions are the conditions we have discussed:

If 1= O. t.hen (2.2.2) becomes L('u) = O. called a linear homogeneous equa­
tion. Examples of linear homogeneous partial difff'rential equations include the heat
equation,

an a'n
-;;- - k~ = I), (2.2.9)
ut ux

as well as (2.2.5) and (2.2.6). From (2.2.1) it. follows t.hat. L(O) = 0 (let C, = C2 = 0).
Therefore, u = 0 is always a solution of a linear homogcneoul:i equation. For example,
n = 0 sat.isfies the heat. equation (2.2.9). We call n = 0 t.he trivial solution of a
linear homogeneous E'quation. The simplest \\,a:./ to test whether an equation is
homogeneolls is to substit.ute the function u identicall"" equal to zero. If u :::: 0
satisfies a linear eqlla.tiOlL then it must be that f = 0 and lumcc the linear equation
is homogeneous. Otherwise, the equation is said to be nonhomogeneous [e.g.,
(2.2.3) and (2.2.4)].

The fllnrlamental property of linear operators (2.2.1) allows solutions of linear
equations to be add.ed together in the following sense:



36 Chapter 2, Method of Separation of Variables 2,3, Heat Equation with Zero Temperature Ends 37

This could be obtained directly from (2,3,5) by dividing by k¢(x)G(t), How is it
possible for a function of time to equal a function of space? If x and t are both to
be arbitrary independent variables, then x cannot be a function of t (or t a function
of x) as seems to be specified by (2,3,6), The important idea is that we claim it is
necessary that both sides of (2,3,6) must equal the same constant:

The problem consists of a linear homogeneous partial differential equation with lin­
ear homogeneous boundary conditions. There are two reasons for our investigating
this type of problem, (2,3,1)-(2,3,3), beside" the fact that we claim it can be solved
by the method of separation of variables, First, this problem is a relevant physical
problem corresponding to a one-dimensional rod (0 < x < L) with no sources and
both ends immersed in a 0° temperature bath. We are very interested in predicting
how the initial thermal energy (represented by the initial condition) changes in this
relatively simple physical situation. Second, it will turu out that in order to solve
the nonhomogeneous problem (2,1.1)-(2,1.3), we will need to know how to solve the
homogeneous problem, (2,3,1)-(2,3,3),

and thus
1 dG

~
function
of t only

1 d 2 ¢
¢ dx'
'-v-'

function
of x only

(2,3,6)

(2,3,7)

(2,3,8)

(2,3,9)

(2,3,10)¢(O) = 0,

IdG = -AkG, Idt

where .A is an arbitrary constant known as the separation constant.! We will
explain momentarily the mysterious minus sign, which was introduced only for
convenience.

Equation (2,3,7) yields two ordinary differential equations, one for G(t) and one
for ¢(x):

We reiterate that A is a constant and it is the same constant that appears in both
(2,3,8) and (2,3,9), The product solutions, u(x, t) = ¢(x)G(t), must also satisfy
the two homogeneous boundary conditions, For example, u(O, t) = 0 implies that
¢(O)G(t) = 0, There are two possibilities, Either G(t) = 0 (the meaning of =
is identically zero, for all t) or ¢(O) = 0, If G(t) =0, then from (2,3.4), the
assumed product solution is identically zero, u(x, t) = 0, This is not very interesting,
[u(x, t) = 0 is called the trivial solution since u(x, t) = 0 automatically satisfies
any homogeneous PDE and any homogeneous BC,] Instead, we look for nontrivial
solutions. For nontrivial solutions, we must have

1 As further explanation for the constant in (2.3.7), let us say the following. Suppose that the
left-hand side of (2.3.7) is some function of t, (l/kG)dG / dt = wet). If we differentiate with respect
to X, we get zero: 0 = d/dx(l/¢ d 2 ¢/dx2

). Since 1/4> d 2 ¢/dx2 is only a function of x, this implies
that 1/¢ d 2¢/dx2 must be a constant, its derivative equaling zero. In this way (2.3.7) follows.

(2,3,5)

(2,3.4)u(x, t) = ¢(x)G(t),

dG d 2 ¢
¢(x)- = k-

d
,G(t),

dt x

and consequently the heat equation (2,3,1) implies that

2.3.2 Separation of Variables

where ¢(x) is only a function of x and G(t) only a function of t, Equation (2,3.4)
must satisfy the linear homogeneous partial differential equation (2.3,1) and bound­
ary conditions (2,3,2), but for the moment we set aside (ignore) the initial condition,
The product solution, (2,3,4), does not satisfy the initial conditions, Later we
will explain how to satisfy the initial conditions.

Let us be clear from the beginning - we do not give any reasons why we choose
the form (2,3.4), (Daniel Bernoulli invented this technique in the 1700s, It works,
as we shall see,) We substitute the assumed product form, (2,3.4), into the partial
differential equation (2,3,1):

1 dG _ k 1 d'¢
Gd1- ¢dx2 '

Now the variables have been "separated" in the sense that the left-hand side is only
a function of t and the right-hand side only a function of x. We can continue in
this way, but it is convenient (Le., not necessary) also to divide by the constant k,

We note that we can "separate variables" by dividing both sides of (2,3,5) by
¢(x)G(t):

au
at

a'u
ax'

In the method of separation of variables, we attempt to determine solutions in
the product form
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By applying the other boundary condition, u(L, t) = 0, we obtain in a similar way
that

¢(L) = O. (2.3.11)

2.3.4 Boundary Value Problem

The x-dependent part of the assullwd product. solution, /h(;r), satisfies a second-order
ODE with two homogeneous boundar:y couditiOllS:

2.3.3 Time-Dependent Equation
(2.3.14)o

O.

£1 2 (,1)

d.l'"

¢(O)
¢(L)

1. ).. > 0, in which the two roots are purely imaginary and are complex conjugates
of each other, r = ±iv0:.

2The word eigenvalue comes from the German word ei.genwert, meaning characteristic value.

2. ). = 0, in which the two root.s coalesce and are equal, r = O. O.

We call (2.3.14) a boundary value problem for ordinary differential equations. In
the mmal first coun.,e in ordinar.y differential equations, only initial value problems
are specified. For example (think of Newton's law of motion for a particle), we
solve second-order differential equations (m d 2 yjd 2 = F) subject to two initial
conditions [y(O) and dyjdt(O) given] both at the same time. Initial value problems
are quite nice, as usually there t~;riBt unique solutions to initial value problems.
However. (2.3.14) i~ quite different. It is a boundary value problem: since the
two conditions arc not given at the same place (e.g., x = 0) but at two different
places, J' = °and .7: = L. There is ItO simple theory which guarantees that the
solution exi~ts or is uniqnE' to this t.vpe of problem. In particular, we note that
¢(x) = °satisfies the ODE and both homogeneous boundary conditions, no matter
what the separat.ioll constant).. is, even if ).. < 0; it is referred to as the trivial
solution of the boundary value problem. It corresponds to 1t(x, t) ::::;: 0, since
u(x, t) = ¢(J·)G(t). If solutions of (2.3.14) had been unique, then ¢(x) '" 0 would
be the only solution; we would not be able to obtain nontrivial solutions of a linear
homogeneous POE by the product (separation of variables) method. Fortunately,
there are otht-Jr solutions of (2.3.14). However, there do not exist nontrivial solutions
of (2.3.14) for all values of A. Instead, we will show that there are certain special
values of A, called eigenvalues' of the boundary value problem (2.3.14), for which
there are nontrivial solutions, ¢(x). A nontrivial ¢(x), which exists only for certain
values of /\, is called an eigenfunction corresponding to the eigenvalue )...

Let us t.r}" to determine the eigenvalues )... In other words, for what values of )..
are there nontrivial solutions of (2.3.14)7 We solve (2.3.14) directly. The second­
order ODE is linear and homogeneous with constant coefficients: two independent
solutions are usually obtained in the form of exponentials

1
¢ = e rx . Substituting

this exponential into the differential equation yields the characteristic polynomial
1,2 = -)... The solutions corresponding to the two roots have significantly different
properties depending on the value of A. There are four Ccti'iE'S: '

f
••

(2.3.12)

(2.3.13)

~~ = -AkG

The advantage of the product method is that it transforms a partial differential
equation, which we do not know how to solve, into two ordinary differential equa­
tions. The boundary conditions impose two conditions on the x-dependent ordinary
differential equation (ODE). The time-dependent equation has no additional con­
ditions, just

Product solutions. in addition to satisfying two ordinary differential equations,
(2.3.8) and (2.3.9), must also satisfy boundary conditions (2.3.10) and (2.3.11).

Let us solve (2.3.12) first before we discuss solving the x-dependent ODE with
its two homogeneous boundary conditions. Equation (2.3.12) is a first-order linear
homogeneou." differential equation with constant coefficients. We can obtain its gen­
eral solution quite easily. Nearly all constant-coefficient (linear and homogeneous)
ODEs can be solved by seeking exponential solutions, G = ert , where in this case
by substitution the characteristic polynomial is r = -)"k. Therefore, the general
solution of (2.3.12) is

\Ve have remembered that for linear homogeneous equations, if e-,\kt is a solution,
then ce-:>"kt is a solution (for any arbitrar:y multiplicative constant c). The time­
dependent solution is a simple exponential. Recall that).. is the separation constant,
which for the moment is arbitrary. However, eventually we will discover that only
certain values of A are allowable. If A > 0, the solution exponentially decays as t
increases (since k > 0). If ).. < 0, the solution exponentially increases, and if)" = 0,
the solution remains constant in time. Since this is a heat conduction problem
and the temperature u(x, t) is proportional to G(t), we do not expect the solution
to grow exponentially in time. Thus, we expect ).. 2: 0; we have not proved that
statement, but we shouldn't. Thus, it is rather convenient that we have discovered
that we expect A 2: O. In fact, that is why we introducted the expression -A
when we separated variables [see (2.3.7)1. If we had introduced It (instead of -A),
then our previous arguments would have suggested that j.1. ~ O. In summary, when
separating variables in (2.3.7), we mentally solve the time-dependent equation and
see that G(t) does not exponentially grow only if the separation constant was S O.
We then introduce -). for convenience, since we would now expect).. 2: O. We
next show how we actually determine all allowable separation constants. We will
verify mathematically that A 2: 0, as we expect by the physical arguments presented
above.
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3. ..\ < 0, in which t.he two rootiJ are rcal and ullf'(l'wl, r = ±\/=1, one po~itive

and one negative. (Note that in this case -,\ is positivp, so that tIlE' square
root. OptTrttion is well defined.)

4. ,\ itself complex.

v),L must be a zero of the sine function. A sketch of sin z (see Fig 0 3 1) .
kid· f tI . f . . _.. 01 our

now e ge 0 .. 1e SlIle unctIOn show1-3 that f).L - TI !\L t I .I . _ . '" V A - :;r. y A mus, equa an mtegral
fiU tiple of II J where n IS a pOSItIve ll1teger since J\\ > 0 (r' - 0 .. t .
,', • " , ...'.' y / ~ - IS no, appropnate
smce v.e cIBSUIIH-;d that ,\ > 0 1Il tlus derIvation). The eigenvalues ,\ arc

(2.3.20)

Figure 2.:3.1: Zeros of sin 2.

n = 1, 2, 3, ....

Eigenvalue (>. = 0). Now we will determine if .\ = 0 is an eigenvalue fo
(2.3.15) :mbJect to the boundary conditioIlB (2.3.16), (2.3.17). A = 0 is a s eci~
Case. If A = 0, (2.3.15) Implies that p

0)(·) . 17 . n7rJ:
x = C2 8m v Ar = c, om L' (2.3.21)

where C2 is an arbitrary multiplicative constant. Often \\:e pick a convenient value

f
for c~, for example., (:2 = 1. We should remember, though, that any sI)ecifir eigen,
unctIOn can al . bit· 1· d 1 . . . .. wayS e lllll Ip 1e ))' an arbitrary constant 1 sillee the PDE and Bes

are lmear and homogeneous.

~r~esron~ing to the douhl~zero ~oots, r = 0,0 of the characteristic polynomjal':~

m~ste~;l~mel:v~ethe(r)",= 0 1.8 an .elgenvalue. the homage.neous boundary conditions
. pp Ie . ¢ 0 = 0 ImplIes that 0 = c, and thus'" = c x In add·t·

¢(L ) - O· r h . ' "" .. lIOn,
- lInp Ies t at 0 = <"2L. Smce the length L of the rod is positive (-,<c Il)

C2 = 0 and thus "'(x) = 0 Th· .. tl t·· 1 1 . .,- ,
'. '-P. -. 18 It) le ,nV1a so utton, 1-30 we say that ,\ = 0 is not an

eIgenvalue, for thIS prohlem [(2.3.15) (2'J 16) (2317)] B hI·
, 1 ". , " • e wary, t oug 1; A = 0 IS

an eb'lgenvaIue for other probleIllB and shollid be looked at individually for· anv new
pro em )'OU may encounter. . .'

The eigenfunction corresponding to the eigenvalue'" = (Tlff/£)2 is

3Please do not say that = c cos VX ..... .
that, you find for A = 0 th~ theIge~era7:~:t~~m.VXxIS ~~e general solutIOll for A = O. If you do
constant solves (2.3.15) when _ .u Is.an ar. ltrary COnstant. Although an arbitrary
its general solution must be a 7in~:'C~~~i~2ti~nstJi\a lJ~Ie:r sec~nd-order differential equation;
choose sin v).:r/.,;). as a second independent soluti:n s~Ot~:te~e~ en~ ~~lutions. ~t is Possible. to
x. However, this involves too much work. It is better' t t .d- \1 _agrees With the solutlOn

JUS' 0 cons} er ..... - 0 as a separate case.
(2.3.19)

(2.3.18)

sin v0:L = O.

0= C2 sin v0:L.

d 2 rj;
-A6 (2.3.10)

d.r2

¢(O) 0 (2.3.16)

(,b(L) 0 (2.:U7)

The cosine term vanishes, since the solution must be zero at x = O. Thus. ¢(.1,) =
"2 sin v0:x. Only the boundary condition at x = L has not been satisfied. ¢(L) = 0
implies that

Either C2 = 0 or sin v0:L = O. If C2 = 0, then ,I(x ) '" 0 since we already determined
that C1 = O. This is the trivial solution, and we are searching for those values of )..
that have nontrivial solutions. The eigenvalues ,\ must satisfy

0= CI·

an arbitrar:f linear combination of two indepcndent solutions. (The lineal' combina­
tion mn.y be chmwn from any two indcpendent solutions.) CCli" ~x and sin V"Xx are
usually the most convenient. but eiJX;r and (!-iv>:.,r can be llsed. In some examples,
other independent solutions are ChOSCH. For example, Exercise 2.3.2(f) illustrates
the advantage of sometimes choosing cos v0:(x -a) and sin v0:(x-a) ao independent
solutions.

We now apply the boundary conditions. ¢(O) = 0 implies that

Eigenvalues and eigenfunctions (>. > 0). Let us first consider the
ca,sf' in which ,\ > O. The boundary value problem is

If ).. > 0
1

exponential soilltion~ have imaginary exponent:-:, e±iVX;:-. In this ca.",e 1 the
solutions oscillate. If we desire real independent solutions, the choices cos fix and
sin Y>:;r are usually made (cos yl);x and sin VX:r are each lincar combinations of

e±'v>:"). Thuo, the general wlution of (2.:J.15) io

\Ve will ignore the last case (as most of you would have done anyway) since \ve

will later (Chapter 5) prove that ,\ b noml in order for a nontrivial solution of t.lw
boundary value proolem (2.3.14) to exist. From the time-dppendent solutiou. using
physical l'e(l..sollillg, we expect that A ~ 0; perhaps then it will be unnecessary
to analyze case 3. Hf}'iVever. we will demonstrate a mathematical rea..'.;oll for the
omission of this ca.se.
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Eigenvalues (>.. < 0). Are there any negative eigenvalues? If'\ < O. the
solution of

(2.3.22)

is not difficult, but you may have to be careful. The roots of the characteristic
polynomial are r = ±J=):, so solutions are eV=>:·r and e-V=>::r. If you do not like
the not.ation N, you may prefer what is equivalent (if ,\ < 0), namely yT\T.
However, yT\T oj v>: since ,\ < O. It. is convenient to let

coshz
----I---::?:isinh z

-----::::o--t-=---z
Figure 2.3.2: Hyperbolic functions.

:i

o
o
O.

This boundary value problem will arise man times i .
memorize the result that the eige I .,\ Y . n the text.. It IS helpful to nearly

nva ues ale all posItIve (not zero 01' negative),

I, ~ cz)'I
where n is any positive integer n = 1 2 3, .'
are ' " , ... , and the correspondmg eigenfunctions

Eigenfunctions - summar W' .
ary value problem resulting from separ~ion:;~;:~~~~';~our results for the bound-

"'() . nJrX
'f/ x =Sll1£.

cannot be negative eigenvalues. Tl' 'Il
the ones just performed. lIS WI at times eliminate calculations such as

If we introduce the notation Al for the first (0 I . .
and so on, we see that'\ _ ( /L 2· r owest) eIgenvalue, '\2 for the next,

n - nIT ), n = 1 2 Tl' d"
are sometimes denoted ¢ (x) tlfi £" . . .. .Ie correspon mg eIgenfunctions
All eigenfunctions are (or" co~rseI)e ze

rst
tewb ofhwhlch are sket.ched in Fig. 2.3.3.

'" ( ) . ro a 01. x = 0 and x - LN'
'PI X = sm 'lrX / L has no zeros for °< x ~ . otIce that
zero for 0 < x < L. In fact'" (.) _. < L, and ¢2(X) = sm2Jrx/L has one
m 'j . ' 'Pn X - sm nJrx/L has n 1 £ 0
':e WI j claIm later (see Sec 5.3) that. remar . -. zeros or < x < L.
eIgenfunctions. ' kably, thIS IS a general property of

Spring-mass analog. We have obtain . 2
Here we present t.he analog of this to a' ed solutIOns of d ¢/dx2 = -'\¢.
find helpfuL A spring-mass system su~n~g;m~skys~em, which some of you may

Jee 0 00 e slaw satrsfies md2y/dt2 =

(2.3.25)

(2.3.23)

and

d 2¢
--2 = sd!.dx .

¢ = C3 cosh vIS,r + C4 sinh ySx,

Two independent solutions are e+-JSx and e-ySx, since s > O. The general solution
IS

Frequently, we use the hyperbolic functions instead. As a review, the definitions of
the hyperbolic functions are

in the case in which ,\ < O. Then.< > 0, and the differential equation (2.3.22)
becomes

a form equivalent to (2.3.24). To determine if there are any negative eigenvalues
(,\, < 0, but s > 0 since A = -8), we again apply the boundary conditions. Either
form (2.3.24) or (2.3.25) can be used; the same answer is obtained either way. From
(2.3.25), ¢(O) = 0 implies that 0 = C3, and hence ¢ = C4 sinh ,jSx. The other
boundary condit.ion, ¢(L) = 0, implies that C4 sinh,jSL = O. Since,jSL > 0 and
since sinh is never zero for a positive argument (see Fig. 2.3.2), it follows that C4 = o.
Thus, ¢(x) == O. The only solut.ion of (2.3.23) for'\ < 0 that solves t.he homogeneous
boundary conditions is the trivial solution. Thus, there are no negative eigenvalues.
For this example, the existence of negative eigenvalues would have corresponded to
exponential growth in time. We did not expect such solutions on physical grounds,
and here we have verified mathematically in an explicit manner that there cannot
be any negative eigenvalues for this problem. In some other problems there can
be negative eigenvalues. Later (Sec. 5.3) we will formulate a theory, involving the
Rayleigh quotient, in which we will know before we start many problems that there

simple linear combinations of exponentials. These are sketched in Fig. 2.3.2. Note
that sinhO = 0 and coshO = 1 (the results analogous to those for trigonometric
functions). Also note that. d/dzcoshz = sinhz and d/dzsinhz = c,,,hz, quite
similar to trigonometric functions, but ea.<;ier to remember because of the lack of
the annoying appearance of any minus signs in the differentiation formulas. If
hyperbolic funct.ions are used instead of exponentials, the general solution of (2.3.23)
can be written as
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2.3.5 Product Solutions and the Principle of Superposition

(2.3.27)

PDE:
iJu k i.J'l1
iJ[ i.J .,.I.

Be: u(O, t) 0
u(L t) 0

Ie: 11 (.I', 0)
4 . 3lr:r

Sll1--
L

Principle of superposition, Tit" product solutions appear to he verv
speClal, Sll1ce t:lCY I~my be used directly ouly' if t.he initial condition happens to b'~
?f the appropna~c form. However, we widl t,o show that these solutions are useful
III many ~ther sItuat~ons, in facL ill all sitnations. Consider the same PDE and
Bes, but mstead subJect to tlw initial condition

For exmnple, suppose that V·le wish to iomlve the follmving initial value pr01Jlem:

Our product ~olution u(x, t) = B sin 7Ui..r j L·e- ~.( "I' / L)2 t satisfies the initial conclition
u(x'.O~ ~ BSlll'frrr:r/L. Thus, by picking n = ;) ,md B = -L w(' will have satisfied
the lIlltml condition. OUf solution of thLs example is 1,1111s

( t) 4 · :'lr.T "; IL 'IU ;T,. = Slll --c- \.71" j.L .

It :an be pr?ved that this physical problcnl (a.-; well as most we consirlpr) has a
uIllql~e solutlOll. ThllS, it does not matter what procedure we used to obi'ain the
solutIOn.

. _' 37f:r . 8JT;]"
U(l:, 0) = 4S1I1 L + 7S1I1 L'

~he sO(uti?ll of this problem can be obt.ained by adding tugpt,her two simpler nolu­
tlOns obtameu by t,he product method:

'. . :lrrx k(3 1 )2 87l'Xu(.r.t) =4sm-
L

c- 11' L 1.+7sin __·'e-f..-I~71"jL)21L .' .

We immediately spp that this solves the initial condition (substitute t = 0) as well

:s the b~undar:\' c{)~diti.ons (sn.b;titute:r = 0 and :r = L). Only slightly IIlore ,vork
hows th~t ~hE' partial dIfferential equatIOIl ha..., been satisfied. This is an illustration

of the pnncIple of superposition.

Superposition (extended). The principle of sup(~rposition can be ex-
tended to show that if u u 1l. . ., . 1 t' . f l' 1, 1, 2, 3",·,1L.l\,] (ue SOll,lOllS a a mear 10Illogeneous
~roblem, then any lllle~1 combination of t.hese is also a solut.ion, Cl Ul + C2'U2 +

3U 3 + .. ' + CMUM = Ln=I CnUn , where ell are arbitrary constant.s, SiIlCC \'I'e know
f~om the method of separation of variables that sin n7l',rjL· e- k('IITfjL\L t is a solu­
tIOn of the heat equation (solving zero boundary conditions) for all posit.ive n it
follows that any linear combination of these solutions is also a solution of' the lin~ar
homogeneous heat equation. Thus, '

M

1/.(:r, t) = L Btl sin n7l'X e-k (n1l'jL)2 t

n=l L

(2.3.26)n = 1,2, ... ,

Figure 2.~1.3: Eigenfunctions
L sin n7rx/L and their zeros.

• TI.'ITX (I'u(x,t) = Bsm--e- k
1llT L) t,

L

Initial value problems. We can use the simple product solutions (2.3.26),
to satisfy an initial value problem if the initial condition happens to be just right,

n=l

In summary, we obtained product solutions of the heat equatioll 1 {j ulat = k8
zu/8x

2
,

satisfying the specific homogeneous boundary conditions u(O, t) = 0 and u(L, t) = 0
only corresponding to " > O. These solutions, u(x, t) = '1"(.r)G(t), have G(t) =
ce-),kt and (iJ(;r) = Cz sin v>:x, where we determined from the boundary condi­
tions i1)(0) = 0 and 1>(L) = 0] the allowable values of the separation constant
A, /\ = (n7f/Lr. Here n is a positive integer. Thus, product solutions of the heat

equation are

where B is all arbitrary constant (B = CC2). This is a different solution for each n.
Note that as t increases, these special solutions exponentially decay, in particular,
for these solutions, lim,_= u(x, t) = O. In addition, ,,(x, t) satisfies a special initial

condition, u(x,O) = B sin mrx/L.

-ky, where k > 0 is the spring constant. Thus, if" > 0, the ODE (2.3.15) may
be thought of as a spring-mass system \-"ith a restoring force. Thus, if A > 0 the
solution should oscillate. It should not be surprising that the Bes (2.3.16, 2.3.17)
can be satisfied for A > 0; a nontrivial solution of the ODE, which is <:Iero at 1.: = 0,
has a chance of being zero again at ;1: = L since there is a restoring force and the
solution of the ODE oscillates. \\Fe have shown that this can happen for ~pecific
values of>.. > O. However, if,\ < 0, then the force is not restoring. It would seem
less likely that a nontrivial solntion which is zero at x = 0 could possibly be zero
again at x = L. \Ve must not always trust our intuition entirely, so we have verified

these facts mathematically.

.-
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solvE'S the heat equation (with zerO boundary conditions) for any finite .H. "Ve have
added solutions to the heat equation, keeping in milld that the "amplitlldc

lJ B could
be different for each solution, yielding the subscript Bn . Equation (2.:3.27) shows
that we can solve the heat equation if initially

2.3.6 Orthogonality of Sines

One very important practical point has been neglected. Equation (2.3.:10) is our
solution with the coefficients Bn satisfying (2.3.29) (from the initial conditions),
but hC!w do we determine the coefficients En? We assume it is po~sible that

(2.3.31 )

(2.3.32)

(2.3.33)

(2.3.34)

{L n7rl' m7rX { 0 ~
L-J_Do_S_iI_'_L__sl_·n__L__d_X_'_=__L_/_2__: ~J

~

m1rX ""' n1rX m1rX
f(x)sin

L = 0BnSinLsinL·
n=l

Next we integrate (2.3.33) from x = 0 to x = L:

where m and n are positive integers.

To use these conditions, (2.3.32), to determine Bn , we multiply both sides of
(2.3.31) by sin 17mx/L (for any fixed integer m, independent of the "dummy" index
n):

where this is to hold over the region of the one - dimensional rod. 0 < x < L. We
will assume that standard mathematical operations a.re also valid for htfinite series.
Equation (2.3.31) represents one equation in an infinite number of unknowns, but
it should be valid at every value of x. If we substitute a thousand different values
of x into (2.3.31), each of the thousand equations would hold, but there would still
be an infinite number of unknowns. This is not an efficient way to determine the
Bn . Instead, we frequently will employ an extremely important technique based
on noticing (perhaps from a table of integrals) that the eigenfunctions sin ",rx/L
satisfy the following integral property:

],
£ . m1rX =],L n1rX m1rX

f(x) sm -L dx = L Bn sin -- sin -- dx.
o n=l 0 L L

For finite series, the integral of a sum of terms equals the sum of the integrals.
We assume that this is valid for this infinite series. Now we evaluate the infinite
sum. From the integral property (2.3.32), we see that each term of the sum is zero
whenever n i=- m. In SUll11uing over n, eventually n equals m. It is only for that one
value of n, I.e., n = m, that there is a contribution to the infinite sum. The only
term that appears on the right-hand side of (2.3.34) occurs when n is replaced by
m:

],
£ . m1rX ],£ m1rX

i(x) sm-L dx = B m sin2 -- dx.
o 0 L

(2.3.30)

(2.3.29)

(23.28)

=
~ n7fX

f(x) = 0B"sinL·
n=l

M
, n1rX

1J(x,O) = f(x) = 0B"sinL,
n=l

\Vhat is more important is that we also cla-iln that the corresponding infinite series
is the solution of our heat conduction probleru:

that is, if the initial condition equals a finite sum of the appropri~t~ sil~e functioll~.

\Vhat should we do in the uBual situation in which f(x) is not a fimte lmcar combI­
nation of the appropriate sine functions? '\"lie claim that the theory of Fourier series
(to be described with considerable detail in Chapter 3) states that:

1. Any function f(x) (with certain very reasonable r~s:,rict~ons, to be ,disc.ussed
later) can be approximated (in some sense) by ft fimte lInear combmatlOn of

sinmr.r/L.

Analyzing infinite series such as (2.3.29) and (2.3.30) is not easy. We must discuss
the convergence of these series as well as brIefly dISCUSS the va~ldlty of an mfimte
series solution of our entire problem. For the moment, let us Ignore these some­
what theoretical issues and concentrate on the construction of these infinite series
solutions.

2. The approximation may not be very good for small Ai, but gets to be a bptter
and better approximation as Al is increased (see Sec. 5.l0).

3. Furthermore, if we consider the limit a~ Tn ....---, 00, then not only is (2.3.28)
the best approximation to f(x) using combinations ~f the eigenfunctions. ~ut

(again in some sense) the resulting infinite series WIll converge to f(x) [WIth
some restrictions on f(x), to be discussed].

\Ve thus claim (and clarify and make precise in Chapter 3) that ;'any" init,ial COll­

dition f(:1') can be written as an infinite linear combination of siu n7fx/L, known as
a (vpe of Fourier series:
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Since the integral on the right equals L/2, we can solve for B rn : in a large tub of boiling water (lOO°C). Let it sit there Ii" a long time. After a
whIle (we expect) the rod will be at 100°C throughout. Now insulate the lateral
SIdes (If that had not been clone earlier) and suddenly (at t = 0) immerse the two
ends III large well-stIrred baths of ice water. L1oe. The mathematical problem is

B m =

rL
m1rX

J
o

f(x),inLdx -~lL . mJrx
L - L f(x) sm L dx.

1 m1rX 0
sin2

-- dx
o L

(2.335)

PDE:
au 02 U

75t = k ox' t > 0, (2.3.36)

(2.3.371

(2.3.38)

(2.3.39)

(2.3.40)

(2.3.41)

(2.3.42)

= 200 (_.!:.... cos nn) I
L

L nJr L 0

=
f() ~B . rmx

x = L n SIn L ,
n=l

2 fL . n7r::r
B n = LJ

o
100sm L dx

BC: u(O,t) 0
u(L,t) 0 t>O

Ie: ,,(x,O) = 100 0 < x < L.

According to (2.3.30) and (2.3.35), the solution is

where

B 21,L, . nJrx
» = -L i("') sm -- dx

{J L

and f(x) = 100. Recall that the coefficient B WdS determined by having (2.3.39)
satisfy the initial condition, II

We calculate the coefficients B n from (2.3.40):

200 { 0 n even
=-(I-c08nJr)= 400

nJr - n odd
nJr

~~ce cos nJr.= (-1)" which equals I for n even and -1 for n odd. The series (2.3.41)
. 11 be studIed further III Chapter 3. In particular, we must explain the intriguing

SItuatIOn that the initial temperature equals 100 everywhere but the series (2 341)
equal 0 t - 0 d - ,. ..

5 a x - an x - L (due to the boundaq conditions).

Approximations to the initial value problem W h
obtain d th I' . e ave now

.e . e so utlOn to the initial valne problem (2.3.36)-(2.3.38) for the heat
~ua~lOn.wlthzer~ boundary conditions (x = aand x = L) and initial temperature
dlstr~buhon equalmg 100. The solution is (2.3.39), with B n given by (2.3.42). The
s~lutlOn IS qUIte complIcated, Involvmg an infinite series. What can we say about it?
FIrst, we notice that lim,_= u(x: t) = O. The temperature distribution approache~
a steady state, u(x, t) = O. ThIS IS not surprising physically since both ends are at

As an example, let us analyze our solution in the case in which the initial temper­
ature is constant, 100°C. This corresponds to a physical problem that is easy to
reproduce in the laboratory. Take a one - dimensional rod and place the entire rod

This result is very important and so is the method by which it was obtained. Try to
learn both. The integral in (2.3.35) is considered to be knc,wn since f(x) is the given
initial condition. The integral cannot usually be evaluated. in which case numerical
integrations (on a computer) Inay need to be performed to get explicit numbers for
Brn , m=l,2,3, ....

You will find that the formula (2.3.32), 10L sin' nJrx/ L dx = L/2, is quite useful
in many different circumstances, including applications having nothing to do with
the material of this text. One rea..,on for its applicability is that there are many
periodic phenomena in nature (sinu.-1t), and usually energy or power is pruportional

to the square (sinZ wt). The average ellergy is then proportional to J;~7T ;"-" 8in
2

wt dt
divided by the period 2Jr/w. It is worthwhile to memorize that the average over
a full period of sine or cosine squared is ~. Thus, the integral over any number
of complete periods of the square of a sine "" cosine is one-half the length of the

interval. In this way JoL sin2 n1rx/L dx = L/2, since the interval 0 to L is either a
complete or a half period of sin nJrx/ L.

Orthogonality. Whenever 10L
A(x)B(x) dx = 0 we say that the functions

A(x) and B(x) are orthogonal over the interval 0 ::; x ::; L. We borrow the

terminology "orthogonal" from perpendicular vectors because j~L A(x)B(x) dx = 0
is analogous to a zero dot product, as is explained further in the appendix to this
section. A set of functions each member of which is orthogonal to every other
member is called an orthogonal set of functions. An example is that uf the
functions sin nlu'jI, the eigenfunctiuns of the boundary value problem

d'1J
dx' +).1J = 0 with 1J(0) = 0 and 1J(L) = O.

2.3.7 Formulation, Solution, and Interpretation
of an Example

They are mutually orthogonal because of (2.3.32). Therefore, we call (2.3.32) an
orthogonality condition.

In fact, we will discover that for most other boundary value problems, the eigen­
functions will form an orthogonal set of functions (with certain modifications dis­
cussed in Chapter 5 with respect to Sturm-Liouville eigenvalue problems).
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,

0°; we expect all the initial heat energy contained ill the rod to flow out the ends.
The equilibrium problem, d"lJldx2 = 0 with 'u(O) = 0 aud 1l(L) = O. ha, a unique
solution, U :::;: 0, :-tgrecing with the limit as t tends to infinity of the time-dependent

problem.
One quet5tioll of importance that we can an~wer is the manner in which the

solution approachE's ~teady state. If t i~ large, what is the approximate telnperature
distribution. and how does it differ from the ~teady state or.:..? \Ve note that each
terrn in \2.3.39) decays at a different rate. The more o~cillations in :jIJace, the fa~ter

the decay. If t is such that ki( IT / Lf is large. then each succeeding term is much
smaller than the first. \Ve can then approximate the infinite serie:'3 by only thl' first

100.

:: I
40

20

()

2

0.5
o 0

0,2
0,4

OJ:;
0,8

0,8
0,6

x
0,4

0.2o

- infinite series
-- first term

ktCrc/L)'

u(x,t)

Figure 2.3.4: Time dependent:e of temperatufe u(x, t).

4. Determine separation constant~ as the eigenvalues of a bouudary value prob­
lem.

5, Solve other differential eqnations. Record all product solution, of the PDE
obtainable by thi, method,

6, Apply the prinriple of superposition (for a linear combination of all product
solution,),

7. Attempt to satisfy the initial condition.

8. Determine coefficients using the orthogonality of the eigenfunctions.

These 8teps should be understood, not memorized. It is import<Ult to note that

L The principle of snperposition applies to solutions of the PDE (do not add up
solutions of various different ordinary differential equations).

2. Do not apply the initial condition ,,(x, 0) = f(x) until after the principle of
superposition.

Figure 2.3.5: Time dependence of temperature (using the infinite series) compared
to the fir:->t term. Note the first term is a good appruximation if the time is not too
smalL

f(x).

o

o

PDE:
au
at

BCl: ,,(0, t)

BC2: I1(L, t)

IC: ,,(x,O)

tenn:

( ) 400. 7rJ: -k(,ILI't (2,3.43)
U x, t ~ ---;- sm Te .

The larg~r t is, the better thi~ i~ as an approximation. Even if ki( 'IT /1)2 = 1this is
not a bad approximation since

Thus, if kt(rr/L)2 2: ~, we can use the simple approximation. \Ve s(;'e that for
these times the spatial dependence of the temperature is just. the ~iIl1ple rise and
fall of sin 'fix/L, as illustrated in Fig. 2.3.4. The peak amplitude, occurring in the
middle J: = L/2, decay, exponeutially in time. For kt(rr/L)2Ie" than!, the ,patial
dependence cannot be approximated by one simple ~inu~oidal function; more terms
are necessary in the series. The ~mlution can be easily compllted, using a finite
number of terms. In some cases many terms may be necessary: and there would be
better ways to calculate 1l(x, t),

Let us summarize the method of ~eparation of variables as it appears for the one
example:

1. J\.'1ake sure that you have a linear and homogeneous PDE with linear and
homogeneous Be.

2. Temporarily ignore the nonzero Ie.

3. Separate variables (determine differential equations implied by the Bb"Sumption
of product solutions) and introduce a separation constant.

2.3.8 Summary
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for n 2: 0, m ?- 0.

fur n > 0, m > o.1,L . n7rX m'iTX
SIll -- sin -- dx

" L L

1,£ n7rX n1JrX
COti -- cos -- dx

u L L

Use the trigonometric identity

Use the trigonometric identity

2.3.4. Consider

*(a) What is the total heat energy in the rod as a function of time?

(b) Wbat is the flow of heat energy out of the rod at x = O? at x = L?

*(c) What relationship should exist between parts (a) and (b)?

2.3.5. Evaluate (be careful if n = m)

co ]_..\ kt n7fX
n(x, t) = Ao + ];, Ane n cosL'

[Your answer in part (c) may involve certain integrals that do not need to be
evaluated.]

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that there
are no separated solutions which exponentially grow in time. [Hint: The
answer is

iJu = k3'u
3t 3x2 '

subject to u(O, t) = 0, u(L, t) = 0, and ,,(:t, 0) = f(x).

sinasinb = ~ [costa - b) - cos(a + b)].

*2.3.6. Evaluate

1
cos a cos b = 2[cos(a + b) + cos(a - b)].

(Be careful if a - b = 0 or a + b = 0.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

3u 3 2 u On 3uat = k ax' with 3x (O,t) = 0, 3x (L,t) = 0, and u(x,O) = f(x)

3u = 5..!!.- (r,3u)
3t r3r {)r

au a'2 u uu
-=k---vo­
{)t 3x' 3x

(d)

(b)

u(L, t) = O.and

(b) u(x,O) = 3sin 7; - sin 3lx

{
I 0 < x S L/2

(d) u(x,O) = 2 L/2 < x < L

u(O,t)=O

·0)6· 9n(a) u(x, = sm--r

* (c) u(x,O) = 2 cos 3lx

~~. = ~ :1' (r~~)
3 2 u 3'u
-+-=0
3x' 3y'

* (e) 3u=k
04U

{) t 3x'

* (a)

* (c)

d'd>
-2 + Ad> = 0
dx

Determine the eigenvalues A (and corresponrling eigenfunctions), if 4> sati8fi~s

the following boundary conditions. Analyze three cases (A > 0, A = 0, A < 0).
I'ou may assume that the eigenvalues are real.

(a) ¢(O) = 0 and 1J(7r) = 0

*(b) 1J(0) = 0 and ¢(1) = 0

d1J d1J S)(c) dx \0) = 0 and dx (L) = 0 (If necessary, see ec.2.4.1.

. d1J
*(d) ¢(O) = 0 and dx (L) = 0

(e) ~~ (0) = 0 and1J(L) = 0

*(f) 1J(a) = 0 and 1J(b) = 0 (You may assume that A > 0.)

(g) 1J(0) = 0 and d1J (L) + ¢(L) = 0 (If necessary, see Sec. 5.8.)
dx

2.3.3. Consider the heat equation

Solve the initial \.alue problem if the temperature is initially

3 u 3'u
at = k 3x"

subject to the boundary conditions

2.3.2. Oonsider the differential equation

2.3.1. For the following partial differential equations, what ordinary differential
equations are implied by the method of separation of variables?

EXERCISES 2.3

i
~.
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(c) Show that the initial condition, u(x,O) = f(x), is satisfied if Appendix to 2.3: Orthogonality of Functions

Note that v . u= 0 and w . u= 0, since we assumed that thb new set was mutually
orthogonal. Thus, we can easily solve for the coordinate ():u, of A in the u direction,

A·u
au = --. (2.3.45)

U'U

(o-uu is the vector projection of A in the u direction.)
For functions, we can do a similar thing. If l(x) can be represented by a linea.r

combination of the orthogonal set, sin nTrx/L, then

To determine the coordinates O'u, Qv,O'w with respect to this orthogonal set, U, v,
and w, we can form certain dot products. For example,

?O

f(x) = L Bn sin n2x,
n=l

where the B n may be interpreted as the coordinates of f(x) with respect t.o the
"direction" (or basis vector) sinnTrx/L. To determine these coordinates we take
the inner product with an arbitrary basis function (vector) sin nJrx/L, where the
inner product of two functions is the integral of their product. Thus, as before,

1£ 11L1rX <Xl 1L
n1fX 1l'lJrX

f(·r) sin ---r;- dx = L Bn sin L sin ---r;- dx.
o n=l 0

Two vectors A and B are orthogonal if A . B = O. In component form: A =

ali + a2} + a)" and B = hi +"2} + bi,,: A and B are orthogonal if Li a,b, = O. A
function ACt) can be thought of as a vector. If only three valuetl of x are important,
Xl, x2, and X;:3, then the components of the function A(x) (thonght of as a ·vector)
are A(Xl) =' a.I,A(.T2) =' a2, and A(X3) =' a3. The function A(x) is orthogonal
to the function B(x) (by definition) if Li aibi = O. However, in our problems, all
values of .T between 0 and L are important. The function A (1) can be tho'ught of
as an infinite-dimensional vector, whose components are A.(Xi) for aU Xi on some
interval. In this manner the function A(x) would be said to he orthogonal to B(x)
if Li A(xJB(xd = O. when~ the summation \liaS to include all pointtl bet\veen 0
and L. It is t.hus natural to define the function A(x) to be orthogonal to B(x)
if JoL A(l')B(l:) d.T = O. The integral replaces the vector dot product; both are
examplct> of "inner products."

In vectors, we have the three mutually perpendicular (orthogonal) unit vectors
1., 3. and k. known as the standard basis vectors. In component form

A = ([1 i + al) + aJk.

a1 is the projection of A in the i direction, and so on. Sometime8 we wish to
represent A in terms of other mutually orthogonal vectors (which may not he unit
vectors) u, v. and w, called an orthogonal !:jet of t'cctors. Then

(2.3.44)

= a
= o.

u(x,O)
u(x,H)

= g(y)
= 0

u(O,y)
u(L, y)

Using Exercise 2.3.6, solve for AD and An(n 2: 1).

What happens to the temperature distribution as t ~ oo? Show that it
approaches the steady-state temperature distribution (see Sec. 1.4).

(Hint: If necessary, see Sec. 2.5.1.)

(d)

(e)

In this exercise we generalize this to n-dimensional vectors and functions,
in which case (2.3.44) is known as Schwarz's inequality. [The names of
Cauchy and Buniakovsky are also associated with (2.3.44).]

(a) Show that IA _,B12 > 0 implies (2.3.44), where, = A· BjB· B.

(b) Express t.he inequality lLsing both
oc (Xl b

n
A· B = 2::anbn = l::UnCn-.

n="'l n=l en

*(c) Generalize (2.3.44) to functions. jHint: Let A·B mean j~L A(x)B(x) dx.]

2.3.11. Solve Laplace's equation inside a rectangle:

a2 u a2 u
V 2u = -- + -- = 0ax2 a y2

subject to the boundary conditions

au a2 u
- = k-- -au.
at ax2

This corresponds to a one - dimensional rod either with heat. loss through t,he
lateral sides with outside temperature 0° (a > 0, see ExercIse 1.2.4) or wIth
insulated lateral sides with a heat source proportional to the temperature.
Suppose that the boundary conditions are

u(O, t) = 0 and u(L, t) = O.

(a) What. are the possible equilibrium temperature distributions if a> O?

(b) Solve t.he t.ime-dependent problem [u(x, O) = f(x)] if a> O. Analyze the
temperature for large t.ime (t ~ 00) and compare t.o part. (a).

*2.3.9. Redo Exercise 2.3.8 if a < O. [Be especially careful if -ajk = (mrjL)'.]

2.3.10. For two- and three - dimensional vectors 1 fundamental property of dot prod­
ucts, A· B =' IAIIBI cosO, implies that

IA· BI :'0 [AliBI·

*2.3.8. Consider



56 Chapter 2. ""Iethod of Separation of Variables 2.4. Worked Examples with tbe Heat Equation 57

As a review, this is a heat conduction problem in a one- dimensional rod with
constant thermal properties and no sources. This problem is quite similar to the

(2.4.5 )

(2.4.7)

(2.4.6)

(2.4.8)

(2.4.10)

(2.4.12)

(2.4.13)

o

-)'kC

-),10,

d¢ (0)
dx

Crt) = ce- Akt

dC
dt

d'¢
d:c 2

u(x, t) = ¢(x)C(t),

~~ = ,IX ( -c] sin ,lXx + C2 cos ,lXx) .

10 = c] cos v0:x + C2 sin v0:x.

implies from the PDE as before that

where>' is the separation constant. Again,

The insulated boundary conditions, (2.4.2, 2.4.3) imply that the separated solutions
must satisfy d¢/dx(O) = 0 and d¢/dx(L) = I). The separation constant), is then
determined by finding those /\ for which nontrivial solutions exist for the follmving
boundary value problem:

~
~=--=:J (2.4.9)

problem treated in Sec. 2.3, the only difference being the boundary conditions. Here
the ends are insulated, wherea..., in Sec. 2.3 the ends were fixed at 0°. Both the par­
tial differential equation and the boundary eonditiom:l are linear and homogeneous.
Consequently) we apply the method of sf'paration of variables. We may follow the
general procedure described in Sec. 2.:3.8. The assumption of product solutions,

We need to calculate d¢/dx to satisfy the boundary conditions:

I ~~ (L) = 0 , (2.4.11)

Although the ordinary differential equation for the boundary value problem is the
same one as previously anal.yzed, the boundary conditions are different. \,ve must
repeat some of the analysis. Once again three cases should be discussed: ). > 0)
), = 0, ), < I) (since we will assume the eigenvalues are real).

For), > 0, the general solution of (2.4.9) is again

(2.4.4)

(2.4.3)

(2.4.2)

(2.4.1)

(2.3.46)

a'u
k­
. a:1"

au
at

: au (L t) = 0ax· ,

u(x,O) = j(x).IC:

BCl:

BC2

PDE:

2.4 Worked Examples with the Heat Equation
(Other Boundary Value Problems)

2.4.1 Heat Conduction in a Rod with Insulated Ends

Let us work out in detail the solution (and its interpretation) of the following
problem defined for 0 ::; x ::; L and t ?: 0:

IoL f(x)sinmrx/L dx
B n = L .

10 sin' mrx/L dx

This is seen to be the same idea as the projection formula (2.3.45). OUf ~tandard

formula (2.3.33), IoL sin" mrx/L dx = L/2. returns (2.3.46) to the more familiar

forIll, 21,L U7rXB n =- f(x)sin-dx. (2.3.47)
L 0 L

Both formulas (2.3.45) and (2.3.46) are divided by something. In (2.3.45) it is u' u,

or the length of the vector u squared. Thus, I(~ sir? mrx/L dx may be thought of
as the length squared of sin n1rX / L (although here length means nothmg other t~an

the square root of the integral). In this manner the length squared of the functl~n

sinn7fx/L is L/2, which is an explanation of the appearance of the term 2/L 1Il

(2.3.47).

Since sin n'rrx/L is an orthogonal set of functions, Jo£ sin U7Ll'/ L sin Tmrxj L dx = 0
for n # m. Hence~ we solve for the coordinate (coefficient) B n :

...,
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(2.4.20)

(2.4.21)

(2.4.22)

n=rn=O

"t'm.

"=m.t'O

N

.( ) '\" "IT"'f.x = 040 + LAn cos L'
11=1

=
'll(.r,t) = LAn cos n2·r e-(n1r/L)2 k t ,

n~O

1'" mrx n/7rX i:cos -L cos -- dx =
o L '2

L

It is interesting to not.e t.hat thiH is equivalent to

forO <:: l: :: L. The validity of (2.4.21) will also follow from the theory of Fourier
senes. Let us note tlw.t in the previous problem f(:r) \vas represented bv a series of
sines. HtTe f(:r) consists of;1, series of cosines and the constant term. The two eases
are different due t,o the different boundary conditions. To complete the solution we
need to determine the arbitrary coefficients Ao and An(n 2: 1). Fortunately, from
iIltegr.al tables it is knowIl that cosnJr.r/L satisfies the following orthog~nality
relatIon:

since C01-; 0 = 1 and eO = 1. In fact, (2.4.20) is often easier to U1-;e in practice. \Ve
prefer the form (2.4.19) in the beginning stages of the lr;arning process, since it more
clearly shows t.hat the solution consists of terms arising from the ana.Iy.sis of two
somewhat distind Ci1ses, ,\ = 0 and .\ > O.

The initial condit.ion u(x, 0) = f(.T) is satisfied if

for nand m nonnegative integers. Note that n = 0 or m = 0 corresponds to a
constant 1 contained in the integrand. The constant L/2 is another application
of the statement that the average of th(=' square of a sine or co..<;1ne function is 1.

Tf€ constant L in (2.4.22) is quitp simple since for n = m = 0, (2.4.22) becom~s

Jo dx = L. Eql~ation (2.4.22) st.ates that the cosine functions (including the
~onstant functlOn) form an ol"thogonal set of functions. \'"e can use that idea.
III the same way a, before, to determine the coefficients. Multiplying (2.4.21) hv
cos m.7rx/ Land llltegratlllg from 0 to L yields

1
L N L

, ' m:TrX nJrx m,Jr:rf (.r) cos --y;- ,Ix = 2.: An r cos -- cos -- ,Ix.
o n=(J Jo L L

:h~s holds. for all m~ m.= O! 1, 2: .... The case in which m = 0 corresponds just
a llltegratlllg 12.4.21) dIrectly. USlllg the orthogonality results, it follows that only

the mt.h term Ul the mfimte Sum contributes,

1
L Lrn:rrx 1 m7rX

o f(x) cos --y;- dx = Am1 cos' --y;- dx.

(2.4.19)

(2.4.18)

(2.4.17)

(2.4.16)

(2.4.15)

n = 1, 2, 3, ... ,

¢(X)=CI'

¢ = ('1 + C2 X ,

and C2 are arbitrary constants. The derivative of 0 is

The time-dependent part is also a constant, since e-)"kt for A = 0 equals 1. Thus,
another product solution of both the linear homogeneous PDE and BC~ is 'u(x, t) =

A, where A is any constant.
\Ve do not expect there to be any eigenvalues for A < 0, since in this case the

time-dependent part grows exponentially. In addition, it seems unlikely that we
would find a nontrivial linear combination of exponentials which would have a zero
slope at both :r = 0 and x = L. In Exercise 2.4.4 you are asked to show that there
are no eigenvalues for .\ < 0.

In order t.o satisfy the initial condition, we use the principle of superposition.
We should take a linear combination of all product solutions of the PDE (not just

those corresponding to .\ > 0). Thus,

'-U-(X-,-t)--=A-O--+~-~-I-A'-"-C-OS---,,-LITX-e-~l-n-rr/-'~l

where CI

where A is an arbitrary multiplicative constant.
Before applying the principle of superposition, "\ve must see if there are allY other

eigenvalues. If .\ = 0, then

d¢
-=C2·
dx

Both boundary conditions, d¢/dx(O) = 0 and d¢/dx(L) = 0, give the same colltli­
tion, £..'2 = 0. Thus, there are nontrivial solutions of the boundary valu(=' problem for
A = 0 namely ¢(x) equaling any constant.

but the corresponding eigenfunctions are cm;ines (not siucti),

n.7rX
¢(x) = CI cos y' " = 1, 2. 3,.

The resulting product solutions of the PDE are

The boundary condition d¢/dx(O) = 0 implies that 0 = c2 J:\, and hence c, = 0,
since .\ > O. Thus, ¢ = CI cos J:\x and d¢/dx = -CI J:\ sin J:\:c. The eigenvalues .\
and their corresponding eigenfunctions are detennined from the remaiuing bouudary

condition, d¢/dx(L) = 0:
o= -CI J:\ sin "J),L.

As beforc, for nontrivial solutions, ('1 #- O~ and hence Sill fiL = O. The eigcnvalues
for A> 0 aTC the same a...'"i the previolls probl(,IIl, ,,!XL = 'n7f or

.\ __ ("LIT, )2 ( )" = 1, 2, 3, ... , 2.4.14
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(2.4.25)

(2.4.26)

(2.4.27)

(2.4.28)

(2.4.29)

(2.4.30)

au = ka2u
at ax2 '

u(x,O) = f(x).

u(-L, Ii = u(L, t).

au auax (-L, t) = ax (L, t).

2L (rather than L as for the two previous heat conduction problems). Since the
circumferenr'e of a circle is 27TT, the radius is T = 2L/27r = L/7r. If the wire is
thin enough; it is reasonable to assume that the temperature in the wire is constant
along cross sectiollH of tl1E' bent wire. In this situation the wire should satisfy a one­
dimensional heat equation, where the distance is actually the arc length x along the
wire:

We have assumed that the wire has constant thermal properties and no sources. It
is convenient in this problem to measure the arc length ;T, such that x ranges from
- L to +L (instead of the more ""wI 0 to 2L).

Let us assume that the wire is very tightly connected to itself at the ends (x =
-L to x = +L). The conditions of perfect thermal contact should hold there (see
Exercise 1.3.2). The temperature v(.r, t) is continuous there,

Also, since the heat flux must be continuous there (and the thermal conductivity is
constant everywhere), the derivative of the temperature is also continuous:

The two boundary conditions for the partial differential equation are (2.4.26) and
(2.4.27). The init.ial condition is that the initial temperature is a given function of
the position along the win:>,

Tbe mathematical problem consists of the linear homogeneous PDE (2.4.25) subject
to linear homogeneous BCs (2.4.26, 2.4.27). As such, we will proceed in the usual
way to apply the method of separation of variables. Product solutions u(x, t) =

q,(x)G(t) for the heat equation have been obtained previously, where G(t) = ce- A"­

The corresponding boundary value problem is

(24.23)

(2.4.24)

Figure 2.4.1: Thin circular ring.x=O

IfAu = L 0 f(.l) dx

21 1
• ,mex

Am = L 0 f(1:) cos ---y;- dx.(m 2' 1)

x=L
x=-L

We have investigated a heat flow problem whose eigenfunctions are sines and one
whose eigenfunctions are cosines. In this subsection we illustrate a heat flow problem
whose eigenfunctions are both sines and cosines.

2.4.2 Heat Conduction in a Thin Circular Ring

Let us formulate the appropriate initial boundary value problem if a thin wire
(with lateral sides insulated) is bent into the shape of a circle, as illustrated in Fig.
2.4.1. For reasons that will not be apparent for a while, we let the wire have length

IlLlim u(x, t) = All = - f(x) dx.
t--+x L lJ

The two different formula." are a. somewhat annoying feature of this series of
cosines. ,It is simply caused by tbe factors L/2 and L in (2.4.22).

There is a significant difference between the solutions of the PDE for A > 0 and
the solution for>.. = O. All the solutions for A > 0 decay exponentially in time,
whereas the solution for>. = 0 remains constant in time. Thus, as t ----+ 'Xl the
complicated infinite series solution (2.4.19) appro;u;hes steady state,

The factor IoL
cos2 m1rx/L d,r has t\.".o different cases, Tn = 0 and m, -# O. Solving

for Am yields

Not only is the steady-state temperatllTe constant, Ao, but we recognize the con­
stant Ao as the average of the initial temperature distribution. This agrees with
information obtained previously. Recall from Sec. 1.4 that the equilibrium temper­
ature distribution for the problem with insulated boundaries is not unique. Any
constant temperaturE' is an equilibrium solution, but using the ideas of conservation
of total thermal energy, we know that the constant must be the average of the initial
temperature.
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(2.4.36)

(2.4.37)

(2.4.38)

(2.4.39)
= =

( '" mrx '" n7l'Xf x) = aD + ~a" COST + ~ansinT'
n=l n=I

but this is always to be understood when the statement is made that both are
eigenfunctions. There are thus two infinite families of product solutions of the
partial differential equation, 11. = 1, 2, 3, ... ,

u(x, t) = cos nzx e-(mr/L)2kt and U(l', t) = sin n~xe-(mr/L)2 k t .

In fact, any linear combination of cos 1HLt/ L and sin n7rX/ L is an eigenfunction,

"'( . mrx . mrx
'1/ .x) = Cl cos L + czsmL'

¢(x) = C"

The boundary condition ¢(-L) = ¢(L) implies that

ThllS, C, = 0, ¢(x) = c, and d¢/dx = O. The remaining boundarv condition.
(2.4.30), is automatically satisfied. We see that .

¢=C1+ C,X.

All of these correspond to A > O.
If A = 0, the general solution of (2.4.29) is

any constant, is an eigenfunction, corresponding to the eigenvalue zero. Sometimes
w.e say that cP(;r) = 1 is the eigenfunction, since it is known that an.)' multiple of an
eIgenfunction is always an eigenfunction. Product solutions u(1;, t) are also constants
in this case. Note that there is only one independent eigenfunction correspondintY
to A = 0, while for each positive eigenvalue in this problem, A = (mr/L)', there ar:
two independent eigenfunctions, sin n-7rX / L and cos n1fX/ L. Not surprisingl.y, it can
be shown that there are no eigenvalues in which A < O.

The principle of superposition must be used before applying the initial condition.
The most general solution obtainable by the method of separation of variables
consists of an arbitrary linear combination of all product solutions:

The constant ao is the product solution corresponding to A = 0, whereas two families
of arbitrary coefficients, an and bn , are needed for A > O. The initial condition
u(x,O) = f(x) is satisfied if

(2.4.35)

(2.4.33)

(2.4.32)

(2.n1)

c·, sin viAL = O.

d¢(_L) = d¢(L)
dx dx

~~ = viA (-C1 sin viAx + c] cos viAx) .

Thus, d¢/dx(-L) = d¢/dx(L) is satisfied only if

c, viA sin viAL = 0,

which determines the eigenvalues A. We find (as before) that viAL = mr or equiva­
lently that

A = C:f, n = L 2, 3.... (2.4.34)

\Ve chose the wirf' to have length 2£ so that the eigenvalues have the same formula as
before (this ,,,,ill mean If'sS to remember 1 as all our problems have a similar answer).
However, in this problem (unlike the others) there are no additional constraints
that Cl and Cz must satisfy. Both are arbitrary. We say that both sin 11.7rx/Land
cosn7rx/L are eigenfunctions corresponding to the eigenvalue A = (n-rr/L)2,

Since cosine is an even functiotl~ cos -J):( - L) = cos V),L 1 and since sine is an odd
function, sin viA(- L) = - sin viAL. it follows that ¢( -L) = ¢(L) is satisfied only if

Before solving (2.4.32), we analyze the second boundary condition, which involves
the derivative,

where the evenness of cosines and the oddness of sines have again been used. Con­
ditions (2.4.32) and (2.4.33) are easily solved. If sin viAL l' O. then Cj = 0 and
C2 = 0, which is just the trivial solution. Thus, for nontrivial solutions,

The boundary condition o(-L) = 6(L) implies that

C1 cos viA( -L) + C2 sin viA( -L) = Cl cos viAL + C2 sin viAL.

sin viAL = O.

The boundary conditions (2.4.30) and (2.4.31) each involve both boundaries (SOl!ll~

times called the mixed type). The specific boundary conditions (2.4.30) and
(2.4.31) are referred to as periodic boundary conditions since although the
problem can be thought of physically as being defined only for - L < .r. < L. it
is often thought of as being defined periodically for all Xi the temperature will he
periodic (x = XQ is the same physical point a..", x = Xo + 2£, and hence must have
the same temperature).

If A > 0, the general solution of (2.4.29) is again
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(2.4.43)

HllTJ'
cos-­

L
. rnJrX

sm--, L

= L { cos m1fX }
~ J nJrx L
~.an cos L . 'rftJrJ' dx
n=O -L Sln--

L

1 JL
2L _/(x) d.r

1 JL '(nif~TL f(x)cos--d:r
-L L

1 JL niX;];L f("') sin----y;- d:r.
-L

+

ao

JL . Jr,, " mif.r _ " 2 TnifXf(x) 8111-- dx - b", SIl1 -- dx.
-L L -L L

I t JLmiU' .. .2 rnxx
f(.T)cos~d,L'=am co~ --dx

. -L -L L

(m::> 1) am

mJrx
cos ---y;-

. m1rXSlIl-r-

2.4. Worked EXlJ.Il1ples with the Hcat Equation

1~ = -L to;r = +L, we obtain

If we utilize (2.4.40)-(2.4.42), we find that

Solving for the coefficients in a manner that we are now familiar with yields

The solution to the problem is (2.4.38), where the coefficients are given by (2.4.43).

2,4,3 Summary of Boundary Value Problems

In many problems, including the ones we have just discussed, the specific simple
constant-coefficient differential equation,

forms the fundamental part of the boundary value problem. Above we have collected
in one place the relevant formulas for the eigenvalues and eigenfunctions for the
typical boundary conditions already discUBsed. You will find it helpful to understand
these results becaUBe of their enormoUB applicability throughout this text.

(2.4.42)

(2.4.41 )

(2.4.40)

0,

n,!m
n=m'!O

n,!m
n=m'!O
n=m=O

o
L
2L

{~

Chapter 2. Method of Separation of Variables

JL mrx rmLr {
cos -- cos -- dx =

-L L L

JL . n1LT . rn·7rX dx
sm--Slll--

-L L L

4The product of an odd and an even function is odd. By antisymmetry the integral of an odd
function over a symmetric interval is zero.

Here the function f(x) is a linear combination of both sines and cosines (and a
constant), unlike the previous problems, where either sines or cosines (including
the constant term) were used. Another crucial difference is that (2.4.39) should be
valid for the entire ring, which means that - L :::; x ::; L, whereas tIlE' series of just
sines or cosine., was valid for 0 S x :s; L. The theory of Fourier series will show
that (2.4.39) is valid, and, more important, that the previous series of just sines or
cosines are but special cases of the series in (2.4.39).

For now, we wish just to determine the coefficients ao, art! an from (2.4.39).
Again the eigenfunctions form an orthogonal set since integral tableB verify the
following orthogonality conditions:

If we multiply this by both cosm1fx/L and sinm1fx/L and then integrate from

64

where n and m are arbitrary (nonnegative) integers. The constant eigenfunction
corresponds to n = 0 or m = O. Integrals of the square of sines or cosines (n = m)
are evaluated again by the "half the length of the interval" rule. The last of these
formulas, (2.4.42), is particularly simple to derive, since sine is an odd function and
cosine is an even function. 4 Note that, for example, cos nXl)L is orthogonal to every
other eigenfunction [sines from (2.4.42), cosines and the constant eigenfunction from
(2.4.40)].

The coefficients are derived in the same manner as before. A few steps are saved
by noting (2.4.39) is equivalent to
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2.4.5. This problem presents an alternative derivation of the heat equation for a
thin wire. The equation for a circular wire of finite thickness is the two­
dimensional heat equation (in polar coordinates). Show that this reduces to
(2.4.25) if the temperature does not depend on r and if the wire is very thin.

2.4.4. Explicitly show there are no negative eigenvalues for

~:~ = -).¢ oubject to ~: (0) = 0 and ~: (L) = 0

2.4.6. Determine the equilihrium temperature distribution for the thin circular ring
of Section 2.4.2:

*2.4.3. Solve the eigenvalue problem

subject to the boundary condition uta, B) = f(B). (Hint: If neceosary, see Sec.
2.5.2.)

oubject to ¢(O) = ¢(211') and *(0) = *(211').

(a) Directly from the equilibrium problem (see Sec. 1.4).

(b) By computing the limit as t ~ oc of the time-dependent problem.

For this problem you may assume that. no solutions of t,he heat equation
exponentially grow in time. You may also guess appropriate orthogonality
conditions for the eigenfunctions.

2 1 a (au) 1 a
2
u

V' u = :;: ar r ar + r2 aB' = 0,

d'dJ
-2 ~ -).¢
dx

2.4.7. Solve Laplace's equation inside a circle of radius a,

2.5 Laplace's Equation: Solutions
and Qualitative Properties

2.5.1 Laplace's Equation inside a Rectangle

In order to obtain more practice, we will consider a different kind of problem which
can be analyzed by the method of separation of variables. We consider steady­
state heat conduction in a two -dimensional region. To be specific, consider the
equilibrium temperature inside a rectangle (0 <:: x <:: L, 0 <:: y <:: H) when the tem­
perature is a prescribed function of position (independent of time) on the boundary.

<11' d¢
-(-L) = -(Ll
dx do;

n=l

<1>(-£) = <p(L)

cr
n. = 0, j. 2, 3,

n7rX n7rX

Sin - and cos -
L J.

t > O.

I"o,() = ....:.... fix) dx

'" , -L

au
ax (0, t) = 0

u(L,t) = 0

1I(x.0) = f(x).

a1l(L,t)=0
ax

811'x
(d) u(x, 0) ~ -3C08 £

311'x
(b) u(x,O) =6+4c08£

with

c~r
n. = O. I, 2. :l,

n,,-:>;
cos­

L

""_(0) =0
,b;

'"-(Ll =0
d,

~ ,,,,rx
f{x)= L.JAncos L

n=O

t>O

A O = ± rf.., f(x) d.r.

io

1
L

2 n"",~

An = - f(X)COb-",
L L

o

<,b{O} = 0

n=l

n.,,-x
Sln-

"

,peL} = ()

cr
n=1,2,~1.

f
L

2 117fT
B n = - /(.7;)",,- dx

L L
, 0

au
-(O.t) = 0
ax

1I'X
(c) u(x,O)=~2sinL

{
Ox < L/2

(a) u(x, 0) = 1 x> L/2

EXERCISES 2.4

*2.4.1. Solve the heat equation au/at = ka 2 u/ax2 , 0 < x < L, t > 0, oubject to

*2.4.2. Solve

d2¢
BOUNDARY VALUE PROBLE:\!S FOR dx

2
= ~).¢

It is important to note that, in these cases, whenever A = 0 is an eigenvalue, a
constant is the eigenfunction (corresponding to n = 0 in cos 77/lrX / L).

Elgenv"lue~

'"

B')und"l'Y
,",,,,,nit.ions

C()Fffi~l"nts

Ell;cnfunctions
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(2.5.7)

(2.5.8)

(2.5.9)

(2.5.1O)

(2.5.11)

(2.5.12)

(2.5.13)

", a"3 a

"3 a

0,

", 92(Y)

", a

+

D2U4 D2u,

°--+-- -
Dx2 Dy2 -

u,{O,y) = YI (y)

"I a

BC2:

BC1:

BC3:

POE:

BC4:

"j a

=

Figure 2.5.1: Laplace's equation inside a rectangle.

2.5. Laplace's Equation: Solutions and Qualitative Properties

. The method to solve for any of the lli(X, y) is the same; only certain details
dIffer. We WIll only solve for u,(x,y), and leave the rest for the exercises:

U4{X,y) = h{x)¢{y).

From the three homogeneous boundary conditions, we see that

h{L) = a

~e propose to solve this problem by t.he met.hod of separation of variables. We
egm by Ignormg the nonhomogeneous condit.ion u,(O,y) = YI{Y). Eventually,

we ,,:111 add toget.her product solut.ions to synthesize YI (y). We look for product.
solutIons

(2.5.2)

(2.5.4)

(2.5.3)

(2.5.5)

(2.5.6)

(2.5.1)
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a2 u a'2 u
D,·2 + Dy'

- a-

u(O,y) - Yt Cy)-

u(£, y) - Y2(Y)-

u(x,O) = ft(x)

u(x, H) - j,(x),-

BC3:

BC1:

BC2:

BC4:

POE:

where ft(x),j,{X),YI{Y), and Y2(Y) are given functions of x and Y, respectively.
Here the partial differential equation is linear and homogeneous, but the boundary
conditions, although linear I are not homogeneous. We will not be able to apply
the method of separation of variables to this problem in its present form, because
when we separate variables the boundary value problem (determining the separa­
tion constant) must have homogeneous boundary conditions. In this example all
the boundary conditions are nonhomogeneous. We can get around this difficulty by
noting that the original problem is nonhomogeneous due to the fOUf nonhomoge­
neous boundary conditions. The idea behind the principle of superposition can be
used sometimes for nonhomogeneous problems (see Exercise 2.2.4). We break our
problem up into four problems each having one nonhomogeneous condition. We let

The equilibrium temperatureu(l'<IJ) satisfies Laplace's equation with the following
boundary conditions:
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where each Ui(X, y) satisfies Laplace's equation with one nonhomogeneous boundary
condition and the related three homogeneous boundary conditions, a~ diagrammed
in Fig. 2.5.1. Instead of directly solving for u, we will indicate how to solve for
Ul, U2, U3, and U4. Why does the sum satisfy our problem? We check to see that
the POE and the four nonhomogeneous BCs will be satisfied. Since "t, "2,U3,

and U4 satisfy Laplace's equation, which is linear and homogeneous. U == Ul + U2 +
"U3 + U4 also satisfies the same linear and homogeneous PDE by the principle of
superposition. At. x = 0, UI = 0, "2 = 0, "3 = 0, and u, = YI{Y)· Therefore, at
::r = 0, 'U = HI + U2 + 1.l'3 + 11-4 = 91 (y). the desired nonhomogeneous condition. In
a similar manner we can check that all four nonhomogeneous conditions have been
satisfied.
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¢(O)

¢(H)

o
o.

(2.5.14)

(2.5.15)

However, the y-dependent problem is a boundary valuE' problem and will be used
to determine the eigenvaluE'S /\ (separation constants):

(2.5.20)

(2.5.21)

(2.5.22)

(2.5.23)

(2.5.26)

o.

n = 1, 2, 3, ....

o¢(O)

¢(H)

d'¢

dy'

. n1rY
Slll-­

H

h(x) = U2 sinh ";; (x - L).

<p(y)

This boundary value problem is one that has arisen before, but here the length
of the interval is H. All the eigenvalues are positive, A> O. The eigenfunctions are
clearly sines, since ¢(O) = O. Furthermore, the condition ¢(H) = 0 implies that

. n1r n1r
h(x) = Ul cosh fi(x - L) + u, sinh H (x - L), (2.5.25)

although it should now be clear that h(L) = 0 implies that Uj = 0 (since cosh 0 = 1
and smh 0 = 0). As we could have guessed originally,

To obtain product solutions we now must solve (2.5.18) with (2.5.19). Since .\ =
(1l1T / H)2,

d'h = (mT)'
dx2 H h. (2 ..5.24)

The general solution is a linear combination of exponentials or a linear combination
of hyperbolic functions. Either can be used, but neither is particularly suited for
solving the homogeneous boundary condition h(L) = O. We can obtain our solution
more expeditiously, if we note that both cosh 1l1T(.r - L)/ H and sinh 1l1T(X - L)/H
are lmearly mdependent solutions of (2.5.24). The general solution can be written
as a linear combination of these two:

The reason (2.5.25) is the solution (besides the fact that it solves the DE) is that it
IS a simple translation of the more familiar solution, cosh n1rx/L and sinh n1rx/L.
We are allowed to translate solutions of differential equations only if the differential
equation does not change (said to be invariant) upon translation. Since (2.5.24)

(2.5.19)

(2.5.18)

(2.5.17)

(2.5.16)

.\h

-.\¢.

.\h

d'h
dx'

d'h

dx'
d'¢
dy'

1 d'h
h dx'

1d'h 1d'¢
--=---=.\
h dx' ¢ dy' .

This results in two ordinary differential equations:

The variables can be separated by dividing by h(x)¢(y), so that

d'h d'¢
¢(y)-d' + h(x)-d' = O.

.f Y

The x-dependent problem is not a boundary value problem, since it does not have
two homogeneous boundary conditions.

The left-hand side is only a function of x, while the right-hand side is only a function
of y. Both must equal a separation constant. Do we want to use -,\ or A? One
will be more convenient. If the separation constant is negative (as it was before),
(2.5.16) implies that h(x) oscillates and ¢(y) is composed of exponentials. This
seems doubtful. since the homogeneous boundary conditions (2 ..5.13)-(2.5.15) show
that the y-dependent solution satisfies two homogeneous conditions; ¢(y) must be
zero at y = 0 and at y = H. Exponentials in y are not expected to work. On
the other hand, if the separation constant is positive, (2.5.16) implies that h(x) is
composed of exponentials and ¢(y) oscillates. This seems more reasonable, and we
thus introduce the separation constant .\ (but we do not assume .\ ;0. 0):

Thus, the y-dependent solution ¢(y) has two homogeneous boundary conditions,
whereas the x-dependent solution h(x) ha-' only one. If (2.5.12) is substituted into
Laplace's equation, we obtain
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(2.5.30)

(2.5.31)

(2.5.32)

Figure 2.5.2: Laplace's equation lll­

~ide a circular disk.

u(a,O) = frO).

2 1 3 (3U) 1 32
u

'V 11 = :;: 3,. ,. 3r +,.2302 = °

boundedness at. origin lu(O, 0) I < 00.

Be:

uta, e) = I(e)

PDE:

a

2.5. Laplace's Equation: Solutions and Qualitative Properties

2.5.2 Laplace's Equation for a Circular Disk

At first glance, it would appear that we cannot use separation of variables because
there are no homogeneous subsidiary conditions. However, the introduction of polar
coordinates requires some discussion that will illuminate the use of the method of
separation of variables. If we solve Laplace's equation on a rectangle (see Sec. 2.5.1),
o :S x :S L, 0 :S y :S H, then conditions are necessary at the endpoints of definition
of t.he variables, x = 0, Land y = 0, H. Fortunately, t.hese coincide with t.he
physical boundaries. However, for polar coordinates, 0 :::; r :::; a and -1r :::; B :S IT

(where there IS some freedom in our definition of the angle B). Mathematically, we
need conditions at the endpoints of the coordinate system, r = 0, a and {1 = -1f, 1t.

Here, only T' = a corresponds to a physical boundar}'. Thus, we need conditions
mot.ivat.ed by considerations of the physical problem at. r = °and at 0 = ±7C. Polar
coordinates are singular at r = 0; for physical reasons we will prescribe that the
temperature is finite or, equivalently, bounded there:

Suppose that we have a thin circular disk of radius a (with constant therma.l proper­
ties and no sources) with the temperature prescribed on the boundary as illustrated
in Fig. 2..5.2. If the temperature on the boundary is independent of time, then it is
reasonable to determine the equilibrium temperature distribution. The temperature
satisfies Laplace's equation, \72u = O. The geometry of this problem suggests that
we use polar coordinate~, so that 'U = 1J,(r, 8). In particular, on the circle r = a. the
t.emperature dist.ribution is a prescribed function of O. uta, 0) = frO). The problem
\ve want to solve is

Conditiolls are needed at B = ±1f for mathematical reasons. It is similar to the
circular wire situation. () = -IT corresponds to the same points as () = 7T. Although

(2.5.29)

(2 ..'i.28)

(2.5.27)

Chapter 2. Met hod of Separation of Variahle"

2 l H
. mry. - 1 sm--d.An - H . h (L)/H grey) H Y8m nIT - 0

Evaluat.ing at x = 0 will dcterminp the coefficients An from the nonhomogeneous
boundary condition:

This is the same kind of series of sine functions we have already briefly discussed,
if we associat.e An sinh mr( - L) / H as its coefficients. Th", (by the orthogonalit.y of
sin mry/ H for y between °and H),

Since sinh n7T ( - L) / H is never zero, we can divide by it and obtain finally a formula
for the coefficients:

Equation (2.5.28) with coefficient.s det.ermined by (2.5.29) is only the solnt.ion for
U4(X, y). The original u(x, y) is obtained by adding t.oget.her four such solut.JOns.

You might 1l0\V check that Laplace's equation is f3atisfied a') well as the thr?e ret~uired

hOIllogeneOw\ condition~. It is interest.ing to note that OIle part (the ~) oscill~.tes

and the other (the x) does not. This is a general property of Laplace's equabolL
not restricted to this geOlnptry (rectangle) or to these boundm'y conditions.

\iVe want to use these product solutions to satisfy the remaining condition, the
nonhom6geneous boundary condition 1..£4(0 1 y) = 91 (y). Product solutions do not
satisfy nonhomogeneous conditions. Instead, we again use tllE' principle of superpo­
sition. If (2.5.27) is a solntioB, so is

has constant coefficients l t,hillking of the origin being at :r = L (namely x' = L' - L)
does not affect the different.ial equation. since d2 hjdx'2 = (n1r/H)2h according to
tbe chain rule. For example cosh HILl,!/ H = cosh 'J77f(.r - L)/ H is a .solution.

Product solutions are

72
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there really is not a boundarYl we say that the temperature is continuous there and
the heat flow in the B-direction is contimlOUf:>, which imply:

problem to determine the separation constant is

(2.5.37)

(2.5.38)

(2.5.39)

(2.5.40)

(2.5.41 )

(2.5.42)

-,\1'

¢(rr)

d¢
dO (7r).

IG(U)I < 00.

¢( -rr)

dlil
-(-rr)
dO

!..-~ (r dG) = ,\ n'
G dr dr '

).. = (T~7f)2 = n2.
with the corresponding eigenfunctions being both

sin ne and cos n,e.

which \vhen written ill the more usual form becomes

Here, the condition at r = 0 has already been discussed. \Ve have prescribed
IU(O,O)1 < 00. For the product 8Olutions, u(r,O) = ¢(B)G(rl, it follows that the
condition at the origin is that G(r) must be bounded there,

The eigenvalues).. are determined in the usual way. In fact, this is one of the t.hree
standard problelIlS, the identical problem as for the circular wire (With L = 1r).
Thus, the eigenvalues are

The case n = 0 mu.st be included (with only a COllstant being the eigenfunction).
The r-dependent problem is

5For constant-coefficient linear differential operators, exponentials reproduce themselves.

Equation (2.5.41) is linear and homogeneons but has nonconstant coefficients.
There are exceedingly few second-order linear equations with nonconstant coeffi­
cients that we can solve easily. Equation (2.5.41) is one such case, an example of an
equation known by a number of different names: equidimensional or Cauchy or
Euler. The simplest way to solve (2.5.41) is to note that for the linear differential
operator in (2.5.41) any power G = r P reproduces itself. 5 On substituting G = r P

Illto (2.5.41) we determine that [pcp - 1) + p - n']rP = O. Thus, there are nsuallv
two distinct solutions v

p=±nl

(2.5.35)

(2.5.36)

(2.5.:14)

(2.5.33)
uv,
De (r, rr),

n(r,rr)

¢(rr)

d¢( )
dO 7r ;

n(r, -rr)

11.(1',0) = ¢(O)G(r),

¢( -rr)

d¢
-(-rr)
dO

r d ( dG) __ .!:. d'¢ = ,\
G dr r dr - ¢ dO' .

periodicity

The variables are not separated by dividing hy G(1')¢(O) since 1/r2 remains multi­
plying the e-dependent terms. Inst.ead, divide hy (1/r2 )G(r)¢(e), in which case,

~~ (r dG) ¢(O) + 2..G (1') d'¢ = O.
r dr dr r 2 de'

the e-dependent part. also sat.isfies the periodic boundary condit.ions. The prod­
uct form will satisfy Laplace's equation if

The separation constant is introduced as A (rather than -A) since there are two
homogeneous conditions in 0, (2.5.35), and we therefore expect oscillations in g.
Equation (2.5.36) yields two ordinary differential equations. The boundary value

which satisfy the PDE (2.5.30) and the three homogeneous conditions (2.5.32) and
(2.5.33). Note that (2.5.34) does not satisfy the nonhomogeneous boundary condi­
tion (2.5.31). Substitut.ing (2.5.34) into the periodicity conditions shows that

as though the t.wo regions were in perfect thermal contact there (see Exercise
1.3.2). Equations (2.,5.33) are called periodicity conditions; they arc equivalent
to u(r, OJ = u(r,O + 2rr). We note that subsidiary conditions (2.5.32) and (2.5.33)
are ~ll li"near and homogeneous (it's easy to check that u ::::: () satisfies these three
conditions). In this form the mathematical problem appears somewhat similar to
Laplace's equation inside a rectangle. There are four conditions. Hpre, fortunately,
only one is nonhomogeneous, u(a, B) = f(8). This problem is thllS suited for the
method of separation of variables.

We look for special product solutions,
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(2.547)

(2548)

(2.5.50)I\72,j; = 0 I

(Il 2: 1)

2.5. Laplace's Equation: Solutions and Qw:/litati\'(' Propertie:-;

coefficient of sin nf1. Utiing the orthogonality formulas it follows that

'"' O' d' . au a,.v . u = or III t.wo lInemnons -,- + -,- = 0,a.T iJ y

where the velocity ha.s x and y components u = (11, v). A strealn function 4' is
often introduced which automatically satisfies (2.5.48):

aw a"
{[. = -- and l' = --,-. (2549)ay aJ: ...'.

Often streamlines ('i' =constant.) are graphed which will be parallel to the fluid flow.
It can be shown that in SOmE' circumstances the fluid is irrotational (\7:ru = 0) so
that the stream function satisfies Laplace'tl equation

2.5.3 Fluid Flow Past a Circular Cylinder (Lift)

In heat flow, con:-:;ervation ofthennal energy C<.lll be used to derive Laplace'.s equation
'V 2

u = 0 under certain assmnptiolls. III fluid d,'/llamics, conservation of mass and
conservation of nlomenturn can be u:-:;ed to alsu derive Laplace's equation:

Since an # 0, the coefficienttl An and B n can be uniqudy solved for from (2.[1.47).
Equation (2.5.45) with coefficients givcn by (2.5.47) detennine~ the stetldy-state

temperature distribution inside a cirdp. TIlE' solution is relatively complicated.
often requiring the numerical evaluation of two infinite series. For additional inter­
pretations of this solution, see Chapter 8 011 GrE'ell ':-:; fUllctions.

in the following way. In the exerciseH, it b shown that conservation of mass for
a fluid along with the assumption of a constant mas:-:; densit.y p yiplds

The simplest example is a constant flow in the x-direction u = (U, 0), in which
case the stream function is 1/J = Uy, clearly satisfying Laplace's equation.

As a first step in designing airplane wings, scientists have considered the flow
around a circular cylinder of radius a. For more det.ails we refer the interested reader
to Acheson [1990]. The stream function must satisfy Laplace's equation which as

(2.5.46)

(2.5.44)

(2.5.43)

(2.5.45)
O<;r<a
-Jr < B <; Jr.

Chapter 2. Method of Separatiofj of Variables

G = ", + "2 In r.

= =
f(B) = L Anan cosnB + L Bnan sin nB, -Jr < B <; Jr.

n=O n=l

= ,"'C'

u(r,{;}) = LAnrncosn{;} + LBnrllsinn8,
n=O n=1

In order to solve the nonhomogeneous condition, uta, B) = f(B),

G(r) = CII"" n 2: 0,

where for 11 = 0 this reduces to just an arbitrary constant.
Product solutions by the method of separation of variables, which tlatisfy the

three homogeneous conditiontl, are

rn cos nB(n 2: 0) and rn sin nB(n 2: 1).

Note that as in rectangular coordinates for Laplace's equation, oscillations occur in
one variable (here B) and do not occur in the other variable (r). By the principle
of superposition, the following solves Laplace's equation inside a circle:

For n = 0 (and n = 0 is important since>" = 0 is an eigenvalue in this problem),
one solution is Tn = 1 or all}' constant. A second solution for n = 0 is most ea.sily
obtained from (2.5.40). If n = 0, :r (r'~~) = O. By integration, r dG/dr is constant,
or equivalently dGjdr is proportional to 1/1'. The second independent solution is
thus In r. Thus, for n = 0, the general solution of (2.5.41) is

The prescribed temperature is a linear combination of all sines and cosines (indud­
ing a constant term, n = 0). This is exactly the same question that we answered in
Sec. 2.4.2 with L = Jr if we let Anan be the coefficient of cosnB and Bnan be the
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except when n = 0, in which case there is only one independent solution in the form
r P • For n i- 0, the general ~olution of (2 ..5.41) is

Equatio;' (2.5.41) has only one homogeneous condition to be imposed, IG(O)I < ce,
so it is not an eigenvalue problem. The boundednE'ss condition would not have
imposed any restrictions on the problems we have studied previously. However,
here (2.5.43) or (2.5.44) shows that solutions may approar:h oc as r --+ O. Thus, for
IG(O)I < ce, C2 = 0 in (2.5.43) and "2 = 0 in (2.c,.44). The r-dependent solution
(which is bounded at r = 0) is

II
I
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before in polar coordinate is (2.5.30). We will assume that far from the cylinder the
flow is uniform /'iO that as an approximation for large r: ------

------

(2.5.59)

(2.5.58)

~ <2
Ua

CI
- =0
Ua

Figure 2.5.3: Flow past cylinder and lift = 2Jrpc1U.

Thus, the pressure is lmver where the velocity is higher. If the circulation is clockwise
around the cylinder (a negative circulation) , then intuitively (Which can be verified)
the velocity will be higher above the cylinder than below and the pressure will be
lower on the top of the cylinder and hence lift (a positive force in the y-direction)
will be generated. At the cylinder U r = 0, so that there lui' = u~. It can be shown
that the x-component of the force, the drag, is zero, but the y-component the lift
is given by (since the integral involving the constant vanishes):

which has been simplified since fo2~ sin &dO = ft sin3 0 dO = 0 due to the oddness of
the sine function. The lift vanishes if the circulation is zero. A negative circulation
(Positive cJl results in a lift force on the cylinder by the flUid.

In the real world the drag is more complicated. Boundary layers exist due to
the viscous nature of the fluid, The pressure is continuous across the boundary
layer so that the above analysis is still often valid. However, things get much more
complicated when the boundary layer separates from the cylinder in which case
a more substantial drag force occurs (which has been ignored in this elementary(2.5.57)

(2.5.55)

(2.5.54)

(2.5.53)

(2.5.52)

(2.551)

The boundary condition is that the radial
The fluid flow must be parallel

.,p '" Uy = Ursine,

1 ,
P + -p lui = constant.

2

.,p(a,O) = O.

1/J(r, 8) = CI + CJ In T -+- ~(Anrn -+- Bnr-n )sin nO I

n=1

F = - fu2~ p(cosO,sinO)adB. (2.5.56)

1 h· ti,e pressure is determined from Bernoulli'sFor steady flows sue 1 as t IS one,
condition

It can be shown in general that the fluid velocity in polar coordinates can be
. 1 !!!£. _ ow Thu' the O-componentobtained from the stream functIOn: 'U r , = rae 1 U(I - --aT. b 1

of the fluid velocity is Ue = _£J. - U(I + ~) sinO. The circulation is defined to be

I 2Tr uerd8 = -2?TCl. For a gi:'en velocity at infinitYl different flows depending on
the circulation around a cylinder are illustrated in Figure ?5.~. ,

The pressure p of the fluid exerts a force in the dIrectIOn OP~OSlt~ to the
outward normal to the cylinder (~.~) = (coo58,sin&). The drag (x-dIrectIOn) and
lift (y-direction) forces (per unit length in the ,-dIrectIOn) exerted by the flmd on
the cylinder are

'x a 2n

'ljJ(r,8) = ciin ~ +- L An(rn - -:;:;-) sin ne.
n=1

In order for the fluid velocity to be approximately a constant. at infinity with 'Ii' ~
[1y = UrsinO for large r, An = 0 for 11 2: 2 and Al = U. Thus,

',(,,') ~" (,;H+-,:,) ,(," I

so that

where the cosn& terms could be included (but would vanish). By applying the
boundary condition at r = G, we find

Cl + czIn a 0

Anan +- Bna--n 0,

By separation of variables, including the n = 0 case given by (2.5.44),

since we will use polar coordinates.
component of the fluid flow must be zero at T = a.
to the boundary, and hence we can assume:
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treatment). A plane will fly if the lift is greater than the weight of the plane.
However, to fly fast a powerful engine is necessary to apply a force in the x-direction
to overcome the drag.

2.5.4 Qualitative Properties of Laplace's Equation

Sometimes the method of separation of variables will not be appropriate. If quanti­
tative information is desired, numerical methods (see Chapter 13) may be necessary.
In this subsection we briefly describe some qualitative properties that may be de­
rived for Laplace's equation.

Mean value theorem. Our solution of Laplace's equation inside a circle,
obtained in Sec 2.5.2 by the method of separation of variables, yields an important
result. If we evaluate the temperature at the origin, r = 0, we discover from (2.5.45)
that

1 J'ufO, B) = ao = - f(B) dB;
21r -7r

the temperature there equals the average value of the temperature at the edges of
the circle. This is called the mean value property for Laplace's equation. It holds
in general in the following specific sense. Suppose that we wish to solve Laplace's
equation in any region R (see Fig. 2.5.4). Consider any point P inside R and a circle
of any radim TO (such that the circle is inside R). Let the temperature on the circle
be f(8), using polar coordinates centered at P. Our previous analysis still holds,
and thus the tenlperature at any point is the average of the temperature
along any circle of radius TO (lying inside R) centered at that point.

Figure 2.5.4: Circle within any re­
gion.

Maximum principles. We can me this to prove the maximum principle
for Laplace's equation: in steady state the temperature cannot attain its
maximwn in the interior (unless the temperature is a constant everywhere)
assuming no sources. The proof is by contradiction. Suppose that the maximum
was at point P, as illustrated in Fig. 2.5.4. However, this should be the average
of all points on any circle (consider the circle drawn). It is impossible for the
temperature at P to be larger. This contradicts the original assumption, which
thus cannot hold. We should not be surprised by the maximum principle. If the
temperature was largest at point P, then in time the concentration of heat energy
would diffuse and in steady state the maximum could not be in the interior. By
letting 'l/J = -U, we can also show that the temperature cannot attain its minimwn

in the interior. It follows that in steady state the maximum and mini111Um
temperatures occur on the boundary.

Well-posedness and uniqueness. The maximum principle is a very
impor~al~t tool f(:r further analysis of partial differential equations, especially in
estabbshmg quahtative properties (see, e.g., Protter and Weinberger [1967]). We
say ~hat a prohlem is well posed if there pxists a unique solution that depends
contmuously OIl the nonhomogeneous data (Le., the solution varies a small amount. if
the data are slightly changed). This is an important concept for physical problen.,.
If th~ solutIOn changed dramatically with onl}· a small change in the data, then any
phySIcal measurement. \vould have to be exact in order for the solution to be reliable.
Fortunately, most standard problems in partial differential equations are well posed.
For example, the maximum principle can be used to prove that Laplace's equation
'V'u = 0 with u specified as u = f(x) on the boundary is well posed. Suppose that
we vary the boundar}" data a small amount such that

'V"u = 0 with v = g(x)

Ol~ the b(~undary, w~ere g(x) is nearly the same as f (x) ever,yvlhere on the boundary.
\i\e conSIder the dIfference between these two solutions, LV = It - v. Due to the
linearity,

'V'w = 0 with w = f(x) - g(x)

~n the boundary. The maximum (and minimum) principles for Laplacp's equation
Imply that the maximum and minimum occur on the boundary. ThlL'i at anv poillt
inside, ' ,.

min(J(x) - g(x)) <:: w <:: max(J(x) - g(x)). (2.5.60)

Since g(x) is nearly the same as f(x) everywhere, w is small, and thus the solution
v is nearly the same a'3 u; the solution of Lapla~e's equation slightly varies if the
boundary data are slightly altered .

. We can also prove that the solution of Laplace's equation is unique. We prove
thl~ by contradiction. Suppose that there are two soiutions, u and v as above, which
satIsfy the same boundary condition [i.e., let (J(x) = g(x))]. If we again consider
the dIfference (w = u - vL then the maximum and minimum principles imply [see
(2.5.60)] that inside the region

o <:: w <:: o.
W~ co~clude that w = 0 everywhere inside, and thus u = v proving that if a, solution
€Justs, It must be unique. These properties (uniqueness and continuous dependence
on the data) show that Laplace's equation with u specified on the boundary is a
well-posed problem.

s Solvability condition. If on the boundary the heat flow -go 'Vu.fi is
peclfied.mste~ of the temperature, Laplace's equation may have no solutions [for

a ~ne-dllnenslOnal e~ample, ~ee E~ercise 1.4.7(b)]. To show this, we intE'grate
\7 U = 0 over the entIre two-dImensIOnal region

0= 11 'V
2
u dx dy = 11 'V'('Vu) dx dy.
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~~(L,y) = 0 g~(1',H) = f(1')·

Using the (two-dimellsionaJ) divergence theorem, \ve conclude that (see Exercise
1.5.8)

O<B<

Explain this

u(a, B) = f(B)

u(a, B) = f(B)

(b) uta, B) = f(B)

u (r, ~) = 0,

~% (rlt) = 0 1

(a) u(a.B) = In2+4cos:JB

* (a) ""(1'0)=0 u(r,fr) =0, u(l, B) = f(B)riB' ,

(b) ~)~(r,O) =0, ~% (r,:r) =0, u(I,B) = f(B)

* (c) u(r,O) =0, u (T, fr) = 0, g~(1,B) = fiB)

(d) il"( 0) ~~ (r,fr) =0, g: (1, B) = g(8)7ifj r, . = 0,

(a) U(T,O) = 0,

orb) ~~(r,O)=O,

*2.5.3. Solve Laplace's equation uutside a circular disk (r ~ a) subject
boundl.try condition: to the

2.5.5. Solve Laplace'l::l equatioll inside the ({!tart.er-circle of radius 1 (0 < () :s
1f/2, O:s r ::s 1) subject to the boundary conditions:

*2.5.4. For Laplace's equation inside a circular disk (1' < a) USI'IIg' (2 '45)' .1
(2 5 47)'h I . -, .,) <tn(" ,sowtlat

You lIlay asslIlue that. u(r, B) remains finite as r -----t 00.

Sho,,: that the solution [part (d)] exists ouly if J;~/2 g(8) dB = O.
condItIOn physically. '

2.5.6. Solve. Laplace's equation inside a semicircle of radius a(O < r < a,
IT) subject to the boundm'y conditiont>:

u(T,B) = ~ {Nj) [-~+~ (~rCOSIl(B-e)J de.

Using cos z = Re rei'] sun th ' It' '. .
. -, 1 e resu mg geornet.nc senes to obtam Poisson's
mtegral formula.

*(a) u = 0 on the diameter and lI(a,B) = g(B).

(b) the diameter is insulated and 11(a,B) = 9(B).

2.5.7. Solve Laplace's equ t' . 'd 600 ... . a lon lllSl e a wedge of radms a subject to the bOlInl-
ary condlt1011S: l

2.5.8. Solve Laplace~s,equationinsidea circular annulus (a < T < b) subject to the
boundary condItIons:

(2.5.61 )

g~(1',H)=O

u(x, H) = f(x)

u(x,H) = 0

u(x,H) = 0

u(x,H) = 0a
a~(x,O)=O,

g~(x,O) = 0,

ou(x, 0) - ~~(x,O) = 0, u(x, H) = f(x)

.(.. 0) - {O x> L/2 i)", H' - (J
u x, - 1 1'< L/2' Fij\X, )-

a" (x 0) = 0() y ,

0= i \lou·it ds.

""(0 ) 07J7 ,y, =

~~(L,y) = 0,

u(L,y) = 0,

(g) ~~ (0. y) = 0,

(f) lI(O,y) = f(y), u(L,y) = 0,

(d) u(O,y)=g(y), u(L,y) =0,

*(e) u(O, y) = 0,

*(a) ~~(O,y)=O, ~~(L,y)=O, *,0)=0,

(b) ~~(O,y) = g(y), ~~(L,y) = 0, U(l',O) = 0,

*(c) ~:' (0, y) = 0, lI(L, y) = g(y),u(.r, 0) = 0,

EXERCISES 2.5
I

2.5.1. Solve Laplace's equation inside a rectangle 0 ::; ;[ :s L, 0 :s y ::; H, with the
following boundary conditions:

*(a) Withautsolving this problem, briefly explain the physical condition under
which there is d solution to this problem.

(b) Solve this problem by the method of separation of variables.' Show that
the method works only under the condition of part (a).

(c) The solution [part (b)] has an arbitrary constant. Determine it by con­
sideration of the time-dependent heat equation (1.5,11) subject to the
initial condition u(1', y, 0) = 9(1', y).

2.5.2. Consider u.~x, y) satisfying Laplace's equation inside a rectangle (0 < x <
L, 0 < Y < /JJ subject to the boundary conditions

Since \lou·it is proportional to the heat flow through the boundary, (2.5.61) implies
that the net heat flmv through the boundary must be zero in order for a steady
state to exist. Thi~ is dear physically, because otherwise there would be a change
(in time) of the thermal energy inside, violating the steady-state assumption. Equa­
tion (2.5.61) is called the solvability condition or compatibility condition for
Laplace's equation.
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2.5.10. Using the maximum principles for Laplace'~ equation, prove that the solu­
tion of Poisson's equation, 'V2 /t = g(x)j suhject to 11. = f(x) on the boundary.
is unique.

Du (x. H) = f(l).
iJy

Du
-, (x,O) = n,
Dy

au
Dx (L,y) = g(y),

(a) iJU(x 0) = 0 Du(~. H) = 0 u(O, y) = fry)7JY' , ay' ,

(b) u(x,O) = 0, uk, H) = 0, ufo, y) = fry)

(c) 'U(x,O) = 0, u(x,H) = 0, ~~(O,y) = fry)

(d) aU(xO)=O aU(xH)=O ~~(O,y) = fly)() y. • , By' 1

2.5.18. If the mass density is constant, using the result of 1 show that \7 . u = 0

2.5.19. Show that the streamlines are parallel to the liuid velocity.

Show that anytime there is a streamfunction, '\7 x u = O.

2 5 21 F - !bt. d ,- !bt d . . _ l!bt - 0t" . rom 1l - 8 y an t; - - 8£' enve UfO -- r (je , ug - - [J r .

Show the drag force is zero for a uniform flow past a cylinder including
circulation,

(a) What is the solvability condition and its physical interpretation?

(h) Show that u(x', y) = A(x" _y2) is a solution if f (x) and y(y) are constants
[under the conditions of part (a)].

(c) Under the conditions of part (a), solve the general case [nonconstant f(x)
andg(y)]. [Hints: Use part (bl and the fact that f(l:) = fav+lJ(l')- fa,,],

where fa" = 1: f:' f(x) dJ:.j

2.5.17. Shuw that the mass density pl.r, t) satisfies !l'1 + 'V . (pu) = 0 due to
com;ervation of ma!':iS.

Show that the solutiun [part (d)] exists only if J~H fry) dy = O.

2.5.16. Consider Laplace's equation inside a rectaIlgle 0 :5 x :S L. 0 .:S y :S H.
with the boundary' conditions

2.5.23. Consider the velocity Uo at the cylinder. Where does the maximum and
minimum occur?

2.5.24. Consider the velocity lIIJ at the cylinder. If the circulation is negative show
that the velocity will be larger above the cylinder than below.

2.5.25. A stagnation point is a place where u = O. For what values of the circula-­
tion does a stagnation point exist. on the cylinder?

2.5.26. For what values of 0 will U c = 0 off the cylinder? For these 0, where (for
what values of 1') will u. = 0 also?

2.5.27. Show that 1/J = O'si~(} satisfies Laplace's equation. Show the streamline:.-l
are circles. Graph the streamlines.

a(b,O) ~c frO)

a(b,8) = 0

u(a,8) =0,u(I',7[/2) = 0,

u(T.7[/2) = f(T), u(u,8) = 0,

(,,) U(T, 0) = 0,

(b) u(r,O)c~O,

* (a) u(a,8) = frO), a(b,O) = g(8)

(b) %~ (a,8) = 0, u(b, 8) = g(O)

(c) f,:'(a,O) = f(8), %~(b.8) = g(O)

for large n, then the solution u(x, t) changes by a large amount.]

2.5.15. Solve Laplace's equation inside a semi-infinite strip (0 < x < 00, 0 < y <
H) subject to the boundary conditions:

2.5.11. Do Exercise 1.5.8.

2.5.12. (a) Using the divergence theorem, determine an alternative expression for
II U 'V'u dx dy dz.

(b) Using part (,,), prove that the solution of Laplace's equation 'V'u = 0
(with u given on the houndary) is unique.

(c) Modify part (b) if 'Vu·n = 0 on the boundary.

(d) Modify part (b) if'Vu·ft+hu = 0 on the boundary. Show that Newton's
law of cooling corresponds to h < O.

2.5.13. Pruve that the temperature sati~fying Laplace's equation cannot attain its
minilnum in the interior.

2.5.14. Show that the "backwards" heat equatiun

Du D'u
---k-
Dt - Dx'

subject tu ufO, t) = u(L, t) = 0 and u(x,O) = f(.f-), is not well posed. [Hint:
Show that if the data are changed an arbitrarily small amount, for example

1 n1TX
f(x) ~ f(x) + ;;: sin L

If there is a solvability condition, state it and explain it physically.

*2.5.9. Solve Laplace)s equation inside a 90° sector of a circular annulus (a < l' <
b, 0 < 0 < 7[/2) subject to the boundary condition"

i, ,




