Chapter 2

Method of Separation
of Variables

2.1 Introduction

In Chapter 1 we developed from physical principles an understanding of the heat
equation and its corresponding initial and boundary conditions. We are ready
to pursue the mathematical solution of some typical problems involving partial
differential equations. We will use a technique called the method of separation of
variables. You will have to become an expert in this method, and so we will discuss
quite a few examples. We will emphasize problem solving techniques, but we must
also understand how not to misuse the technique.

A relatively simple but typical, problem for the equation of heat conduction
occurs for a one- dimensional rod (0 < z < L} when all the thermal coefficients are
constant., Then the PDE,

du 0%u - Qz,t)  t>0 .
ot T v<w<L, (21.2)
must be solved subject to the initial condition,
w(z, 0y = f(x), 0<x< L, (2.1.2)

and two boundary conditions. For example, if both ends of the rod have prescribed
temperature, then

t>0 (2.1.3)
u(L, ) = Ta(t).

The method of separation of variables is used when the partial differential equation
and the boundary conditions are linear and homogeneous, concepts we now explain,
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2.2 Linearity

As in the study of ordinary differential equations, the concept of linearity will be
very important for us. A linear operator L by definition satisfies

L(clul + CQU‘Z) = L(U]) + CQL(_UQ) (221)

for any two functions wy and u;, where ¢; and e, are arbitrary constants. A/dt and
9?/02* are examples of linear operators since they satisfy (2.2.1):
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@(clul +(22u2) = cl&_r? +Cz—am—2.

It can be shown (see Exercise 2.2.1) that any linear combination of linear operators
is a linear operator. Thus, the heat operator

g 07
gt 92

is also a linear operator.
A linear equation for w it is of the farm

Liu) = . (2.2.2)

where L is a linear operator and f is known. Examples of linear partial differentiol
equations are

du R
= kS ) (2:2.3)
Au E .
Er = k:-aFJra(fﬂ,t}quf(:C,t) (2.2.4)
0% 93w .
Fr T (2.2.5)
du &y
I el + oz, t)u. (2.2.6)

Examples of nenlinear partial differential equations are

du 9%y

Frili k@ + afx, t)ut (2.2.7)
Hu + du _ u
(’)t U 81‘ = ‘8?. (228)

The u* and udu/B8z terms are nonlinear; they do not satisfy {2.2.1).
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If f =0, then (2.2.2) becomes L{u) = 0, called a linear homogeneous equa-
tion. Examples of linear homogeneous partial differential equations include the heat
equation,

du | 8%

bt~ " oar
as well as (2.2.5) and (2.2.6). From (2.2.1) it follows that L{0} = 0 {let ¢; = ¢» = 0).
Therefore, u = 0 is always a solution of a linear homogeneous equation. For example,
w = 0 satisfies the heat equation (2.2.9). We call « = 0 the frivial solution of a
linear homogeneous equation. The simplest way to test whether an equation is
homogeneons is to substitute the function w identically equal to zero. If u = 0
satisfies a linear equation, then it must be that f = 0 and hence the linear equation
is homogeneous. Otherwise, the equation is said to be nonhomogeneous [e.g.,
(2.2.3) and (2.2.4}].

The fundamental property of linear operators {2.2.1) allows solutions of linear
equations to he added together in the following sense:

=0, (2.2.9)

Principle of Superpaosition

If wy and wue satisfy a linear homogeneous equation, then an arbitrary linear
combination of them, ¢ju; + ecyua, also satisfies the same linear homogeneous
equation.

The proof of this depends on the definition of a linear operator. Supposc that u, and
u, are two solutions of a linear homogeneous equation. That means that L{u,) =0
and L(uz) = 0. Let us calenlate L(cjuy + czuy). From the definition of a linear
operator,

Liciuy + caug) = e L{uy) + coL{uz).

Since u; and ug are homogeneous solutions, it follows that L{cjui +caug) = 0. This
means that c1u; + eats satisfes the linear homogeneous equation L(u) = 0 if
and w; satisfv the same linear homogeneous equation.

The concepts of linearity and homogeneity also apply to boundary conditions,

in which case the variables are evaluated at specific points. Examples of lincar

boundary conditions are the conditions we have discussed:

u(0,t) = f(t) {2.2.10)
gz(L 6 = g(t) (2.2.11)
g“(n H = 0 (2.2.12)

—KQE(L,LF) = h[u(L.t) — g(£)]. (2.2.13)

A nonlinear boundary vondition, for example, would be
u
——{L,t) = u?(L,1). 2.2.14
0L 1) = (LY (22.14)

Only (2.2.12) is satisfied by u = 0 (of the linear conditions) and hence is homoge-
neous. It is not necessary that a boundary condition be w({0,{) = 0 for w = 0 to
satisfy it.
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EXERCISES 2.2

2.2.1. Show that any linear combination of linear operators is a linear operator.

2.2.2. (a) Show that L{u) = {I\(; ) 2] is a linear operator.

.') r

(b} Show that usually Lin) = ;— [Ku (x, 1) f;] is not a linear operator.

2.2.3. Show that £% = = kiZy + Q. r.f) is linear if @ = o, HHu + 3z, t) and in

{)r =
addition homogenemh if Alrt) = 0.

2.2.4. In this excreise we derive superposition principles for nonhomogeneous prob-
lems.

(a) Consider L{u) = f. If u, is a particular solution. L(up) = f, and if u; and
uy are homogeneous solutions. L{w, } = 0, show that v = Uy, + Oy + Calt
is another particular solution.

(b) If L{u) = fi + f» where u,, is a particular solution corresponding to fi.
what is a particular solution for fi + f2?

2.2.5 If L is a linear operator, show that L (Z:;I a,,u,,) = ZM en L{u,). Use

n=1
this result. to show that the principle of superpasition may be extended to any
finite number of homogeneous solutions.

2.3 Heat Equation with Zero Temperatures
at Finite Ends

2.3.1 Introduction

Partial differential equation (2.1.1) is linear but it is homogeneons only if there are
no sources, Q(z,t) = 0. The boundary conditions (2.1.3) are also linear. and they

too are homogeneous only if 7T7(¢) = 0 and To(¢f} = 0. We thus first propose to
study

) du J%u N<x< L
PDE: 37 = k@ £ >0 (2.3.1)
| w8 = 0 o .
BC: w(lt) = 0 (2.3.2)
IC: | w(z,0) = flx). : (2.3.3)
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The problem consists of a linear homogeneous partial differential equation with lin-
ear homogeneous boundary conditions. There are two reasons for our investigating
this type of problem, (2.3.1)-(2.3.3), besides the fact that we claim it can be solved
by the method of separation of variables. First, this problem is a relevant physical
problem corresponding to a one- dimensional rod (0 < z < L) with no sources and
both ends immersed in a ° temperature bath. We are very interested in predicting
how the initial thermal energy (represented by the initial condition) changes in this
relatively simple physical situation. Second, it will turn out that in order to solve
the nonhomogeneous problem {2.1.1)-(2.1.3), we will need to know how to solve the
homogeneous problem, (2.3.1)-(2.3.3).

2.3.2 Separation of Variables

In the method of separation of variables, we attempt to determine solutions in
the product form

u(x, t) = d(x)G(1), (2.3.4)

where ¢(z) is only a function of z and G(t) only a function of t. Equation (2.3.4)
must satisfy the linear homogeneous partial differential equation {2.3.1) and bound-
ary conditions (2.3.2}, but for the moment we set aside (ignore) the initial condition.
The product solution, (2.3.4), does not satisfy the initial conditions. Later we
will explain how to satisfy the initial conditions.

Let us be clear from the beginning — we do not give any reasons why we choose
the form (2.3.4). (Daniel Bernoulli invented this technique in the 1700s. [t works,
as we shall see.} We substitute the assumed product form, (2.3.4), into the partial
differential equation (2.3.1):

du dez
3L = (35(5'3)5
3% d2o
7z = aeot)

and consequently the heat equation (2.3.1) implies that

iG d?
¢(m)d—f _ kd—wa(t}. (2.35)

We note that we can “separate variables” by dividing both sides of (2.3.5) by
P(z)G(t):

1dG _, 1d%

Gdt ¢dx?’
Now the variables have been “separated” in the sense that the left-hand side is only

a function of ¢ and the right-hand side only a function of . We can continue in
this way, but it is convenient (i.e., not necessary) also to divide by the constant £,
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and thus
1 dG 1d%¢
K& pae (2.3.6)
S’ N —
function function

of ¢ only of x only

This could be obtained directly from {2.3.5) by dividing by k¢(x)G(£). How is it
possible for a function of time to equal a function of space? If x and ¢ are both to
be arbitrary independent variables, then = cannot be a function of ¢ (or ¢ a function
of x) as seems to be specified by (2.3.6). The important idea is that we claim it is
necessary that both sides of {2.3.6) must equal the same constant:

1dG  1d%

EE = g@ = —/\, (237)

where A is an arbitrary constont known as the separation constant.! We will
explain momentarily the mysterious minus sign, which was introduced only for
convenience.

Equation (2.3.7) yields two ordinary differential equations, one for G(¢) and one

for ¢(x):

d%p
8o __ 2.3.8
=M (2.358)
dG
= MG (2.3.9)

We reiterate that A is a constant and it is the same constant that appears in both
(2.3.8) and (2.3.9). The product solutions, u(z,t) = $(z)G(t), must also satisfy
the two homogeneous boundary conditions. For example, »(0,t) = 0 implies that
¢(0)G(t) = 0. There are two possibilities. Either G(¢) = 0 (the meaning of =
is identically zero, for all ¢} or #(0) = 0. If G(¢) = 0, then from (2.3.4), the
assumed product solution is identically zero, u(z, t) = 0. This is not very interesting.
[u(x,t) = 0 is called the trivial solution since u(z,t) = 0 automatically satisfies
any homogeneous PDE and any homogeneous BC.] Instead, we look for nontrivial
solutions, For nontrivial solutions, we must have

$(0) = 0. (2.3.10)

! As further explanation for the constant in (2.3.7), let us say the following. Suppose that the
left‘-ha.nd side of (2.3.7) is some function of t, (1/kG)dG/dt = w(t). If we differentiate with respect
to &, we get zero: 0 = d/dx(1/¢ d2¢/dx?). Since 1/¢ d2¢/dz? is only a function of z, this implies
that 1/¢ d3¢/dz? must be a constant, its derivative equaling zero. In this way (2.3.7) follows.
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By applying the other boundary condition, u{L,¢) = (), we obtain in a similar way
that

H(L) = 0. (2.3.11)

Product solutions, in addition to satisfying two ordinary differential equations,
(2.3.8) and (2.3.9), must also satisfy boundary conditions (2.3.10) and {2.3.11).

2.3.3 Time-Dependent Equation

The advantage of the product method is that it transforms a partial differential
equation, which we do not know how to solve, into two ordinary differential equa-
tions. The boundary conditions impose two conditions on the z-dependent ordinary
differential equation (ODE). The time-dependent equation has no additional con-
ditions, just

dG

— = MG (2.3.12)

Let us solve {2.3.12] first before we discuss solving the z-dependent ODE with
its two homogeneous boundary conditions. Equation (2.3.12) is a first-order linear
homogeneous differential equation with constant coefficients. We can obtain its gen-
eral solution quite easily. Nearly all constant-coefficient (linear and homogeneous)
ODEs can be solved by seeking exponential solutions, G = &%, where in this case
by substitution the characteristic polynomial is r = —Ak. Therefore, the general
solution of {2.3.12) is

G{t) = ce™ M. (2.3.13)
We have remembered that for linear homogeneous equations, if e=**! is a solution,
then ce ™ is a solution (for any arbitrary multiplicative constant ¢). The time-
dependent solution is a simple exponential. Recall that A is the separation constant,
which for the moment is arbitrary. However, eventually we will discover that only
certain values of A are allowable. If A > 0, the solution exponentially decays as t
increases (since k > 0). If A < 0, the solution exponentially increases, and if A = 0,
the solution remains constant in time. Since this is a heat conduction probiem
and the temperature u(z,t) is proportional to G (), we do not expect the solution
to grow exponentially in time. Thus, we expect A > 0; we have not proved that
statement, but we shouldn’t. Thus, it is rather convenient that we have discovered
that we expect A > 0. In fact, that is why we introducted the expression —A
when we separated variables [see (2.3.7)]. If we had introduced p (instead of —2A),
then our previous arguments would have suggested that u < 0. In summary, when
separating variables in (2.3.7), we mentally solve the time-dependent equation and
see that G(t) does not exponentially grow anly if the separation constant was < 0.
We then introduce —\ for convenience, since we would now expect A > 0. We
next show how we actually determine all allowable separation constants. We will
verify mathematically that A > 0, as we expect by the physical arguments presented
above.

SRAPLE Y A ey
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2.3.4 Boundary Value Problem

The z-dependent part, of the assumed product solution, @), satisfies a second-order
ODE with two homogeneous boundary conditions:

d2¢

wE T T ‘
S0 = 0 (2.3.14)
#(L) = 0

We call (2.3.14) a boundary value problem for ordinary differential equations. In
the usual first course in ordinary differential equations, only initial value problems
are specified. For exaruple (think of Newton’s law of motion for a particle), we
solve second-order differential equations (m d?y/d? = F) subject to two initial
conditions [y(0) and dy/dt(0) given] both at the same time. Initial value problems
are quite nice, as usually there exist unigue solutions to initial value problems.
However. {2.3.14} is quite different. It is a boundary value problem, since the
two conditions are not given at the same place (e.g., z = 0) but at two different
places, r = 0 and x = L. There is no simple theory which guarantees that the
solution exists or is unique to this type of problem. Tn particular, we note that
¢(x) = 0 satisties the ODE and both homogeneous boundary conditions, no matter
what the separation constant X is, even if A < 0; it is referred to as the trivial
solution of the boundary value problem. It corresponds to u(x, t) = 0, since
u(z,t) = ()G (t). If solutions of (2.3.14) had been unique, then ¢(x) = 0 would
be the only sobution; we would not be able to obtain nontrivial solutions of a linear
homogeneous PDE by the product {separation of variables) method. Fortunately,
there are other solutions of (2.3.14). However, there do not exist nontrivial solutions
of (2.3.14) for all values of A. Instead, we will show that there are certain special
values of A, called eigenvalues? of the boundary value problem (2.3.14), for which
there are nontrivial solutions, ¢(x). A nontrivial (), which exists only for certain
values of A, is called an eigenfunction corresponding to the eigenvalue A

Let us try to determine the eigenvalues A. In other words, for what values of A
are there nontrivial solutions of {2.3.14)? We solve (2.3.14) directly. The second-
order ODE is linear and homogeneous with constant coefficients: two independent
solutions are usually obtained in the form of exponentials, ¢ = ™. Substituting
this exponential into the differential equation yields the characteristic polynomial
7% = — A, The solutions corresponding to the two roots have significantly differcunt
properties depending on the value of A. There are four cases:

1. A > 0, in which the two roots are purely imaginary and are complex conjugates
of each other, r = 4/},

2. A =0, in which the two roots coalesce and are equal, r = 0,0,

2 . .
The word eigenvalue comes from the German word ergenwert, meaning characteristic value,
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3. A < 0, in which the two roots are real and unequal, r = -£1/— A, one positive
and one negative. (Note that in this case —X is positive. so that the square
root operation is well defined.)

4. A itsell complex.

We will ignore the last case (as most of you would have done anyway) since we
will later (Chapter 5) prove that A is veal in order for a nontrivial solution of the
boundary value problem (2.3.14) to cxist. From the time-dependent solution, using
phiysical reasoning, we expect that A > 0; perhaps then it will be unnecessary
to analyze case 3. However, we will demonstrate a mathematical reason for the

omission of this case.

Eigenvalues and eigenfunctions (A > 0). Let us first consider the
case in which A > 0. The boundary value problem is

d%p

A 2.3.15
— Ag (2.3.15)
#0) = 0 (2.3.16)
H(L) = 0 (2.3.17)

If A > 0, exponential solutions have imaginary exponents, etIVAT In this case, the
solutions oscillate, If we desire real independent solutions, the choices cos VAz and
sin vr are usually made {cos vAz and sinvAr are each lincar combinations of

e£/V32) Thus, the general solution of (2.3.15) is
¢ = c; cos VAT + ezsin v, (2.3.18)

an arbitrary linear combination of two independent solutions. (The linear combina-
tion may be chosen from any two independent solutions.) cos VAr and sin Az are
usually the most convenient, but e'V** and e=VA7 ¢an be nsed. In some examples,
other independent solutions are chosen. For example, Exercise 2.3.2(f) illustrates
the advantage of sometimes choosing cos vA(x—a) and sin v/A(z—a) as independent
golutious.

We now apply the boundary conditions. ¢(0) == 0 implies that

0:61.

The cosine term vanishes, since the solution must be zero at x = 0. Thus. ¢{z) =
2 sin v Az, Only the boundary condition at # = L has not been satisfied. ¢(L) =0
implies that
0 = ¢z 8in VAL.

Either o = 0 or sin VAL = 0. If ¢ = 0, then ¢{z) = 0 since we already determined
that ¢; = 0. This is the trivial solution, and we are searching for those values of A
that have nontrivial solutions. The eigenvalues A must satisfy

sin VAL = 0. (2.3.19)
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VAL must be a zero of the sine function. A sketch of sin z {sce Fig. 2.3 1) or our
kn(}“fledge of the sine function shows that AL = nr. VAL must equa?aﬁ inte O'al
Il:lultlple of 7, where n is a positive integer since VA > 0 (n=0 islnot approprité
since we assutned that A > 0 i this derivation). The eigenvalues A are o

A= (’z_ﬂ)‘2 n=123,.... (2.3.20)

sinz

7 2 3 zvm z Figure 2.3.1: Zeros of sin z.

The eigenfunction corresponding to the cigenvalue A = (nw/L)? is

NI

B(z) = g sin Ve = ¢z sin 5 (2.3.21)

;vhere ¢z is an arbitrary multiplicative constant. Often we pick a convenient, value
for C2; for example ¢o = 1. We should remember, though, that any specific eigen-
unct.mn can always be multiplied by an arbitrary constant, since the PDE and BCs
are linear and homogeneous.

Elgenv'alue (A = 0). Now we will determine if A = 0 is an eigenvalue for
(2.3.15) subject to the boundary conditions (2.3.16), (2.3.17). A = 0 is a special
case. Tf A = 0, (2.3.15) implies that P

¢ =1 + e,

corresponding to the double-zero roots, r = 0,0 of the characteristic polynomial ?
To determine .whether A = 0 is an eigenvalue, the homogeneous boundary conditioﬁ‘
must, be applled. #(0) = 0 implies that 0 = ¢, and thus ¢ = cyr. In additionb
$(L) = 0 implies that 0 = 51, Since the length L of the rod is positive (% O)’
¢z = 0 and thus (;S(x) = (). This is the trivial solﬁtion, 80 we say that A = 0 is not anj
ziigczilvzfllie,] forfthts problem [(2.3.15), (2.3.16), (2.3.17)]. Be wary, though; A = 0 is
problim ;Oﬁemc;; c;t]ie:u];;:?lems and should be looked at individually for any new

3p )
hat leiiseﬁdg Ir.w.t say that ¢ = 1 cos VAz + e2 sin VAz is the general solution for A = 0, If you do
cons;;a):rml 1[1 0(:2)\3: [; that the general solution is an arbitrary constant. Although an arbitrary
solves (2.3.15) when A = 0, (2.3.15) is still a iinea er di '
¢ ( \ y (2.3, ; ar second-order differential ion;
Jt; geneltal solution must be a linear combination of fwo independent solutions. It is s;{;g}lon,
chaogse sin vAzr/v'X as a second independent solution so that as A — 0 it a.grees- el

z. However, this involves too much work. It is better just to consider A with the solution

= [ as a separate case,
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Eigenvalues (A < 0). Are therc any negative eigenvalues? If A < (0. the
solution of

‘ d?p ) cosh z
‘ e =—A¢ {2.3.22) sinh z
is not difficult, but you may have to be careful. The roots of the characteristic ’ *  Figure 2.3.9: Hyperbolic functions

polynomial are r = ++/—, so solutions are e¥~** and e~¥~**, If you do not like
the notation /=X, you may prefer what is equivalent {(if A < 0), namely /||
However, v/[A] # VA since A < 0. It is convenient to let

A— 3) ]r: nes 'lEt f‘f ] 1
a b g c e
: alu WI a 3
Ines
o . a CI,uat bSlCh(‘lb

in the case in which A < 0. Then s > 0, and the differential cquation (2.3.22) i

| becomes - Eigenfunct i
d%¢ 3 10ns — summary. We suminarize our res
o . 3 . e sults for the b .
Tz 5¢. (2.3.23) 1 ary value problem resulting from separation of variables: " the bound
Two independent solutions are etV3% and e~ V®*, since s > 0. The general solution : -
is 3 d*¢
b= creV™* + cpe™ V5 (2.3.24) . Tz tAe = 0
Frequently, we use the hyperbolic functions instead. As a review, the definitions of g{g; = g

the hyperbolic functions are

e +e * . e —e % : ' This
o coshz=——— and sinhz=-——7—, ; _ bound

: : ary value problem will arise nany time

memorize the result that the eigenvalues

s in t.he text. It is helpful to nearly
all positive (not zero or negative),

A are

simple linear combinations of exponentials. These are sketched in Fig. 2.3.2. Note
that sinh(Q = 0 and cosh0 = 1 {the results analogous to those for trigonometric

s functions). Also note that d/dzcoshz = sinhz and d/dzsinhz = coshz, quite
‘ I

] similar to trigonometric functions, but easier to remember because of the lack of
the annoying appearance of any minus signs in the differentiation formulas. If
£> . . - - - T s
¥ hyperbolic functions are used instead of exponentials, the general solution of {2.3.23) where n is any positive integer,n = 1,2 3 . \
can be written as ¥ are 1419 ..., and the corresponding eigenfunctions
@ = c3 cosh +/sx + ¢4 sinh /57, (2.3.25) '

a form equivalent to (2.3.24). To determine if there are any negative eigenvalues
{A <0, but s > 0 since A = —5), we again apply the boundary conditions. Either
form (2.3.24) or (2.3.25) can be used; the same answer is obtained either way. From

If we introduce the notation A; for the first (

(2.3.25), ¢(0) = O implies that 0 = c3, and hence ¢ = c4sinh/sz. The other ~ andsoon, we see that ). — (/L2 71 — or lowest) ergenvalue, A, for the next,

boundary condition, ¢(Z) = 0, implies that cssinh/sL = 0. Since /3L > 0 and B e somctimes denoted ¢ () t}) sﬁ“ =1,2,..... The corresponding cigenfunctions

since sinh is never zero for a positive argument (see Fig. 2.3.2), it follows that ¢4 = 0. L All eigenfunctions are (Ofnco y the first few of which are sketched in Fig. 2.3.3.

Thus, ¢{x) = 0. The only solution of (2.3.23) for A < 0 that solves the homogeneous $1(z) = sinzz/L has no zerlcl)lts? 2ero at both ¢ = 0 and 2 = L. Notice that

boundary conditions is the trivial sclution. Thus, there are no negative eigenvalues. zero for 0 < 2 < L. In fat 5 (or 0_<':c < L, and ¢u{x) = sin 2mz/L has one

For this example, the existence of negative eigenvalues would have corresponded to - We will claim later (sec Sec? : g)zt)h— smnwa/L has n — 1 zeros for 0<ax< L

exponential growth in time. We did not expect such solutions on physical grounds, eigenfunctions, ' at, remarkably, this is a general property of

and here we have verified mathematically in an explicit manner that there cannot Sppi

be any negative eigenvalues for this problem. In some other problems there can . Pring-mass analog. : .

be negative cigenvalues. Later (Sec. 5.3) we will formulate a theory, involving the . Here we present the analog 0§thi:‘i lal,a"-sveri(;;btmn&j solutions (?f d%¢/dr? = -. A |

Rayleigh quotient, in which we will know before we start many problems that there find helpful. A spring-mass system sublj £-mass system, which some of you may |
l

ect to Hooke’s law satisfies md 2y/dt?
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Figure  2.3.3: Eigenfunctions
0 L sinnmz/L and their zeros.

—ky, where k > 0 is the spring constant. Thus, if A > 0, the ODE (2.3.15) may
be thiought of as a spring-mass system with a vestoring force. Thus, if A > 0 the
solution should oscillate. It should not be surprising that the BCs (2.3.16, 2.3.17)
can be satisfied for A > 0; a nontrivial solution of the ODE, which is zero at z = 0,
has a chance of being zero again at x = L since there is a restoring force and t.he
solution of the ODE oscillates. We have shown that this can happen for specific
values of A > 0. However, if A < 0, then the force is not restoring. It would seem
less likely that a nontrivial solution which is zero at z = 0 could possibly be zero
again at x = L. We must not always trust our intuition entirely, so we have verified
these facts mathematically.

2.3.5 Product Solutions and the Principle of Superposition

In summary, we obtained product solutions of the heat equapiou, Aujdt = kd3u/ ar?,
satisfying the specific homogeneous boundary conditions u(0, %‘.) =0andu{L, t)=0
only corresponding to A > 0. These solutions, w(z, 1) = o(2)G(t), have G({) =
ce= ¢ and @(r) = czsin vz, where we determined from the boul'ldary condi-
tions [¢(0) = ¢ and ¢(L) = 0] the allowable values of the sepa'ratlon constant
A A = (nw/L)*. Here n is a positive integer. Thus, product solutions of the heat

equation are

uEY 2 o
u(z,t) = Bsin EL—ef““ﬂ/L' ' ne1.2 ..., (2.3.26)

where B is an arbitrary constant (B = ccz). Thisis a different solutiqll for efach 7.
Note that as f increases, these special solutions exponentially decay, in p?'JItI.CU:l'r?.I',
for these solutions, lims .o ulz, t) = 0. In addition, u(x, t) satisfies a special initial
condition, u(x, ) = Bsinnrz/L.

Initial value problems. We can use the simple product solutions (‘2.3:26),
to satisfy an initial value problem if the initial condition happens to be just right,
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For example, suppose that we wish to solve the following initial value problem:

du a2y
PDE: — = ==
i k gt
BC: w(0t) = 0
u(lt) = 0
B yigte

IC: ule,0) = 4ﬁinT

Our product solution u(x, t) = Bsinnzr/L-e~ "7/ LI*t qatisfies the initial condition
u(z,0) = Bsinnrr/L. Thus, by picking n = 3 and B = 4. we will have satisfied
the initial condition. Our solution of this example is thus
. 3wz _g. :
w(x,f) = 4sin 2T R L
L
It can be proved that this physical problem (as well as most we consider) has a

unique solution. Thus, it does not matter what procedure we used to obtain the
golution.

Principle of superposition. The product solutions appear to he very
special, since they may be used directly only if the initial condition happens to be
of the appropriate form. However, wi wish ta show that these solutions are uscful
in many other situations, in fact, in all sitnations. Consider the same PDE and
BCs, but instead subject to the initial condition

i . amx Bmwr
u{x,0) = dsin —— + 7sin —.
@.0) L L
The solution of this problem can be obtained by adding together two simpler solu-
tions obtained by the product method:

— . dmx ; T
w(r. t) = dsin Te’k(s”/“z" + Tsin ¥(;“M/M2!.

We immediately see that this solves the initial condition (substitute t = 0) as well
as the boundary conditions {substitute x = 0 and «x = L). Only slightly more work
shows that the partial differential equation has been satisficd. This is an illustration
of the principle of superposition.

Superposition (extended). The principle of superposition can be ex-
tended to show that if w;,us, us, ..., uy are solntions of a linear homogeneous
problem, then any linear combination of these is also a solution, cju; + cous +
Catz + ...+ Captipg = Zﬁjzl Cpln, Where ¢, are arbitrary constants. Since we know
from the method of separation of variables that sin nrz/L - e=*07/ 1%t i5 4 solu-
tion of the heat equation (solving zero boundary conditions) for all positive n, it
follows that any linear combination of these solutions is also a solution of the linear
homogeneous heat equation. Thus,

M
ulz,t) = Z By, sin nzre_k(””/L)Zt (2.3.27)
n=1



T L R i
e TR

46 Chapter 2. Method of Separation of Variables

solves the heat equation (with zero boundary conditions) for any finite 1/. We have
added solutions to the heat equation, keeping in mind that the “amplitude” B could
be different for each solution, yielding the subscript B,,. Equation (2.3.27) shows
that we can sclve the heat equation if initially

M
ulr,0) = fl@) = > Bysin % (2.3.28)

n=1

that is, if the initial condition equals a finite sum of the appropriate sine functions.
What should we do in the usual situation in which f{x) is not a finite lincar combi-
nation of the appropriate sine functions? We claim that the theory of Fouricr series
(to be described with considerable detail in Chapter 3) states that:

1. Any function f(z) (with certain very reasonable restrictions, to be discussed
later) can be approximated (in some sense) by a finite linear combination of
sinnmr/L.

2. The approximation may not be very good for small M, but gets to be a better
and better approximation as M is increased (see Sec. 5.10}.

3. Furthermore, if we consider the limit as mn — oo, then not only is {2.3.28)
the best approximation to f{x) using combinations of the eigenfunctions, but
(again in some sense) the resulting infinite series will converge to f(x) [with
some restrictions on f(x), to be discussed].

We thus claim (and clarify and make precise in Chapter 3) that “any” initial con-

dition f(x) can be written as an infinite linear combination of sinnznx /L, known as
a type of Fourier series:

flz) = ; B.sin % (2.3.29)

What is more important is that we also claim that the corresponding infinite series
is the solution of our heat conduction problem:

o
u{x,t) = ZB" sin %Ee'k(“"“”i*. (2.3.30)

n=1

Analyzing infinite series such as (2.3.29) and (2.3.30) is not easy. We must discuss
the convergence of these series as well as briefly discuss the validity of an infinite
series solution of our entire problem. For the moment, let us ignore these some-
what theoretical issues and concentrate on the construction of these infinite series

solutlions.
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2.3.6 Orthogonality of Sines

One very i_mportant practical point has been neglected. Equation (2.3.30) is our
solution with the coefﬁcients B, satisfying (2.3.29) (from the initial conditions),
but how do we determine the coefficients B,,? We assume it is possible that :

> . R
flz) = B, sin —zf, (2.3.31)

n=1

w.here this is to hold over the region of the one- dimensiona} rod, 0 < z < I, We
will assume that standard mathematical operations are also valid for Elﬁnize séries
I!Equatmn (2.3.31) represents one equation in an infinite number of unknowns but.
it shf)uld be valid at every value of x. If we substitute a thousand different v:alues
of x m’.oo (?.3.31), each of the thousand equations would hold, but there would still
be an infinite number of unknowns. This is not an efficient way to determine the
B,. Irlls'tead, we frequently will employ an extremely important technique based
on .notlcmg (perhaps from a table of integrals) that the eigenfunctions sin nrz /L
satisfy the following integral property: )

L
sopTe o ommx [0 m#En .
[0 sin —=— sin —— dr = { L/2 mn, (2.3.32)

where m and n are positive integers.
To use these conditions, (2.3.32), to determine Bp, we multiply both sides of

(2).3.31) by sinmrz/L (for any fixed integer rn, independent of the “dummy” index
n):

. MAT -
f(z) sin 7= ﬂ{l B, sin __nzrl sin mfir:c- (2.3.33)
Next we integrate (2.3.33) from z = 0 to z = L
L mnx > ~
218 _ . ML . MAT o
fu Sflx)sin T dz nE:1 ano sin —— sin 7 dx. {2.3.34)

For finite series, the integral of a sum of terms equals the sum of the integrals
We assume that. this is valid for this infinite series. Now we evaluate the iugnite:
Su}in. From the integral pro-perty (2.3.32), we see that each term of the sum is zero
whenever n'% m. In summing over n, eventually » equals m. Tt is only for that one
value of n, i.e.,, n = m, that there is a contribution to the infinite sum. The onl ‘
te?m that appears on the right-hand side of (2.3.34) occurs when n is r;eplaced b;[

m:
L
. mrx L
/0 f(a:)sm—L—- dx =Bm/0 sin? m;rw .
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Since the integral on the right equals L/2, we can solve for Bpm:

L mrT

/f(;r)sin dax L
2

0 _ mwi ZE] f(a:)smT"Z”r da. (2.3.35)

f sin? dr 0

0

This result is very important and so is the method by which it was obtained. Try to
learn both. The integral in (2.3.35) is considered to be known since f(z) is the given
initial condition. The integral cannot usually be evaluated, in which case numerical
integrations (on a computer) may need to be performed to get explicit numbers for
Bn, m=1,2,3,....

You will find that the formula (2.3.32), fOL sin® nwx/L dx = L/2, is quite useful
in many different circumstances, including applications having nothing to do with
the material of this text. One reason for its applicability is that there are many
periodic phenomena in nature (sinwf), and usually energy or power is proportional
to the square (sin®wt). The average euergy is then proportional to j;f“/ “ sin? wt dt
divided by the period 2m/w. It is worthwhile to memorize that the average over
a full period of sine or cosine squared is % Thus, the integral over any number
of complete periods of the square of a sine or cosine is one-half the length of the
interval. Tu this way |, J” sin® nmz/L dx = L/2, since the interval 0 to L is either a

complete or a half period of sinnmx/L.

B, =

Orthogonality. Whenever foL A{x)B(z) dz = 0 we say that the functions
A(z) and B(z) are orthogonal over the interval 0 < z < L. We borrow the
terminology “orthogonal” from perpendicular vectors because fOL A{z)B(z) dz =10
is analogous to a zero dot product, as is explained further in the appendix to this
section. A set of functions each member of which is orthogonal to every other
member is called an orthogonal set of functions. An example is that of the
functions sinnrr/L, the eigenfunctions of the boundary vatue problem

d?¢ . .

pr + X =0 with ¢(0)=0 and ¢(L)=0.
They are mutually orthogonal because of (2.3.32). Therefore, we call (2.3.32) an
orthogonality condition.

In fact, we will discover that for most other boundary value problems, the eigen-
functions will form an orthogonal set of functions (with certain modifications dis-
cussed in Chapter 5 with respect to Sturm-Liouville eigenvalue problems).

2.3.7 Formulation, Solution, and Interpretation
of an Example
As an example, let us analyze our solution in the case in which the initial temper-

ature is constant, 100°C. This corresponds to a physical problem that is easy to
reproduce in the laboratory. Take a one-dimensional rod and place the entire rod
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in a large tub of boiling water {100°C). Let it sit there for a long time. After a
Whlle (we expect) the rod will be at 100°C throughout. Now insulate the lateral
sides (if that had not been done earlier) and snddenly (at ¢t = 0) immerse the two
ends in large well-stirred baths of ice water, 0°C. The nﬁthematical problem 1‘-,

N 9%u
PDE: _d_t:deJ’J—z t>0, 0<x <L (2-3'36)
BC:-: w{0,t) = 0
C: iy = g >0 (2.3.37)
IC: w(,0)=100 0<z < L. (2.3.38)
According to (2.3.30) and (2.3.35), the solution is
w(x, t) = Z 3, sin %T'—vﬁ’k”m/‘[’)zt, {2.3.39)
n=1
where
B:E L-, . nmE
n=7 ’ flx)sin 7 dir (2.5.40)

and f(x} = 100. Recall that the coefficient B, was determi i
) i b d =
satisfy the initial condition, Frmied by having (2:3:39)

f@) =3 Busin %ﬁ (2.3.41)
n=1

We calculate the coefficients B, from (2.3.40):

2 b nra D
B, = —/ 100sin 2% gy — 200 ﬁicos nrr
I/ 2

L I L o
2.3.42
200 (1 ) (31 n even ( )
= —(1—-cosnw) =
nT g _OE 71 Odd
nr

since cos nw = (—1)" which equals 1 for n even and —1 for n odd. The series (2.3 41)
Vt'lll b? studied further in Chapter 3. In particular, we must explain the iﬂt.rigtllin

Situation that the iitial temperature equals 100 everywhere, but the series (2 3 41%
equals 0 at z =0 and =z = L (due to the boundary conditions) B

Approxunations to the initial value problem. We have now
Obt.a.lt'led the solution to the initial value problem (2.3.36)-(2.3.38) for the/ heat
e(':[ua?zlon with zero boundary conditions (r = 0 and z = L) and initial tem eratea ‘
dlstn'but.ion equaling 100. The solution is (2.3.39), with B,, given by (2.3 111)2) 'Il‘llre
S(.:ahlthIl is quite complicated, involving an infinite series. Wyilat can we sa.y -aboﬁt 1;5
First, we notice that lim,_, . u(x,t) = 0. The temperature distribution approache.s
8 steady state, u(zx,t) = 0. This is not surprising physically since both ends are at



o) Chapter 2. Method of Separatiof ol variables

0°; we expect all the initial heat energy contained in the rod to flow out the ends.
The equilibrium problem, d*u/dz? = 0 with «(0) = 0 and 1(L) = 0. has a unique
solution, u = 0, agrecing with the limit as ¢ tends to infinity of the time-dependent
prohlem.

Omne question of importance that we can answer is the manner in which the
solution approaches steady state. If ¢ is large, what is the approximate semperature
distribution, and how does it differ from the steady state 0°7 We note that each
term in (2.3.39) decays at a different rate. The more oscillations in space, the faster
the decay. If ¢ is such that kt(m/L)? is large, then each succeeding term is much
smaller than the first. We can then approximate the infinite series by only the first
term: 100

2y T R L)

u{x, t) = —sin —-e .

The larger ¢ is, the better this is as an approximation. Even if ktim/L)? = f this is
not a bad approximation since

(2.3.43)

e—k(3m/ LY 2
= o BULRE — o =018 L.

o kin/ L)t

Thus, if kt(x/L)? > %, we can use the simple approximation. We see that for
these times the spatial dependence of the temperature is just the simple rise and
fall of sinwx/L, as illustrated in Fig. 2.3.4. The peak amplitude, occurring in the
middle z = L/2, decays exponentially in time. For kt{z/L}? less than %, the spatial
dependence cannot be approximated by one simple sinusoidal funection; more terms
are necessary in the series. The solution can be easily computed, using a finite
mumber of terms. In some cases many terms may be necessary, and there would be
better ways to calculate u(z,t).

2.3.8 Summary

Let us summarize the method of separation of vatriables as it appears for the one
example:

du i%u

PDE: —_— = k=

DB at 4 Hax?
BCl: wuf0,t) = 0
BC2: w(L,t) = 0

IC: ui0) = fla).
1. Make sure that you have a linear and homogeneous PDE with linear and
homogeneous BC.
2. Temporarily ignore the nonzero IC.

3. Separate variables (determine differential equations implied by the assumption
of product solutions} and introduce a separation constant.
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100,
80

Figure 2.3.4: Time dependence of temperature u(x, t).

120., - infinite series
100,  --first term

20

20‘
ol
0.6 L

04

kt(z/L)? 02

Figure 2.3.5: Tine dependence of temperature (using the infinite series) compared

to tll'le first term. Note the first term is a good approximation if the time is not tao
small.

4. Determine separation constants as the eigenvalues of a boundary value prob-
lem. .

<

. Solve other differential equations. Record all product solutions of the PDE
obtainable by this method.

6. Apply the principle of superposition (for a linear combination of all product
solutions).

7. Attempt to satisfy the initial condition.

8. Determine coefficients using the orthogonality of the eigenfunctions.

These steps should be understood, not memorized. It is important to note that

1. The principle of superposition applies to solutions of the PDE (do not add up
solutions of various different ordinary differential equations).

2. Do not apply the initial condition u(z,0) = f{z) until gfter the principle of
superposition,
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EXERCISES 2.3

2.3.1. For the following partial differential equations, what ordinary differential
equations are implied by the method of separation of variables”

du kO du . d_E: _BE_uA QE
*(a) at_?a_F(TW) ®) 57 =*m Y%

0, 0% u 0 (22
*(c) B2 WZO (d) gt réar "o
*0) 7 = ko ® F7 =%

2.39.2. Consider the differential equation

d%¢ .
4+ At =10.
dx? AP

Determine the eigenvalues A (and corresponding eigenfunctions), if ¢ satisﬁe?s
the following boundary conditions. Analyze three cases (A > 0,A=0,A < 0).
You may assume that the eigenvalues are real.

(a) ¢(0)=10and ¢(z) =0
*(b} ¢(0) =0 and #(1) =0

de L dg _ N See. 241
() —=(0) = 0 and d—(L) = 0 (If necessary, see Sec. 2.4.1.)
x

dz
*(d) ¢(0) =0 and %(L) =0
(e} %(O) =(0and ¢{L) =0

*(f) ¢{a) =0 and &(b) = 0 {You may assume that A > 0.)
(g) ¢(0) =0 and %%(L) + (L) = 0 (If necessary, see Sec. 5.8.)

2.3.3. Consider the heat equation
du  0%u
At Bz’
subject to the boundary conditions

w0,8)=0 and  u(L,f)=0.

Solve the initial value problem if the temperature is initially

aei TE i 3T
(a) wu(z,0) = 6sin 5= (b) u(r,0) = Isin Z* — sin F=

1 0<zx<L/2

*(c) u(z,0) = 2cos = (d) “(”’0)={ 9 Li2<z<L
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[Your answer in part {¢) may involve certain integrals that do not need to be
evaluated.]

2.3.4, Consider

du kﬁzu
ot = or’

subject to u(0.t} = 0,u(L,t) =0, and u(x,0) = f(x).

‘ *(a) What is the total heat energy in the rod as a function of time?
(b} What is the flow of heat energy out of the rod at = = 07 at = = L?

*{c) What relationship should exist between parts (a) and (b}?

2.3.5. Evaluate (be careful if n = m)

L
. MAX , ML
f St —— 8in —— do for n > 0,m > 0.
0 L
Use the trigonometric identity

icos(a — b) — cos(a 4 ).

27 =

sinasind =

*2.3.6. Evaluate

nTx Lty

L
'/U cos—L—cos—L— dr forn >0,m = 0.
Use the trigonometric identity
1
cosacosh = 3 [cos(a + b) + cos{a — b)].

(Be careful if e —b=00r a+b=0.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec, 2.4.1):

du %y . du ou
37 k5$_2 with E(D’t) = 0,—1_-(1'.,t) =0, and wu(z,0) = f(x)

{a) Give a one-sentence physical interpretation of this problern.

{(b) Solve by the method of separation of variables. First show that there
are no separated solutions which exponentially grow in time. [Hint: The
answer is

o0
ulz, t) = Ag + Z Ane % cog P%

n=1

What is 2,7
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(¢) Show that the initial condition, u(z, 0) = f(z), is satisfied if
nTE

flz) =A@—I—i,4ncos 7

n=1

(d) Using Exercise 2.3.6, solve for Ag and Ap(n > 1).
(e) What happens to the temperature distribution as ¢t — oo? Show that it
approaches the steady-state temperature distribution (see Sec. 1.4).

*2.3.8. Consider ou k82u o
gt 0z? '
This corresponds to a one - dimensional rod either with heat loss through t.he
lateral sides with outside temperature 0° {a > 0, see Exercise 1.2.4) or with
inshlated lateral sides with a heat source proportional to the temperature.
Suppose that the boundary conditiens are
u(0,t) =0 and wu(L,t)=0.
(a) What are the possible equilibrium temperature distributions if o = 07
(b) Solve the time-dependent problem [u(z,0) = f(z)] if @ > 0. Analyze the
temperature for large time (¢t — o) and compare Lo part {a).
*2 3.9, Redo Exercise 2.3.8 if & < 0. [Be especially careful if —a/k = (nm/L)?]
2.3.10. For two- and three - dimensional vectors, fundamental property of dot prod-
ucts, A - B = | A||B| cos#t, implies that
A - B| < |Aj|B|. (2.3.44)
In this exercise we generalize this to n-dimensional vectors and functions,
in which case (2.3.44) is known as Schwarz’s inequality. [The names of
Cauchy and Buniakovsky are also associated with (2.3.44).]
{a) Show that |A — B[ > 0 implies (2.3.44), where y= A - B/B - B.
(b) Express the inequality using both

o fee) b,n
A-B= Z;anbn = ;ancna.
L
*(c} Generalize (2.3.44) to functions. [Hint: Let A-B mean [, A(z)B(z) dz]

2.3.11. Solve Laplace’s equation inside a rectangle:

8%y 0%
= —+ 7= =0
Veu 522 + 7
subject to the boundary conditions
u®0y) = 9(y) u(z,0) = 0
u(L,y}) = 0 u(z,H) = 0.

(Hint: If necessary, see Sec. 2.5.1.)
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Appendix to 2.3: Orthogonality of Functions

Two vectors 4 and B are orthogonal it A - B = 0. In component form: A =
alg—l- ax] +ask and B = bﬁ%—f}g_}' +bsk: A and B are orthogonal if 3", u;b, =0. A
function A{x) can be thought of ag a vector. If only three values of x are important,
z71. &2, and 3, then the components of the function A(z) {thought of as a vector)
are Az} = a1, A(ra) = a2, and A(zs) = az. The function A{x) is orthogonal
to the function B{x) (by definition) if 3. a;6; = 0. However, in our problems, all
values of = between 0 and L are important. The function Afc) con be thought of
as an infinite-dimensional vector, whose components are A{x;) for all x; on some
interval. In this manner the function A(z) would be said to be orthogonal to B(x)
if 37, A{z;)B(z;) = 0. where the summation was to include all points between 0
and L. Tt is thus natural to define the function A(z) to be orthogonal to B(x)
if fOL A{z)B(z) dxr = 0. The integral replaces the vector dot product; both are
examples of “luner products.”

In vectors, we have the three mutually perpendicular {orthogonal} unit vectors
1, j. and k. known as the standard basis vectors. In component form

A =i+ aj + ask.

a; is the projection of A in the ¢ direction. and so on. Sometimes we wish to
represent, A in terms of other mutually orthogonal vectors (which may not be unit
vectors) u. v, and w, called an orthogonal set of vectors. Then

A= G W+ U gyt

To determine the coordinates ay, e, , v, with respect to this orthogonal set, u, v,
and w, we can form certain dot products. For example,

A-u=oa,u-u+ v+ a,w - u.

Note that v - = 0 and w - u= 0, since we assumed that this new set was mutually
orthogonal. Thus, we can easily solve for the coordinate a,,, of A in the u direction,
Auy
Oy, = ——. (2.3.45)
u-u
{0 is the vector projection of A in the u direction.)
For functions, we can do a similar thing. If f{xr) can be represented by a linear
combination of the orthogonal set. sinnwae/L, then

i )
nwT
T)= E B, sin ——,
flz) 2 sin —

where the B, may be interpreted as the coordinates of f{r) with respect to the
“direction” (or basis vector) sinnmx/L. To determine these coordinates we take
the inner product with an arbitrary basis function (vector) sinnmz/L, where the
inner product of two functions is the integral of their product. Thus, as before,

L o0 L
maT nTx mwz
; i dr = B M e i )
/O F(x)sin i3 T r?:l ﬂfo sin T sin T dr
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- . . . L. .
Since sinnrz/L is an orthogonal set of functions, f; sinnzz/Lsin mrz/L de =0
for n # m. Hence, we solve for the coordinate (coefhicient) B,:

_ I f(x)sinnmo/L dz

2.3.46
fUL sin® nme/L dx ( )

B,

This is seen to be the same idea as the projection formula (2.3.45). Our standard
formula (2.3.33), fUL sin nrz/L dr = L/2. returns (2.3.46) to the more famniliar

form,
nmw

2 fr -
B,=={ fiz)s 3.4
L./(J' fix)sin 7 d (2.3.47)

Both formulas (2.3.45) and (2.3.46) are divided by something. In (2.3.45) it is u - u.
or the length of the vector u squared. Thus, fOL sin prx /L dx may be thought of
as the length squared of sinnmz/L (although here length means nothing other than
the square root of the integral). In this manner the length squared of the function
sinnwz/L is L/2, which is an explanation of the appearance of the term 2/L in
(2.3.47).

2.4 Worked Examples with the Heat Equation
(Other Boundary Value Problems)

2 4.1 Heat Conduction in a Rod with Insulated Ends

Let us work out in detail the solution {and its interpretation) of the following
problem defined for 0 < z < L and £ > O

. 2
ppE: |24 _ 2 (2.4.1)
at dx2
du
BCl: | =—=(0,t) = 0 (2.4.2)
Iz
I
Ju )
BC2:. | =—{L,t} = 0 (2.4.3)
dx

(2.4.4)

As a review, this is a heat conduction problem in a one-dimensional rod with
constant thermal properties and no sources. This problem is quite similar to the
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problem treated in Sec. 2.3, the only difference being the boundary conditions. Here
the ends are insulated, whereas in Sec. 2.3 the ends were fixed at 0°. Both the par-
tial differential equation and the boundary conditions are linear and homogeneous.
Consequently, we apply the method of separation of variables. We may follow the
general procedure described in Sec. 2.3.8. The assumption of product solutions,

u(z,t) = ¢p(x)G(t), (2.4.5)
implies from the PDE as before that

4G

d¢
-(IE_Z = *AQB, (24?)
where A i3 the separation constant. Again,
G(t) = ce M, (2.4.8)

The ins@ated boundary conditions, {2.4.2, 2.4.3) imply that the separated solutions
st S:—-Ltlsfy do/dz(0) = 0 and d¢/dz{L) = 0. The separation constant A is then
determined by finding those \ for which nontrivial solutions exist for the following
boundary vahie problem:

(2.4.9)

(2.4.10)

(2.4.11)

Although the ordinary differential equation for the boundary value problem is the

same one as previously analyzed, the boundary conditions are different. We must

repeat some of the analysis. Once again three cases should be discussed: A > 0

A =0, A <0 (since we will assume the eigenvalues are real). ’
For A > 0, the general solution of (2.4.9) is again

¢ = c1cos VAz + ¢z sin v, (2.4.12)

We need to calculate d¢/dz to satisfy the boundary conditions:

dep .
== VA (-c1 sin VAz + ¢q cos \/Xz) {2.4.13)
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The boundary condition d¢/dx{0} = 0 implies that 0 = v/, and hence ¢y = 0,
since A > (. Thus, ¢ = ¢ cos VAr and do/dz = —c1v/ Asin v/ Ax. The eigenvalues A
and their corresponding eigenfunctions are determined from the remaiuing boundary

condition, d¢/dr(L) = 0:
0= —cl\/Xsin VAL.

As before, for nontrivial solutions, ¢; # 0, and hence sin VAL = 0. The eigenvalues
for A > () are the same as the previous problem, VAL = ar or

w2 ) ]
A= (-L—) Con=1,2 3., (2.4.14)
but the corresponding eigenfunctions arc cosines (not sines),
NTL

n=1,2 3.... (2.4.15)

o(x) = ¢ cos

\ L’
The resulting produet solutions of the PDE are

ulx,t) = Acos nzw em(n /LRt oy oy 93 (2.4.16)

where A is an arbitrary multiplicative constant.
Before applying the principle of superposition, we must sce if there are any other
eigenvalues. If X =0, then
¢ = €] + ¢, (2417)
where ¢; and ¢, are arbitrary constants. The derivative of o is
dp
dr
Both boundary conditions, dg/de(0) = 0 and d¢/dz(L) = 0, give the same condi-
tion, ¢; = 0. Thus, there are nontrivial solutions of the boundary value prablem for
A = 0 namely ¢(z) equaling any constant.

The time-dependent part is also a constant, since e ** for A = 0 equals 1. Thus.
another product solution of both the linear homogeneous PDE and BCs is u(z,t) =
A, where A is any constant.

We do not expect there to be any eigenvalues for A < 0, since in this case the
time-dependent part grows exponentially. In addition, it seems unlikely that we
would find a nontrivial linear combination of exponentials which would have a zero
slope at both x = 0 and z = L. In Exercise 2.4.4 you are asked to show that there
are no eigenvalues for A < 0. N

In order to satisfy the initial condition, we use the principle of superposition.
We should take a linear combination of all product solutions of the PDE (not just
those corresponding to A > 0). Thus,

Ca.

o0
u{z,t} = Ao + ZA" cOS nzme‘(“”/mz’“. ) (2.4.19)

n=1

o
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It is interesting to note that this is equivalent to

aul
nwr 2
w(r, t) = ZA“ Cos —E-e_("w'/‘b) ke (2.4.20)

n=0

since cos (0 = 1 and €® = 1. In fact, (2.4.20} is often easier to use in practice. We
prefer the form (2.4.19) in the beginning stages of the learning process, since it more
clearly shows that the sohition consists of terms arising from the analysis of two
somewhat distinct cases, A = 0 and A > 0.

The initial condition u(z, §) = f{x) is satisfied if

. 33* nrx .
flz) = Ap+ %An o5 —— (2.4.21)

for 0 <2 =< L. The validity of (2.4.21) will also follow from the theory of Fourier
series. Let us note that in the previous prablem f(x) was represented blv a series of
sines. Here f(x) consists of a series of cosines and the constant term. The two cases
are different due to the different boundary conditions. To complete the solution we
need to determine the arbitrary coefficients Ay and A, (rn > 1j. Fortunately, from

integral tables it is known that cosnmz/L satisfies the following orthogonality
relation:

0
! nar mazr d L .
; c0s =~ 08 —— dz = 5 n=m 0 (2.4.22)

for n and m nounegative integers. Note that n = 0 or m = 0 corresponds to a
constant 1 contained in the integrand. The constant L/? is another application
of the statement that the average of the square of a sine or cosine function is &.
Tile constant L in (2.4.22) is quite simple since for n = m = 0, (2.4.22) becomes
fy dz = L. Equation (2.4.22) states that the cosine functions (including the
constant function) form an orthogonal set of functions. We can use that idea.
In the same way as before, to determine the coefficients. Multiplying (2.4.21) by
cosmmr/L and integrating from 0 to I vields -

L o0 L
. mar T mme
flxr)cos dr = E A, f cos L cos —— dx
/0 L n=0 0 L L |

This holds for all m, 1 = 0, 1, 2,.... The case in which m = 0 corresponds just

to integrating (2.4.21) directly. Using the arthogonality results. it follows that only
the mth term in the infinite sum contributes,

L L
mmx 5
f f(x)cos T dr = Amf cos? X dzx.
0 0 L
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The factor fOL cos? mme/L dr has two different cases, me = 0 and m # 0. Solving
for A, vields

1 L
Ag = f/n fir) de (2.4.23)

L
(m>1)|An = %/ fx) cos mza: dr. {2.4.24)
0

The two different formulas are a somewhat annoying feature of this series of
cosines. [t is simply caused by the factors L/2 and L in (2.4.22).

There is a significant difference between the solutions of the PDE for A > 0 and
the solution for A = 0. All the solutions for A > 0 decay exponentially in time,
whereas the sclution for A = 0 remains constant in tine. Thus, as { — oo the
complicated infinite series solution (2.4.19) approaches steady state,

1 fL

lim w(z,t) = Ap = — flz) dr.

t—oo L Jy
Not only is the steady-state temperature constant, Ag, but we recognize the con-
stant Ag as the average of the initial temperature distribution. This agrees with
information obtained previously. Recall from Sec. 1.4 that the equilibrium temper-
ature distribution for the problem with insulated boundaries is not unique. Any
constant temperature is an equilibrium solution, but using the ideas of conservation
of total thermmal energy, we know that the constant must be the average of the initial
temperature.

2.4.2 Heat Conduction in a Thin Circular Ring

We have investigated a heat flow problem whose eigenfunctions are sines and one
whose eigenfunctions are cosines. In this subsection we illustrate a heat flow problem
whose eigenfunctions are both sines and cosines.

v=L =0 L. .
=L Figure 2.4.1: Thin circular ring.

Let us formulate the appropriate initial boundary value problem if a thin wire
(with lateral sides insulated) is bent into the shape of a circle, as illustrated in Fig.
2.4.1. For reasons that will not be apparent for a while, we let the wire have length
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2L (rather than L as for the two previous heat conduction problems). Since the
circumference of a circle is 27r, the radius is 7 = 2L/27 = L/7. If the wire is
thin enough. it is reasonable to assume that the temperature in the wire is constant
along cross sections of the bent wire. In this situation the wire should satisfy a one-
dimensional heat equation, where the distance is actually the arc length x along the
wire:

du _ kazu

— (2.4.2
at dz?’ ( 5)

We have assumed that the wire has constant thermal properties and no sources. It
is convenient in this problem to measure the arc length .z, such that x ranges from
—L to +L {instead of the more usual 0 to 2L).

Let us assume that the wire is very tightly connected to itself at the ends (x =
—L to x = +L). The conditions of perfect thermal contact should hold there (see
Exercise 1.3.2). The temperature u(z,#) is continuous there,

u(—L.t) =u(L,1). (2.4.26)

Also, since the heat flux mmst be continuous there (and the thermal conductivity is
constant everywhere}, the derivative of the temperature is also continuous:

du Su
E(*L,t) = %(L,t) (2427)

The two boundary conditions for the partial differential equation are {2.4.26) and
(2.4.27). The initial condition is that the initial temperature is a given function of
the position along the wire,

u(x,0) = f(z). (2.4.28)

The mathematical problem consists of the linear homogeneous PDE (2.4.25) subject
to linear homogeneous BCs (2.4.26, 2.4.27). As such, we will proceed in the usual
way to apply the method of separation of variables. Product solutions u(z,t) =
P(x}G(t) for the heat equation have been obtained previously, where G{t} = ce=>t,
The corresponding boundary value problem is

d2¢ .
= A (2.4.29)
¢(—L) = (L} (2.4.30)
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i

_d
dx L

) (2.4.31)

The boundary conditions (2.4.30) and {2.4.31) each involve both boundaries (some-
times called the mixed type). The specific boundary conditions (2.4.30) and
{2.4.31) are referred to as periodic boundary conditions since although the
problem can be thought of physically as being defined only for —L < x < L, it
is often thought of as being defined periodically for all z; the temperature will he
periodic (r = oy is the same physical point as z = xg + 2L, and hence must have
the same temperature).
If A > 0, the general solution of (2.4.29} is again

5 & = 1 cos VAT + ¢osin VAz.
The boundary condition ¢(—L) = (L) implies that
€1 COS \/X(—L) + 3 510 \/X(—L) = | COS VAL + ey sin VAL

Since cosine is an even function, cos v/A( —L) = cos VAL, and since sine is an odd
function, sin v A(—L) = —sin AL, it follows that ¢(—L} = ¢{L) is satisfied only if

casin VAL = 0, (2.4.32)

Before solving (2.4.32), we analyze the second boundary condition, which involves
the derivative,

-C-i—?— =V (—cl sin VAz + Cq COS \/X.r)
dr
Thus, do/dx(—L) = d¢/dx(L) is satistied only if
eV Asin VAL =0, (2.4.33)

where the evenness of cosines and the oddness of sines have again bheen used. Con-
ditions (2.4.32) and (2.4.33) are easily solved. If sin VAL # 0, then ¢, = 0 and
¢y = 0, which is just the trivial solution. Thus, for nontrivial solutions,

sin VAL = 0.,

which determines the eigenvalues . We find (as before) that VAL = ar or equiva-
lently that

A= (’1_“)2 n=1,2 3.... (2.4.34)

We chose the wire to have length 2L so that the eigenvalues have the same formula as
before (this will mean less to remember, as all our problems have a sirnilar answer).
However, in this problem (unlike the others) there are no additional constraints
that ¢; and ¢z must satisfy. Both are arbitrary. We say that both sin nwz/L and
cosnmz/L are eigenfunctions corresponding to the eigenvalue A = (nw/ L)?,

é(z) =cosrlz—$,sin2?,n= 1,2 3,.... (2.4.35)
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In fact, any linear combination of cosnmz/L and sinnzz/L is an eigenfunction,

N nnr wr
d{x) = c1 cos —— + ¢z sin n—, (2.4.36}
L L
but this is always to be understood when the statement is made that both are

eigenfunctions. There are thus two infinite families of product solutions of the
partial differential equation, n =1, 2, 3,..

n 2
u(xw,t) = cos %e_(mﬂ“)zkt and wu(x,t) =sin %ef(””/m k. {2.4.37)
All of these correspond to A > (.
If A =0, the general solution of (2.4.29) is

¢ =c1 + cam.
The boundary condition ¢{—L) = ¢(L) implies that
cC1 — CzL = + CzL.

Thus, ¢; = 0, ¢(z) = ¢; and d¢/dx = 0. The remaining boundary condition,
{2.4.30), is automatically satisfied. We see that

(,LL'(CL') =y,

any constant, is an eigenfunction, corresponding to the eigenvalue zero. Sometimes
we say that ¢(x) = 1 is the eigenfunction, since it is known that any multiple of an
eigenfunction is always an eigenfunction. Product solutions u{x, ) are also constants
in this case. Note that there is only one independent eigenfunction corresponding
to A = 0, while for each positive eigenvalue in this problem, A = (n7/L)>, there are
two independent eigenfunctions, sin nrz/L and cosnmz/L. Not surprisingly, it can
be shown that there are no eigenvalues in which A < 0.

The principle of superposition must be used before applying the initial condition.
The most general solution obtainable by the method of separation of variables
consists of an arbitrary linear combination of all product solutions:

> nwe d
u(z,t) = ag + Zan cos —L—e—(""/L)zkf + an gin —nz—me_(""/mzkt. (2.4.38)

n=1 n=1

The cqnstant ay is the product solution corresponding to A = 0, whereas two families
of arbitrary coeflicients, a,, and b,, are needed for A > 0. The initial condition
u{x,0) = f(x) is satisfied if

oC o
nwr
flx)y=ao+ zlan cos ——+ Zan sin n_zx (2.4.39)
n—= n=1
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Here the function f(z) is a linear combination of both sines and cosines {and a
constant), unlike the previous problems, where either sines or cosines (including
the constant term) were used. Another crucial difference is that (2.4.39) should be
valid for the entire ring, which means that —L < 2 < L, whereas the series of just
sines or cosines was valid for 0 < z < L. The theory of Fourier series will show
that (2.4.39) is valid, and, more important, that the previous series of just sines or
cosines are but special cases of the series in (2.4.39).

For now, we wish just to determine the coeflicients ag, 0., @, from (2.4.39).
Again the eigenfunctions form an orthogonal set since integral tables verify the
following orthogonality conditions:

v L nwr  ImwET 0 n#m .
/ €08 ~—— 005 — de=¢ L n=m#0 (2.4.40)

-L 2. n=m=0

L
L NAT . mAr _ 0 n#m
/:L sin —— sin — dr = { L nem#0 (2.4.41)
L nmz  mmx

/;L sin oS dr = 0, (2.4.42)

where n and m are arbitrary (nonnegative) integers. The constant eigenfunction
corresponds to n = 0 or m = 0. Integrals of the square of sines or cosines (n = m)
are evaluated again by the “half the length of the interval” rule. The last of these
formulas, (2.4.42), is particularly simple to derive, since sine is an odd function and
cosine is an even function.* Note that, for example. cos nm2/ L is orthogonal to every
other eigenfunction [sines from (2.4.42), cosines and the constant eigenfunction from
(2.4.40)).

The coefficients are derived in the same manner as before. A few steps are saved
by noting (2.4.39) is equivalent to

ad AL e . nax
flz) = Z:;)G“COST +nz:bnSln—L—-

=1

If we multiply this by both cosmmz/L and sinmnrz/L and then integrate from

4The product of an odd and an even function is odd. By antisymmetry the integral of ar odd
function over a symmetric interval is zero.

2.4. Worked Examples with the Heat Equation 65

r=—Ltoxr=+L, we obtain

L Cos oo L Cos
flz) Loy > a o L .
T = Co§ ——
. . mzx ™ I3 _mmr [
sin n=0 —-L sin
mmrr
o I ] cos
. RTX L
+ E by sin dr.
I . TATT
Joo i}
=1 511

If we utilize (2.4.40)-(2.4.42), we find that

L
mmw L mm
flz)cos dr = a,, cos dx
Jor L ) L

L L
., mmTr . iy
[Lf(r) sin — dx = l;,r}[L sin® 7 dz.

Solving for the coefficients in a manner that we are now familiar with vields

L
ag = %[Lf(i) dr

1 L TILT.
(m>1) |an = —f fla)eos 520 gp (2.4.43)
LJ L
b - 1 Lf(/_) i T
e 7 L &I} sl T I,

The solution to the problem is (2.4.38), where the coefficients are given by (2.4.43).

2.4.3 Summary of Boundary Value Problems

In many problems, including the ones we have just discussed, the specific simple
constant-coefficient differential equation,

d2¢
P

'forms the fundamental part of the boundary value problem. Above we have collected
In one place the relevant formulas for the eigenvalues and eigenfunctions for the
typical boundary conditions already discussed. You will find it helpful to understand
these results because of their enormous applicability throughout this text.
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d%e .
BOUNDARY VALUE PROBLEMS FOR proie — A
i S~ L) = o(L
$(0) =0 T(n):n {(—L)=e(L}
Boundary Ao o )
conditions d — = —
nition $(Ly =0 d_jcmzn — (=L (L)
ey 2 Teor y 2 ey 2
Enrgenvalues = jidia (_)
An n:gl'z)% n:ﬂ(lf,li)’ L. n=10 1[2 3
Figenfunactions sin # 08— = T and cos m—

nwz
E = E COR ——
Fia) g COS T

ES
nmE nnx n=0
Serias . Filz) = E By sin — Fiz) = Ap, ros - -
— nrr
n=1 n=n 42;;,, in —
.

n=

1
L
1
g = —/ Fix) da
2L
o —L

L
1
Ag = — F(mY dx
L L L
0 1 nr
2 T .
Carfficients By = -—[ Fla) s — dax an = --/ flz)cos - dx
L L L L
L
0 2 T
Ap = w fle)cos dr
L L L
o 1

nww
By = =-— Fladsin e—da
L I
—L

It is important to note that, in these cases, whenever A = 0 is an eigenvalue, a
constant is the eigenfunction {corresponding to n = 0 in cosnmz/L).

EXERCISES 2.4
*2.4.1. Solve the heat equation 81/8¢ = kd?u/0z*, 0 < x < L, t > 0, subject to

du du
—0.f) = —(L,t)=0 t>0.
ax(().z‘) 0 t>0 8$( )
0 < L/2 3w
(a) u(z,0)= { 1z L;Q (b) u(z,0) =6+ 4CObT
8mx
(¢} u(x,0) = —2sin —E—'?: (d} u(x,0) =—-3cos -
*2.4.2, Solve
du 8%u
— =k— wi 0,t)=0
51 ka$2 with (0,1)

u
En

u(L,t}y =0
u(z,0) = f(z).
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For this problem you may assume that no solutions of the heat equation
exponentially grow in time. You may also guess appropriate orthogonality
conditions for the eigenfunctions.

*2.4.3. Solve the eigenvalue problem

d?¢

dz? ¢

subject to ¢(0) = ¢(27) and 220} = 2 (2n),

2.4.4. Explicitly show there are no negative eigenvalues for

a2 . de de
e —A¢d subject to ;f;(()) =0 and E;(L) =0

2.4.5. This problem presents an alternative derivation of the heat equation for a
thin wire. The equation for a circular wire of finite thickness is the two-
dimensional heat equation (in polar coordinates). Show that this reduces to
(2.4.25) if the temperature does not depend on » and if the wire is very thin.

2.4.6. Determine the equilibrium temperature distribution for the thin circular ring
of Section 2.4.2;

(a) Directly from the equilibrium problem (see Sec. 1.4).

(b) By computing the limit as # — oc of the time-dependent problem.

2.4.7. Solve Laplace’s equation inside a circle of radius a,
. 18 ( du 1 9%
2 = —_—— —— ——_—
Viu=13; (rﬁr)+r2 g6z =Y

subject to the boundary condition u(a, 8} = £(8). (Hint: If necessary, see Sec.
2.5.2.)

2.5 Laplace’s Equation: Solutions
and Qualitative Properties

2.5.1 Laplace’s Equation inside a Rectangle

In order to obtain more practice, we will consider a different. kind of problem which
can be analyzed by the method of separation of variables. We consider steady-
state heat conduction in a two-dimensional region. To be specific, consider the
equilibrium temperature inside a rectangle (0<z <L, 0<y< H) when the tem-
perature is a prescribed function of position (independent of time) on the boundary.

1
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The equilibrium temperature u(x, y) satisfies Laplace’s equation with the following
boundary conditions:

PDE: %3_3+3_y“ = 0 (2.5.1)
BCl: | w(0,y) = quly) (2.5.2)
\ BC2: | u(ly) = gy (2.5.3)
BC3: |u(z,0) = fi(x) (2.5.4)
BC4: |u(z, H) = folz), (2.5.5)

where fi(x), fa(x), g1(y), and g2(y) are given functions of r and y, respectively.
Here the partial differential equation is linear and homogeneous, but the boundary
conditions, although linear, are not homogeneous. We will not be able to apply
the method of separation of variables to this problem in its present form, because
when we separate variables the boundary value problem (determining the separa-
tion constant) must have homogeneous boundary conditions. In this example all
the boundary conditions are nonhomogeneous, We can get around this difficulty by
noting that the original problem is nonhomogeneous due to the four nonhomoge-
neous boundary conditions. The idea behind the principle of superposition can be
used sometimes for nonhomogeneous problems (see Exercise 2.2.4). We break our
problem up into four problems each having one nonhomogeneous condition. We let

w(z,y) = wlz, y) +ualz, y) +uale,y) +valz,y), (2.5.6)

where each u; (x, y) satisfies Laplace’s equation with one nonhomogeneous boundary
condition and the related three homogeneous boundary conditions, as diagrammed
in Fig. 2.5.1. Instead of directly solving for u, we will indicate how to solve for
uy, ug, uz, and uy. Why does the sum satisfy our problem? We check to see that
the PDE and the four nonhomogeneous BCs will be satisfied. Since u, ua. us,
and u4 satisfy Laplace’s equation, which is linear and homogeneous, v = u; + us +
Uz + u4 also satisfies the same linear and homogeneous PDE by the principle of
superposition. At x =0, u; = 0, ua = 0, ug =0, and wyg = g;{y}. Therefare, at
z =10, v=1u + Uz + uz + g = g {y), the desired nonhomogeneous condition. In
a similar manner we can check that all four nonhomogeneous condifions have been
satisfied.

(R o e =S
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u = fyx) u =0 ug =1 ug = fy(x) uy =0
[ ] [ ] ]
uF go(y) u O gy F goly) uzF 0 ug F0
Viu=0| = |V = + | Vig=0| + |vZ,-0o| + Vi =0
uF g1y w0 ug F 0 g3 O ug ¥ 610%)
u= fi{z) uy = fi(z) tp=0 ug =0 ug=0

Figure 2.5.1: Laplace’s equation inside a rectangle.

. The rnetl‘lod to solve for any of the w,{z,y) is the same; only certain details
differ. We will only solve for wu,(z, ), and leave the rest for the exercises:

PDE: %?;—4 + %23 = 0 (2.5.7)
BC1: us{0,y) = gi(y) (2.5.8)
BC2: us(Ly) = 0 (2.5.9)
BC3: ug(z,0) = 0 (2.5.10)
BC4: us(z, H) = 0, (2.5.11)

E’e‘prop@e to.solve this problem by the method of separation of variables. We
egin by ignoring the nonhomogeneous condition u4(0,) = ¢i{y). Eventually,

we will add together product sohitions to synthesize g1(y). We look for product
solutions

ua(2, ) = h(z)d(y). (2.5.12)
From the three homogeneous boundary conditions, we see that

R(L) = 0 (2.5.13)
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¢{0) = 0 (2.5.14)
HH) = 0 {2.5.15)

Thus, the y-dependent solution ¢(y) has two homogeneous boundary conditions,
whereas the z-dependent solution i(x) has only one. If (2.5.12) is substituted into
Laplace’s equation, we obtain

The variables can be separated by dividing by h{z)é(y), so that

1d%h 1d%¢
==, 2.5.16
h dx? o dy* ( )

The left-hand side is only a function of z, while the right-hand side is only a function
of y. Both must equal a separation constant. Do we want to use —A or A7 One
will be more convenient. If the separation constant is negative (as it was before),
(2.5.16) implies that h(r} oscillates and ¢(y) is composed of exponentials. This
seems doubtful, since the homogeneous boundary conditions (2.5.13)-(2.5.15} show
that the y-dependent solution satisfies two homogeneous conditions; ¢{y) must be
zero at y = 0 and at y = H. Exponentials in y are not expected to work. On
the other hand, if the separation constant is positive, (2.5.16) implies that h{z) is
composed of exponentials and ¢(y} oscillates. This seems more reasonable, and we
thus introduce the separation constant A (but we do not assume A > 0):

1d%h

1d%¢
T = A (2.5.17)

Todyt
This results in two ordinary differential equations:

d2h

ey
dr? f
d*¢p _
el — Ao,

The z-dependent problem is nof a boundary value problem, since it does not have
two homogeneous boundary conditions.

d?h
ah gy 2.5.18
7 A (2.5.18)

(2.5.19)
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However, the y-dependent problem is a boundary value problem and will be used
to determine the eigenvalues \ (separation constants):

d2¢p

o —Ag (2.5.20)
o(0) = 0 (2.5.21)
o(H} = 0. {2.5.22)

This boundary value problem is one that has arisen before, but here the length
of the interval is H. All the eigenvalues are positive, A > (. The eigenfunctions are
clearly sines, since ¢(0) = 0. Furthermore, the condition $(H) = 0 implies that

nwy 2
» = (7)) |
n=1, 2, 3, (2.5.23)
oly) = sin Y
' H

To obtain product solutions we now must solve (2.5.18) with (2.5.19). Since A =
{nm/H)?,
d*h (nﬂ')Q A
=77 . (2.5.24)
. The general solution is a linear combination of exponentials or a linear combination
of h.yperbolic functions. Either can be used, but neither is particularly suited for
solving the homogeneous boundary condition k(L) = 0. We can obtain our solution
more expeditiously, if we note that both coshnw(z ~ L)/H and sinhnr(z — Ly/H
are linearly independent solutions of (2.5.24). The general solution can be written
as a linear combination of these two:
- Lonr ., nT
h(z) = ay cosh ?(az — L)+ azsinh E—(m - L), (2.5.25)
althoggh it should now be clear that h(L) = 0 implies that a; = 0 (since cosh 0 = 1
and sinh 0 = 0). As we could have guessed originally,
h(z) = aq sinh ";_”(m —L). (2.5.26)
iThe reason (2.5.25) is the solution (besides the fact that it solves the DE) is that it
18 a simple translation of the more familiar solution, coshnzz/L and sinh nwxxr/L.
We are allowed to translate solutions of differential equations only if the differential
equation does not change (said to be invariant) upon translation. Since {2.5.24)
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has constant coefficients, thinking of the origin being at & = L (namely @’ = » — L)
does not affect the differential equation. since d?h/dz® = (nmw/H)?h according to
the chain rule. For example coshnme’/H = coshna(z — L)/ H is a solution.

Product solutions are

uy(e, y) = Asin rzfr;y sinh %(.r - L) {2.5.27)
You might uow check that Laplace’s equation is satisfied as well as the three required
homogeneous conditions. It is interesting to note that one part (the y) oscillates
and the other (the 2) does not. This is a gencral property of Laplace’s equation,
not restricted to this geometry (rectangle) or to these houndary conditions,

We want to use these product solutions to satisfy the remaining condition, the
nonhombdgeneous boundary condition u4(0, ) = g1 (y). Product solutions do not
satisfy nonhomogeneous conditions. Instead, we again use the principle of superpo-
sition. If {2.5.27) is a solution, so is

blIlh—(.L — L. (2.5.28)

wg(r,y) = ZA sin =

Evaluating at @ = 0 will determine the coefficients A, from the nonhomogeneous
boundary condition:

Z A, sin 27 sinh E. —L).
H*

n=1

This is the same kind of series of sine functions we have already briefly discussed,
if we associate Ap sinhnw(—L)/H as its coefficients. Thus (by the orthogonality of
sinnay/H for y between 0 and H),

H
An sinh %("L) = %A gl(y)sin% dy.

Since sinhnw (—L)/H is never zero, we can divide by it and obtain finally a formula
for the coefficients:

2

An = H sinh nir(—

H
w7 ) oW T b (2.5:29)

Equation (2.5.28) with coefficients determined by (2.5.29) is only the solution for
ug{x, y). The original u(z, y) is obtained by adding together four such solutions.
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2.5.2 Laplace’s Equation for a Circular Disk

Suppose that we have a thin circular disk of radius a (with constant thermal proper-
ties and no sources) with the temperature prescribed on the boundary as illustrated
in Fig. 2.5.2. If the temperature on the boundary is independent of time, then it is
reasonable to determine the equilibrium temperature distribution. The temperature
satisfies Laplace’s equation, V2u = 0. The geometry of this problem suggests that
we use polar coordinates, so that w = u(r, ). In particular, on the circle » = g the
temperature distribution is a prescribed function of . u{a,8) = f(#). The problem
we wallt. to solve is

o 1 8 du 1 0%u
BC: ula,8) = f(8). (2.5.31)

u(a: 9) = f(g)

Figure 2.5.2: Laplace’s equation in-
side a circular disk.

At first glance, it would appear that we cannot use separation of variables because
there are no homogeneous subsidiary conditions. However, the introduction of polar
coordinates requires some discussion that will illuminate the nse of the method of
separation of variables. If we solve Laplace’s equation on a rectangle (see Sec. 2.5.1),
0<2 <L, 0<y< H, then conditions are necessary at the endpoints of definition
of the varlables, T = 0 L and y = 0, H. Fortunately, these coincide with the
Physical boundaries. However, for polar coordinates, 0 <r < g and —7 < 8 < 7
(where there is some freedom in our definition of the angle #). Mathematically, we
need conditions at the endpoints of the coordinate system, r =0, ¢ and # = —, =.
Here, only » = @ corresponds to a physical boundary. Thus, we need conditions
motivated by COIIbldEI’athI’lS of the physical problem at r = () and at # = £x. Polar
coordinates are singular at r = 0; for physical reasons we will prescribe that the
temperature is finite or, equivalently, bounded there:

boundedness at origin (2.5.32)

Conditions are needed at # = +7 for mathematical reasons. It is similar to the

- circular wire situation. # = —7 corresponds to the same points as # = . Aithough
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there really is not a boundary, we say that the temperature is continnous there and
the heat flow in the @-direction is continuous, which imply:

w{r,—w) = u{rmw)
periodicity (2.5.33)
du du
W(T«*f’r) = %(T‘aﬂ')a

as though the two regions were in perfect thermal contact there (see Exercise
1.3.2). Equations (2.5.33) are called periodicity conditions; they are equivalent
to w(r,#) = u(r,d + 27). We note that subsidiary conditions (2.5.32) and (2.5.33)
are all linear and homogeneous (it's easy to check that u = [} satisfies these three
conditions). In this form the mathematical problem appears somewhat similar to
Laplace’s equation inside a rectangle. There are four conditions. Here. fortunately,
only one is nonhomageneous, u(a,f) = f{#). This problem is thus suited for the
method of separation of variables.
We look for special product solutions,

u(r,0) = $(8)G{r), (2.5.34)

which satisfy the PDE (2.5.30) and the three homogeneous conditions {2.5.32) and
(2.5.33). Note that (2.5.34) does not satisfy the nonhomogeneous boundary condi-
tion (2.5.31). Substituting (2.5.34) into the periodicity conditions shows that

p(-m) = o(x)
" g, (2.5.35)
@(_ﬂ') — @ﬂ-)u

the #-dependent, part. also satisfies the periodic boundary conditions. The prod-
uct form will satisfv Laplace’s equation if

d%¢ _

1d [ dG
ra

1
rar " ) o0+ 56
The variables are not separated by dividing by G{r)#(#) since 1/r? remains multi-
plying the @-dependent terms. Instead, divide by (1/72)G(r)é{f), in which case,

rd [ dG 1d2%
Tl = = = AL 2.5.36
Gdr (T dr ) b d6° (2:5.36)

The separation constant is introduced as A (rather than —A) since there are two
homogeneous conditions in €, (2.5.33), and we therefore expect oscillations in 6.
Equation (2.5.36) vields two ordinary differential equations. The boundary value
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problem to determine the separation constant is

d%o

aw — M

bom) = o) (2.5.37)
do . d
@(—ﬂ') = a%(ﬂ')

The eigenvalues ) are determined in the usual way. In fact, this is one of the three
standard problems, the identical problem as for the circular wire {with L = x).
Thus, the eigenvalues are .
nmy 2
_ _ 2
A= (T) = n?, (2.5.38)
with the corresponding eigenfunctions being both

sinnf  and  cosnd. (2.5.39)

The case n = 0 must be included (with only a coustant being the eigenfunction).
The r-dependent problem is

rd (dGY _,
aa \ror ) =An%, {2.5.40)
which when written in the more usual form becomes
d?G dG
2 2

Here, the condition at » = 0 has already been discussed. We have prescribed
Iu((),.ﬁ)] < 0. Fm: t.he product solutions, u(r,6) = $(#)CG{r), it follows that the
condition at the origin is that G(r) must be bounded there,

|G(0)] < oo, (2.5.42)

Equation (2.5.41) is linear and homogeneous but has nonconstant coefficients.
'ljhere are exceedingly few second-order linear equations with nonconstant coeffi-
Clents. that we can solve easily. Equation (2.5.41) is one such case, an example of an
equation known by a number of different names: equidimensional or Cauchy or
Euler. T.he simplest way to solve (2.5.41) is to note that for the linear differential
operator in (2.5.41) any power G = r* reproduces itself> On substituting G = rP
mto (2.5.41) we determine that [p{p — 1) + p —n?]r? = 0. Thus, there are usnally
two distinct solutions ’ )

p=n,

_-—

5 . . . :
For constant-coefficient linear differential operators, exponentials reproduce themselves.
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except when n = 0, in which case there is only one independent solution in the form
r#. For n # 0, the general solution of (2.5.41) is

G=cr™+eopr ™. (2.5.43)

For n = 0 {and n = 0 is important since A = 0 is an eigenvalue in this problein},
one solution is ¥ = 1 or any constant. A second solution for n = 0 is most easily
obtained from (2.5.40). If n =0, d—”:“ (r%) = 0. By integration, » dG/dr is constant,
or equivalently dG/dr is proportional to 1/r. The second independent solution is
thus Inr. Thus, for n = 0, the general solution of (2.5.41) is

G=¢ +¢lnr {2.5.44)

Equation (2.5.41) has only one homogeneous condition to be impused, [G(0}] < oc,
s0 it is not an eigenvalue problem. The boundedness condition would not have
imposed any restrictions on the problems we have studied previously, However,
here (2.5.43) or {2.5.44) shows that solutions may approach ~o as » — 0. Thus, for
|G{0)| < oo,c2 = 0in (2.5.43) and & = 0 in (2.5.44). The r-dependent solution
{which is bounded at r = 0) is

Gr) =cr™ n =0,

where for n = 0 this reduces to just an arbitrary constant.
Product solutions by the method of separation of variables, which satisfy the
three homogeneous conditions, are

r"cosnd(n > 0) and r"sinnd{n > 1).
Note that as in rectangular coordinates for Laplace’s equation, oscillations occur in

one variable (here 6) and do not occur in the other variable (r}). By the principle
of superposition, the following solves Laplace’s equation inside a circle:

o0 oG
n . I 0 S r<a ¢
ulr,0) = Z(:]Anr cos nf + Z}Bnr sin nd, Cmcf<m 2.5.45)
Pt n=
In order to solve the nonhomogenecus condition, u(a,8) = f(#),
oo o
f(g = Z A,acosnd + Z B,a"sinn#, -z <f<n7. (2.5.48)

=0 n=1

The prescribed temperature is a linear combination of all sines and cosines (includ-
ing a constant term, n = 0). This is exactly the same question that we answered in
Sec. 2.4.2 with L = 7 if we let A,a™ be the coefficient of cosné and B,a" be the
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coefficient of sinn#. Using the orthogonality formulas it follows that

1 n T
Ay = —
- L
, I
(n>1) A, = ;f f(B)cosné d (2.547)
1 T
B,a" = - f (&) sinnd d6.

Since a™ # (0, the coefficients A,, and B,, can he uniquely solved for from (2.5.47).

Equation (2.5.45) with cocfficients given by (2.5.47) determines the steadv-state
temperature distribution inside a circle. The solution is relatively complicated,
often requiring the numerical evaluation of two infinite series. For additional inter-
pretations of this solution, see Chapter 8 on Green's functions.

2.5.3 Fluid Flow Past a Circular Cylinder (Lift)

Inzheat flow, conservation of thermal encrgy can be used to derive Laplace’s equation
V*u = () under certain assumptions. In fluid dynamics, conservation of mass and
conservation of momentum can be used to also derive Laplace’s equation:

Vi =0,

in the following way. In the exercises, it is shown that conservation of mass for
a fluid along with the assumption of a constant mass density p vields
. . . du
V-u =0 or in two dimensions ——L + —?— =0, (2.5.48)
dr Dy
where the velocity has x and y components u — (u.v). A stream function ¢ is
often introduced which automatically satisfies (2.5.48):

W gy
and v = ——

U= -_
dy dx

(2.5.49)

Often streamlines (1 =constant) are graphed which will be parallel to the Auid fow.
It can be shown that in some circumstances the fnid is irrotational (Vru = 0) so
that the stream function satisfies Laplace’s equation

(2.5.50)

The simplest example is a constant flow in the z-direction u — (U, 0), in which
Case the stream function is ¢ = Uy, clearly satisfying Laplace’s equation.

As a first step in designing airplane wings, scientists have considered the flow
around a circular cylinder of radius a. For more details we refer the interested reader

L to Acheson [1990]. The stream function must satisfy Laplace’s equation which as



78 Chapter 2. Method of Separation of Variables

before in polar coordinate is (2.5.30). We will assume that far from the cylinder the
flow is uniform so that as an approximation for large r:

i =z Uy = Ursind, (2.5.51)

since we will use polar coordinates. The boundary condition is that the radial
component of the fluid flow must be zero at 7 = a. The fluid flow must be parallel
to the boundary, and hence we can assume:

Pla,8) =0 (2.5.52)

By separation of variables, including the 7 = 0 case given by (2.5.44),

wir#) =c +einr+ Z(Anr" + Bar ") sinnd, (2.5.53)

n=1

\

where the cosnd terms could be included {but would vanish). By applying the
boundary condition at r = a, we find

c1 +eglna = 0
Aga™+ Bpa™™ = 0,
so that
r = a2n . .
Y(r,0) =cy1n - -+ Z A, (™ — ?;r) sin nf. {2.5.54)

n=1
In order for the fAluid velocity to be approximately a constant at infinity with v =~
Uy = Ursin# for large r, A, =0 for n > 2 and A; =U. Thus,

2
W, ) = ¢, lng +U (7- - “—) sin . (2.5.55)
- T

It can be shown in general that the fluid velocity in polar coordinates can be
obtained from the stream function: u, = %%%, Uug = —%‘%. Thus, the #-component
of the fluid velocity is up = - = U{1 + ff-;) sinf. The circulation is defined to be
102 T ugrdd = —2mcy. For a given velocity at infinity, different flows depending on
the circulation around a cylinder are illustrated in Figure 2.5.3.

The pressure p of the fluid exerts a force in the direction opposite to the
outward normal to the cylinder (£, 2} = (cos4,sin). The drag (z-direction) and
lift (y-direction) forces (per unit length in the s-direction) exerted by the fluid on
the cylinder are

27
F= _f p{cost, sind) adh. (2.5.56)
i
For steady flows such as this one, the pressure is determined from Bernoulli’s

condition L
P+ §p|ul2 = constant. (2.5.57)
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Figure 2.5.3: Flow past cylinder and lift = 2mpe U

Thus, the pressure is lower where the velocity is higher. If the circulation is clockwise
around the cylinder (a negative circulation) , then intuitively {which can be verified)
the velocity will be higher above the cylinder than below and the pressure will be
lo'wer on the top of the cylinder and hence lift (a positive force in the y-direction)
will be generated. At the cylinder u, = 0, so that there lu)* = uZ. Tt can be shown
.thaF the r-component of the force, the drag, is zero, but the y-component the lift
1s given by (since the integral involving the constant vanishes}: |

_ 1 2 &5} a2 2
F, = 5,0]0 [__r— -U (1 + ;—2—) sin QJ sin fadf. (2.5.58)
7 _ o tr 2 L
y = .,/0 sin® fadf = p27e, U, (2.5.59)

i :;hick} has been simplified since f"" sinf df = [7 sin®0 df = 0 due to the oddness of
. € sine function. The lift vanishes if the circulation is zero. A negative circulation

(positive ¢;) results in a lift force on the cylinder by the fluid.
In the real world the drag is more complicated. Boundary layers exist due to

rhe viScous nature of the ﬂuifi. ' The pressure is continuous across the boundary
+ layer 50 that the above analysis is still often valid. However, things get much more
| complicated when the boundary layer separates from the cylinder in which case
| @ more substantial drag force occurs (which has been ignored in this elementary
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treatment). A plane will fly if the lift is greater than the weight of the plane.
However, to fly fast a powerful engine is necessary to apply a force in the r-direction
to overcome the drag.

2.5.4 Qualitative Properties of Laplace’s Equation

Sometimes the method of separation of variables will not be appropriate. If quanti-
tative information is desired, numerical methods (see Chapter 13) may be necessary.
In this subsection we briefly describe some qualitative properties that may be de-
rived for Laplace’s equation.

Mean value theorem. Our solution of Laplace’s equation inside a circle,
obtained in Sec 2.5.2 by the method of separation of variables, yields an important
result. If we evaluate the temperature at the origin, r = 0, we discover from (2.5.45)
that

, 1
LL('U.G} =y = % f(g) dﬁ,

the temperature there equals the average value of the temperature at the edges of
the circle. This is called the mean value property for Laplace's equation. It holds
in general in the following specific sense. Suppose that we wish to solve Laplace’s
equation in any region R {see Fig. 2.5.4). Consider any point P inside R and a circle
of any radius rg {such that the circle is inside R}. Let the temperature on the circle
be f(#), using polar coordinates centered at P. Qur previous analysis still holds,
and thus the temperature at any point is the average of the temperature
along any circle of radius ry {lying inside R) centered at that point.

Figure 2.5.4: Circle within any re-
glon.

Maximum principles. We can use this to prove the maximum principle
for Laplace’s equation: in steady state the temperature cannot attain its
maximwm in the interior {unless the temperature is a constant everywhere)
assuming no sources. The proof is by contradiction. Suppose that the maxiroum
was at point P, as illustrated in Fig. 2.5.4. However, this should be the average
of all points on any circle (consider the circle drawn}. It is impossible for the
temperature at P to be larger. This contradicts the original assumption, which
thus cannot hold. We should not be surprised by the maximum principle. If the
temperature was largest at point P, then in time the concentration of heat energy
would diffuse and in steady state the maximum could not be in the interior. By
letting ¢ = —wu, we can also show that the temperature cannot attain its minirnum
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in the interior. It follows that in steady state the maximum and minimum
temperatures occur on the boundary.

Well-posedness and uniqueness. The maximum principle is a very
important tool for further analysis of partial differential equations. especially in
establishing qualitative properties {see, e.g., Protter and Weinberger [1967]). We
say that a problem is well posed if there exists a unique solution that depends
continuously on the nonhomogeneous data (i.e., the solution varies a small amount. if
the data are slightly changed). This is an important concept for physical problems.
If the solution changed dramatically with only a small change in the data, then any
physical measurement. would have to be exact in order for the solution to be reliable.
Fortunately, most standard problems in partial differential equations are well posed.
For example, the maximum principle can be used to prove that Laplace’s equation
V*u = 0 with u specified as « = f{z} on the boundary is well posed. Suppose that
we vary the boundary data a small amount such that

Vio=0 with v= g(x)

on the boundary, where g(x) is nearly the same as f(z) everywhere on the boundary.
We consider the difference between these two solutions, w = u — v. Due to the
linearity,

Viw=0 with w= Flze) — glx)

on the boundary. The maximum {and minimum) principles for Laplace’s equation
imply that the maximum and minimum occur on the boundary. Thus, at any point
inside, )

min(f{z) — g{z)) < w < max(f(x) - g(x)). (2.5.60)
Sipce g(x) is nearly the same as f(x) everywhere, w is small, and thus the solution
v is nearly the same as u; the solution of Laplace’s equation slightly varies if the
boundary data are slightly altered.

' We can also prove that the solution of Laplace’s equation is unique. We prove
th1§ by contradiction. Suppose that there are two solutions, u and v as above, which
Satlsfy the same boundary condition ie., let (f{z}) = g{x})]. If we again consider
the difference (w = u — v), then the maximum and minimumn principles imply [see
(2.5.60)] that inside the region

0<w=<0.

er con.clude that w = 0 everywhere inside, and thus v = v proving that if a solution
€XlIsts, it must be unique. These properties (unigueness and continuous dependence
on the data) show that Laplace’s equation with « specified on the boundary is a
well-posed problem.

Solvability condition. If on the boundary the heat flow —KoVu-f is

 Specified instead of the temperature, Laplace’s equation may have no solutions [for

a 2flne—dimensional example, see Exercise 1.4.7(b)]. To show this, we integrate
V2u = 0 over the entire two-dimensional region

0= [/vzu dz dy = f V(Vu) di dy.
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Using the {two-dimensional) divergence theorem, we conclude that {see Exercise

1.5.8) ‘
0— f Vi ds. (2.5.61)

Since Vu-# is proportioral to the heat flow through the boundary, (2.5.61) implies
that the net heat flow through the boundary must be zero in order for a steady
state to exist. This is clear physically, because otherwise there would bfa a change
{(in time) of the thermal energy inside, violating the steady—sta-te.afssumptlor-l.'Equfa-
tion (2.5.61) is called the solvability condition or compatibility condition for

Laplace’s equation.

EXERCISES 2.5
'

2.5.1. Solve Laplace’s equation inside a rectangle D <@ < L, F <y < H, with the
following boundary conditions:

K@) GE0,4) =0, Lyl =0, u(z,0) =0, ulz. H) = f(z)

‘B
(b) F2(0,9) = g(y) F(Loy) = 0. u(z.0) =0, we, H) =0
#©) F0.4) =0, u(ly) = gly), u(x,0)=0, u(, H) =0
(d) u(0.y) =g(y), w(l,y) =0,  F(2.0)=0, ulz, H) =0

w(e) ully) =0,  w(ly)=0, ulx,0)~F(,0)=0, u(z,H)= f(z)
g—:(lf,H) =0

¢ : U . arf v = %}i s ) =
(g) 204y =0, %%(L,y) =0, “(1*0)_{1 x < Lj2° gy (5 ) =0

2.5.2. Consider u(z,y) satisfying Laplace’s equation inside a rectangle (0 < x <
L, 0 <y < [ subject to the boundary conditions

Oy =0 Fpz,0)=0
P(Ly) =0 $iz.H) = flz)

*(a) Withoutsolving this problem, briefly explain the physical condition under
which there s a solution to this problem.

(b} Solve this problem by the method of separation of variables. Show that
the method works only under the condition of part {a).

(c) The solution [part (b)] has an arbitrary constant. Determinel it by con-
sideration of the time-dependent heat equation (1.5.11) subject to the

initial condition u{z,y, 0} = g(z,y).
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*2.5.3. Solve Laplace’s equation cutside a circular disk {r > a) subject to the
boundary condition:

{(a) wu(a.8) =12+ 4cos36 (b} wla,8) = f(9)

You may assuine that «(r,#) remains finite as r — oo,

*2.5.4. For Laplace’s equation inside a circular disk (r < a), using (2.5.45} and
(2.5.47), show that

o 1 = e =~ _
u(r,8) = ;]_n e {—E + ”Z:U (:_1) cosrn(f — B)J de.

Using cos z = Re [e%*], sum the resulting geometric series to obtain Pojsson’s
integral formula.

2.5.5. Solve Laplace’s equation inside the quarter-circle of radins 1 (0 < § <
m/2, 0<r< 1) subject ta the boundary conditions:

@) FH00 =0 wu(nz)

0, u(L,6) = f(0)
(b) $roy=0. 2 (n

u
a8

=0, u(l,8)=Ff®

=3
[MTE]
pa—

*(¢) wu(r,0)=0, u(r,Z) =0, gu(1,9) = f(8)
(d) Sr0)=0, Zr(nz)=0, Zu(1,9) = 44

Show that the solution [part (d}] exists only if f;r/z 9(8) db = 0. Explain this
condition physically.

2.5.6. Solve Laplace’s equation inside a semicircle of rading a(0 < r < a. ( < § <
7) subject to the boundary conditions:

*(a) 1 =0 on the diameter and u(a, ) = g(@).
(b) the diameter is insulated wnd ula,d) = g(#).

E 2.5.7. Solve Laplace’s equation inside a 60° wedge of radius a subject to the bound-
' ary conditions:

(a) u(r,0) =0, u(r, %) =0, u(a,8) = f(0)
*(B) Fr0) =0, L(rnE) =0, ula0)=f(0)

2.5.8. Solve Laplace’s equation inside a circular annulus {a@ <7 < b) subject ta the
boundary conditions:
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* (a‘) u(a’: 6) = f(@), '1L(b,9) = g(ﬂ)
(B) Sa,0)=0, u(b0) =g
(c) 2(a.8) = f(F), G2(b.0) = g(6)

If there is a solvability condition, state it and explain it physically.

*2 5.9, Solve Laplace’s equation inside a 90° sector of a circular annulus {@ < r <
b, 0 < 6 < 7/2) subject to the boundary conditions:

(a,) w{r,0} =0, ulr,m/2) =0. u(a.ﬂ) =0, ulb, @) = f(g)
) u(r,0) =0, w(r.m/2) = f(r), ula, ) =0, ulh,8) =10

2.5.10. Using the maximum principles for Laplace's equation, prove that the solu-
tion of Poisson's equation, VZu = g(ax), subject to u# = f() on the boundary.

is unigue.

2.5.11. Do Exercise 1.5.8.

2.5.12. (a) Using the divergence theorem, determine an alternative expression for
{f v V2u dx dy dz.
{b) Using part (a), prove that the solution of Laplace’s equation Vu =
(with u given on the boundary) is unique.

{¢) Modify part (b) if Vu-# = 0 on the boundary.
(d) Modify part {b} if Vu-A+hu = 0 on the boundary. Show that Newton’s
law of cooling corresponds to i < 0.

2.5.13. Prove that the temperature satisfying Laplace’s equation cannot attain its
minimum in the interior.

2.5.14. Show that the “backwards” heat equation

ou__
Bt Ol

subject to u{0,t} = u(L,t) = 0 and u(x,0) = fla), is not well posed. |Hint:
Show that if the data are changed an arbitrarily small amount, for example

1 . nax
f(I)_”f(‘I)-'_ESlH—IJ—

for large n, then the solution u(z,t) changes by a large amonnt. |

2.5.15. Solve Laplace’s equation inside a semi-infinite strip (0 <z < oo, 0 <y <
H) subject to the boundary conditions:
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(2) Fy(e,00=0, GLx,H)=0, u0y)=fly)
b) ulw,0) =0,  wle,H) =0,  ul0,y)=f(y)
(©) u(@.0)=0,  weH)=0  £2(0,y) = {(3)
(d) Fp(x.0)=0, %z H)=0, Z2(0,9) = f(y)

Show that the solution [part (d}] exists only if jUH F) dy =0.

2.5.16. Consider Laplace’s equation inside a rectangle 0 < z < L. 0 < y < H.
with the boundary conditions

du du du du )
—(U,y) =0, —(Ly)=9g(y), —iz. =0, ——{z.H)= fir.
O =0 Ty =e. Fhwo=0. D= s

(a) What is the solvability condition and its physical interpretation?
{b) Show that u(x,y) = A(x?—y?) is asolution if f(2) and g(y) are constants
[under the conditions of part {(a)].

{c) Under the conditions of part (a), solve the general case [nonconstant f{x)
and g(y)]. [Hints: Use part (b) and the fact that f{z) = f,. HF e~ fun].
where f,, = %fUL flz) dz.]

2.5.17. Show that the mass density p{r,t) satisfies g‘% + V- {pu) = 0 due to
conservation of mass.

2.5.18. If the mass density is constant, using the result of 1 show that V- u = 0
2.5.19. Show that the streamlines are parallei to the fluid velocity:
2.5.20. Show that anytime there is a streamfunction, V x u = (.

2.5.21. Fromu = 8¢ and v = _ dv

- L& v
5y 5=, derive u, = ;J& -k,
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2.5.22. Show the drag force is zero for a uniform flow past a cylinder including
circulation,

2.5.23. Consider the velocity u at the cylinder. Where does the maximum and
minimum ocecur?

2.5.24. Consider the velocity uy at the cylinder. If the circulation 1s negative show
that the velocity will be larger above the cylinder than below.

2.5.25. A stagnation point is a place where u = 0. For what values of the circula-
tion does a stagnation point exist on the cylinder?

2.5.26. For what values of § will 4, = 0 off the cylinder? For these 8, where (for
what values of r} will ug = 0 also?

2.5.27. Show that v = asﬁ%’g satisfies Laplace’s equation. Show the streamlines
are circles. Graph the streamlines.





