524 Chapter 11. Time- Dependent Green’s Functions

11.3.5. Consider

8 9* ~
a? = karzL*Q(fr,t) u(z, 0) f(z)
du
Lon = AW e Ltl = Bl

(a) Solve for the appropriate Green's function using the method of eigen-
function expansion. . '
(b) Approximate the Green's function of part {a). Under what conditions is
your approximation valid? . ‘
{c¢) Solve for the appropriate Green’s function using the infinite space Green's
* function. .
{d) Approximate the Green’s function of part {¢). Under what couditions is
your approximation valid?

(e) Solve for u(x,t) in terms of the Green's function.

11.3.6. Determine the Green’s function for the heat equation subject to-zero bOUI.ld-
. ary conditions st  — 0 and = L by applying the method of elgenfunctlo.n
exbansions directly to the defining differential equation. [Hin!: The answer is

given by {11.3.35).]

Chapter 12

The Method of
Characteristics

for Linear and Quasi-Linear
Wave Equations

12.1 Introduction

In previous chapters we obtained certain results concerning the one - dimensional
wave equation,

32y 2 0%y
a_t? = (')—:L.?, (12-1.1]
gubject to the initial conditions
u(z,0) = f(x) (12.1.2)
du
E(‘Laﬂ} = glx). (12.1.3)

For a vibrating string with zero displacement at + = 0 and z = [, we gbtained a
somewhat complicated Fourier sine series solution by the method of separation of
variables in Chapter 4

: o~ . n et Tt .

ur,t) = sin Tb% (a,u cos m; + by, sin m;c ) (12.1.4)
n=1

Further analysis of this solution [see (4.4.14} and Exercises 41.4.7 and 4.4.8j shows

that the solution can be represented as the sum of a, forward and backward moving
wave. In particular,

fo-ct)+ flaret) 1 e
+ —
2 2c

u(:r:, t) = g(:zg) d.’L‘g, (1215)

Tr—ct
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where f () and g(z) are the odd periodi
and (12.1.3). We also obtained (12.1.5)
equation without boundaries, using the in

the one - dimensional wave equation. W
ct) + G{z + ct), where F an
follows for infinite space pro
solve semi-infinite and finite

characteristies will be applied to quasi
shock waves will be introduced when characteristics intersect.

Chapter 12. Method of Characteristics

¢ extensions of the functions given in{12.1.2)
in Chapter 11 for the one- dimensional wave
finite space Green's function.

In this chapter we introduce the more powerful method of characteristics to solve
‘e will show in general that ulz,t) = F{z —
d @ are arbitrary functions. We will show that (12.1.5)
blems. Then we will discuss modifications needed to
domain problems. In Section 12.6, the method of
Jlinear partial differential equations. There

12.2 Characteristics For First-Order

Wave Equations

12.2.1 Introduction

The one - dimensional wave equation can be rewritten as

A%y ,0%u \
g% 2l = 12.2.1
o2 dr2 0. i ( )

A short calculation shows that it can be “factored” in two ways:

_3_+C_(‘3_ a—u—cﬁ-1£ =0
gt  Ox ot ar /]

B — C_.d_ _a_u + cg_‘li =0
6t Oz at 8x |
e the mixed second-derivagive terms vanish in both. If we let

du du
—_ = 12.2.2
Y=gt C(’h;l ( )

sine

(12.2.3)

we see that the one- dimensional wave equation (involving second derivatives) yields

two first-order wave equations:

dw  Ow (12.24) |

H_H:am

12.2. First-Order Wave Equations
027

dv du

at oz (12.2.5)

12.2.2 Metl.lod o.f Characteristics for First-Order
Partial Differential Equations

b g y SCUSSII p -
1 n le filbt Or
\':e el b d,l g [+ ]|e| one ()i theSe 51 de[‘ partl&l dlﬂEI ential

aw Jw

Bt ‘o -V (12.2.6)

Th .
o faz}gihé)f; ;r;)m{‘lvdevelopdwdl be helpful in analyzing the one- dimensional wave
2.1}, We consider the rate of change of wi{x(t),1t ‘
1 \ ! a ‘ ’
moving observer, x = &{t). The chain rule! implies that ot 1) s mensred o

d dw drdw
—w(z(t),t) = — el -
7@t = Fr + ma (12.2.7)

The first term ¢

(d;/ (21;3 tfu;ll dw/0t represents the change in w at the fixed position, while

im'.o .r( w jor) rep.reseniis the change due to the fact that the ob‘-;erverymove

eqﬁa;ozg;z? 10Uf ;;c:ssr:).ly dziifgr;rét w. Compare (12.2.7) with the partial diﬁ'erentiasl
juation 2.6). It is :

o that, g ). Tt is apparent that if the observer moves with

dr

- © (12.2.8)
then

dw

= (12.2.9)

w .
) i b p i
113 15 constan il observer IIl()\‘lllg W1l hlb Special spee ¢ Wou measure

Ch isti -
been re?{;:;iglstgfi; dIlil1 azhlsd‘.h;;h% thfa partial differential equation {12.2.6) has
grating (12.2.8) yields y differential equations, (12.2.8) and (12.2.9). Inte-

T = cf + zq, (12.2.10)

Here d/dt as e by a movi, obser VEr 18 sometime;
I / meas
ured ng metimes called the substantlal derivative
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We have shown that w is ¢
; onstant along the characteristics 2 — 2
- . - . B t = CO
i{:iféigs its sar;e shape moving at velocity 2 (to the right). The important éllf;?:xl:tj
éfmes a,p ;cea} 2 —;‘ O a;l; T=2t+1, as v»fell as a sketch of the solution at various
i s, 1. 12.2.2. w(z,f) = 0if x> 2t + 1 or if & < 2¢. Otherwi
e . lerwise, by

the equation for the family of parallel characteristics® of {12.2.6), sketched in
Fig. 12.2.1. Note that at t =0, z = Zo. w(z,t) is constant along this line (not
necessarily constant everywhere). w propagates as 4 wave with wave speed ¢

see (12.2.8)].

i

| / Figure 12.2.1: Characteristics for the
g , first-order wave equation.

et '_,__‘-‘L__, B
To

wzt) =42 -28) U U<z<tl,
To derive this analytic solution, we use the characteristic which starts at © = 2
T =2+ xy. i
Along this characteristic, w(z, ¢) is constant. If ¢ < £y < 1, then
w(z, ) = w(ro,0) = dzg = 4(z — 2t),
is valid if 0 < zg < 1 or equivalently 0 < z — 2¢ < 1.

',\_,f\-—’k‘\t::a
\oik t=2
t=1
1 et

Figure 12.2.2: Propagation for the first-order wave equation,

General solution. If w(x,t) is given initially at £ =0, as before. This

’m(:r’(]) = P(.’I‘), (1221])

then let us determine w at the point (x, t). Since w is constant along the charac-

teristic, )
’LU(.T,t) = TU(Il}zO) = PI\IO)‘

Given « and ¢, the paramecter is known from the characteristic, zy = x — ct, and
thus

wiz,t) = Plz — ct), (12.2.12)

p ltSame shape. I_n general w(z,t) = P(x — ct). At fived ¢
irs -or'der wave e-guatzon is the same shape shifted a distance ot (
times time). We illustrate this in Fig. 12.2.3. ,

the solution of the

which we call the general solution of {12.2.6).
(distance = velocity

We can think of P(z) as being an arbitrary function. To verify this, we substitute
(12.2.12) back into the partial differential equation {12.2.6). Using the chain rule

t=10

fw 4P da—ct) __dP
dr  dz—et) dx  d@z—ct)
d
a Juw 4P Az ~eat) e dP
9t diz—cty ot dx-ct)

Thus, it is verified that (12.2.6) is satisfied by (12.2.12). The general solution of
a first-order partial differential equation contains an arbitrary function, while the
general solution to ordinary differential equations contains arbitrary constants.

|
|
{
|
.

|
r=0

Example. Consider
.;()E + 23_’0’) = T=ch
at dr Fi
. ure 12.2.3: Sh i :
subject to the initial condition ) ape luvarlance for the first-order wave equation.
¢ =<0
w(z,0) =4 4r 0<e<l (lzﬁg)lngllasz {t'io?slelfggﬂllgcg Of‘; ;:li'laracte}elristi.cs solves the first~order wave equation
0 z>1. (12.1.1). The reader m'a . -9; this method is applied to solve the wave equation

proceed‘directly to Section 12.6 where the method of
for quasi-linear partial differential equations,

2 characteristic is a curve along which a PDE reduces to an CODE. characteristics is described




530 Chapter 12. Method of Uharacterisics

EXERCISES 12.2

12.2.1. Show that the wave equation can be consider.ecl as the following system of
two coupled first-order partial differential equations:

u _ Ou ow Ow _
9t B © ot " “or
¥12.2.2. Solve
@ - 38_w =0 with w{x,0) =cosz.
at Oz
12.2.3. Solve
0w 49% _ o yith w(0,t) = sin3t.
at dr
12.2.4. Solve
;dﬂ-i—cgﬂzo {e>0) forzx>0andf>0if
at dr

w(z,0) = flz} z>0 w(0,t) = h(t) t>0.
12.2.5. Solve using the method of characteristics (if necessary, see Section 12.6):
(a) % + c%% = e with w(x,0) = f(\:c)
*(b) 42 + 52 = | with w(z,0) = flz)
(¢) 3% +t32 = 1 with w(z,0) = f(x) |
*(d) 2% +3t92 — w with w(z,0) = f(z)
*12.2.6. Consider (if necessary, see Section 12.6}:

_g_? + zug_;" =0 with uz,0) = f(z).

Show that the characteristics are straight lines.

12.2.7. Consider Exercise 12.2.6 with

1 z <0
w(z,0) = flz)=¢ 1+z/L 0<a<L
2 x> L.

(a) Determine equations for the characteristics. Sketch the characteristics.
(b) Determine the solution u(z,t). Sketch u(z,t) for ¢ fixed.

*12.2.8, Consider Exercise 12.2.6 with
1 <0
wwo =i ={ 5 755

Obtain the solution u(z,t) by considering the limit as‘L‘—~ 0 of the ;:h:a}(riﬁ;
teristics obtained in Exercise 12.2.7. Sketch characteristics and u(z,?)

fixed.

Ly \SHE- MG HIDILE yyave L el JIL

12.2.9. As motivated by the analysis of a moving observer, make a change of in-
dependent variables from {z.t) to a coordinate gystem moving with velocitv
e AS ) where £ =2 — ¢t and ! = ¢, in order to solve (12.2.6).

12.2.10. For the first-order “quasi-linear” partial differential equation

du bau
O — =
dz dy ‘

where a, 4. and ¢ are functions of z, y and w, show that the method of
characteristics (if necessary, see Section 12.6) yields

de _dy _ du

a b c

12.3 Method of Characteristics
for the One-Dimensional Wave Equation

12.3.1 Introduction

From the one - dimensional wave equation,

— = =10, (1231}

we derived two first-order partial differential equations, dw/dt + cdw/dr = 0 and
Ov/0t ~ c8v/dz = 0, where w — Fu/dt —coufdr and v = du/0t + cdu/0z. We
have shown that w remains the same shape moving at velocity o

The problem for v is identical (replace ¢ by —c). Thus, we could have shown that
v is translated unchanged at velocity ¢

du  Jdu .
Y = m +C_6-—1; = Q(I‘ +(f). (12.3.3)

By combining (12.3.2) and (12.3.3) we obtain, for example,

% = 5Pl ct) + Q(a + ct)],

and thus

uz, t} = F(z —et) + G(z + ct),] (12.3.4)




532 Chapter 12. Method or Characterisuics
where F and (@ are arbitrary functions (—cF’ = 3£ and G’ = 1Q). This result
was obtained by d’Alembert in 1747.

The general solution is the sum of F(x ct), a wave of fixed shape moving to
the right with velocity ¢, and G(x + ct), a wave of fixed shape moving to the left
with velocity —c. The solution may be sketched if F{z) and G(z) are known. We
shift F'(z) to the right a distance et and shift G(z) to the left a distance ct and add
the two. Although each shape is unchanged, the stm will in general be a shape that
is changing in time. In Sec. 12.3.2 we will show how ta determine F(z) and G(x)

from initial conditions.

Characteristics. Part of the solution is constant along the family of char-
acteristics r — cf = constant, while a different part of the solution is constant along
+ 1 ot = constaut. For the one- dimensional wave equation, {12.3.1), there are two
families of characteristic curves, as sketched in Fig. 12.3.1.

t

r—ct=o

o i

Figure 12.3.1: Characteristics for the one- dimensional wave equation.

12.3.2 Initial Value Problem (Infinite Domain)

n Sec. 12.3.1 we showed that the gemeral solution of the one-dimensional wave

equation is

u(r,t) = F(x — ct) + Glz +ct}. {12.3.5)

Here we will determine the arbitrary functions in order to satisfy the initial condi-

tions:
(12.3.6)

(12.3.7)

These initial conditions imply that

flz) = F(z}+G(z) (12.3.8)

12.4. Une-Lunensional Wave Equation

533
M _ e 4G
) i + o (12.3.9)

We solve for G{z) by eliminating #{z

0 (12.5.9) violds ); for example, adding the derivative of (12.3.8)

| dr 2 \dz e
By integrating this, we obtain

—
1 X

G‘(w):gf(l?Hz,%ﬁ g(T) dT |+ k (12.3.10)
1 1o

F(z) = Ef(ar)—-Q-Efo 9(T) dF |-k, (12.3.11)

‘\‘her(—,‘ l}le lattel e(lll 10n was ()bl 1€ 1 ] R ” . (&} e d
: sice

(i, ) is obtained from (12.3.5 ' .
<hifis). (12.3.5] by adding (12.3.10) and (12.3.11) (with appropriate

l2§kef,ching te.chnique. The solution «
(12.3.5) in the following straightforward manner:

L. Given f(z) and g(z). Obtain the graphs of

(,t) can be graphed based on

1 1

§f (z}  and A 9{T) dz,

the latter by integrating first.

By addition and subtraction, from F(z) and G(z); see (12.3.10) and (12.3.11)
3. Translate (shift) F(z) to the right a distance ¢t and G{x) to the left ct
4. Add the two shifted functions, thus satisfying (12.3.5).

]_ Ire; ]1 a v ]bI at lng StI lng 1s 1nit la.u at rest 6 L t £ O
Q T 0 therl rom 12 3 ]. a l Fi ) xX). Al

wz,t) = Z[fz~et) + fla + ct)). (12.3.12)

b2 =

The initial condition u(z,0) =
half to the right. e

~

splits into two parts; half moves to the left and

Example S
» duppose that an infinite vibrati ing is initi
shape of » sincle rotnon] : - ng string is initially stretched into the

conipas oing 8o from rest. The corresponding initial

Maw=ﬂ@={é;ﬂ§2
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and ,
%%(w,()) =g(x) =0

i tangular pulses,
2). By adding together these two rec .
Y ?ap until the left end of the right-moving one
ch is traveling at speed c, they are moving

The solution is given by {12.3.1 _
we obtain Fig. 12.3.2. The pulses over
passcs the right end of the other. Since ea

0.8\(

0.6
0.4 .
0.21

1 tzﬂ
h k
-1 D<t<hfe
——a Thic  h—ct h+ct
s ] Bt ST
“h—ct h—ct | —h+ct Pt

i j equation.
Figure 12.3.2: Initial value problem for the one - dimensional wave eq

12.3. Une.Dimensional Wave Equation 335
apart at velocity 2¢. The ends are initially a distance 2k apart, and hence the time
at which the two pulses separate is

distance 2h A
t = - [—
velocity 2c ¢

bmportant characteristics are sketched in F ig. 12.3.3. F stays constant moving to

the right at velocity ¢, while & stays constant moving to the left. From {12.3.10)
and {12.3.11)

F(‘”):G(“’)z{ : ilj}ljﬁ

'I'his information also appears in Fig. 12.3.3.

r+ect=h z—~c=-h

Figure 12.3.3: Method of characteristics for the one-dimensional wave equation.

Example not at rest. Suppose that an infinite string is initially horizontally
stretched with prescribed iitial velocity as follows:

u(z,0)=f(xz}) = 0

ou, (1 jal<h

In Exercise 12.3.2 it is shown that this corresponds to instantaneously applying
a constant impulsive force to the entire region |z| < h, as though the string is
being struck by a broad (|z| < h) hammer. The calculation of the solution of the

wave equation with these initial conditions is more involved than in the preceding

example. From (12.3.10) and (1 2.3.11), we need f° g(7) d7, representing the area
under g(z) from 0 to z:

2eG(2) = —2cF(zx) = / g@dT={ = —h<z<h
0 h =z >h

The solution u(z, t) is the sun of F(z) shifted to the right (at velocity ¢) and Giz)
shifted to the left {at velocity c). F(z) and G(z) are sketched in Fig. 12.3.4, as is
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i

e T ——— <= tg<hfe
T

Ut =) <hfc

t=0

Figure 12.3.4: Time evolution for a struck string.

their shifted sum. The striking of the broad hammer causes the displacement of the
string to gradually increase near where the hammer hit and to have this disturbance
spread out to the left and right as time increases. Eventually, the string reaches an
elevated rest position. Alternatively, the solution can be obtained in an algebraic
way (see Exercise 12.3.5). The characteristics sketched in Fig. 12.3.3 are helpful.

12.3.3 d’Alembert’s Sohition

The general solution of the one - dimensional wave equation can be simplified some-
what. Substituting (12.3.10) and {12.3.11) into the general solution {(12.3.5) yields

_ ropatet et
u(z, t) = flz+ ) ; flz—ct) + % {L g(T) df/u g(T) df}

or

— 4ol
w(z,t) = fz=d) ; flzted) | 51(- f 4(z) dT. (12.3.13)
“Ja—ct

knowr as d’ Alembert’s solution (previously obtained by Fourier transform meth-
ods). It is a very elegant result. However, for sketching solutions often it is easier
to work directly with (12.3.10) and (12.3.11), where these are shifted according to
(12.3.5).

Domain of dependence and range of influence. The importance

of the characteristics = — ¢t = constant and x +ct = constant is clear. At position

at time ¢ the initial position data are needed at z + ¢, while all the initial velocity

data between x — ct and x + ct is needed. The region between x — ct and T +'Ci
is called the domain of dependence of the solution at (z,1) as sketched in Fig

12.3.5. In addition, we sketch the range of influence, the region affected by the

initial data at one point.

1 : i
2.3.3. An alternative way to solve the one-dimensional w

12.3. One-Dimensional Wave Equation
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z,t
(r) I:ZCD*(.T sz[]"‘ct

r—c ozt - x
-—0

@ ()

Figure 12.3.5: (a) Domain of dependence; (b} range of influence.

EXERCISES 12.3

12.3.1. Suppose that u(z,¢) = F
i ! ) =Fila — )+ Gz 4 et), whe :
in Fig. 12.3.6. Sketch the solution for various t)i'rw e & are sketched

nes,
-— — 2
o |
=0 E—

x .713:2

Figure 12.3.6

12.3.2. Suppose that a stretched string is unperturbed

N hori —
rest (Ju/3t = Q). If an impulsive force is applied (horizontal, = 0) and at

problem is at £ = 0, the initial valye
a2y a2 _
o = Gzt alz)d(t)
u(z,t) = 0 t<0

{(a) Without using explicit solutions, show that this is equivalent to
Q' 0%
der ~ © G2

subject t 5 0) = 0 and 2u¢
- ¥ o.ugz‘, 0) = 0 and Fel(z,0) = a(z).
ws, the initial velocity a(z)

t>0

is equivalent to an impulsive f
. : (s pulsive force.
(b) Do part (a) using the explicit solution of both problems.

is he : ave equation (12.3.
ased on (12.3.2) and (12.3.3). Solve the wave equation Z(; intro dflcin?;; 15_2

g ( 1 ) 3

('I lalge O val a..bles fIOI]l xt trO tWO moving COOIdH] tes { ” one lllOHIlg
(=] a

to the left (Wltl] k‘eloc-lb}‘ C) adld one II]OUlng tO t.he I‘lg]lt ({Wltll} Veloclty (:‘)

§=z-ct and p=z+a
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%]
| I A condition is necessary at the boundary x = 0. We suppose that the string is fixed
I'. . o _Er;,]late ? Y o 2UR E II € : 5 A
' *12.3.4. Suppose that ufz.1) = Fla ct). Bvad at &+ =0:
. |

gu(Q,t w
(‘1) %%{ﬁﬂ) (b) r’);r( ) e

)it

(12.4.4)

cae analytic formulas for w{z, t L o
12.3.5. Determine analytic Although a Fourier sine transform can be used. we prefer to indicate how to use the

u(z,0) = flr) = 0 L el < general solution and the method of characteristics:
’ r
%%(i’g) =glo) = { 0zl > h
o e . -L!(_.'L',t} = F(x — Ct) + G(I + Lt) (1245)
(Hint: Usiug characteristics as sketched in Fig. 12.3.3, show theve are two
int: Us teristic

. ) ] h. 1 ﬁVe
distinct regions ¢ < h/e and t > h/c. In each, show that the solution has
istin :

different forms, depending on x.)

Asin Sce. 12.3, the inifial conditions are satisfied if

imensi ave equatl 1, 1 [
12.3.6. Consider the three- dimensional wave equation G(r) = 51(;-) + o» / gZTrdz x>0 {12.4.6)
C Jo
32“ .2 2 1 1 K
gz Vi Glx)y = §f(?3) 5 gT dz =>0 (12.4.7)

()
the solution i8 spherically symmetric, so that

T2 = (159 0/ 0p) 0 u Op).

Assume that

However, it is very important to note that (unlike the case of the infinite string)
(12.4.6) and {12.4.7} are valid only for » > 0; the arbitrary functions are only de-
terminex! from the initial conditions for positive argument=. In the general solution,
G(z + ct) requires only positive arguments of (¢ {since = > 0 and ¢ > 0). On the
other hand, F(r — ¢t) requires positive arguments if = > ¢t but requires negative
arguments if » < ¢t. As indicated by a space- time diagram, Fig. 12.4.1. the in-
formation that there is a fixed end at x = 0 travels at a finite velocity ¢. Thus, if
2 > ¢, the string does not know that there is any boundary. In this case (x > et},
the solution is obtained as before [using (12.4.6) and (12.4.7)].

(a) Make the transformation u = (1/ p)w(p.t) and verify tha

| I} §rw 07w

5e | 9pt

j ¢ 8 i £ wave
(b) Show that the most general spherically synyn;tuc bOhltl:I‘lc 0‘2 ;29; ave
i jists : [ two spherically symmetrl
uation consists of the sum 0 jcal ‘ o
ft?ovi.ng outward at speed ¢ and the other inward at speed ¢ N

decay of the amplitude.

d _ . s T+t
gy = LT ;r fa tet) +2i / 9@ dT, >, (12.4.8)
o,

r—ct

d'Alembert’s solution. However, here this is not valid if = < et. Since x + cf > 0,

12.4 Semi-Infinite Strings and Reflections

on on a serni-infinjte interval, z > O

1 1 et
. B . it G T 4y = = - " = _ d_’
We will solve the one- dimensional wave equatl (o4t Q.f(ut s 1 '[ o=

as determined earlier. To abtain I for negative arguments, we cannot use the initial

3 92 . = o s
0%u 207U conditions. Instead, the boundary condition must be utilized. «(0,¢) = 0 implies

i (12.4.1)
PDE: l ——=c Brs:

ot

(12.4.2)}

r—e  Figure 12.4.1: Characteristic emanat-
ing from the boundary.

(12.4.3)
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that (from (12.4.5)] (12.4.9)

0= F{—ct)+ Glet) fort >0

H 2113 n tn
i 7 ot ounding positive argumen
i ments is —G aof the corresp
Thus, F for negative argu

F(z)=—G(-z) forz <0 (12.4.10)
Thus, the solution for z — ¢t < 0is
wlr, ) = Flz—ct)+Gla +at) = Gz +ct) — Glet -
o cl—T
' ! o dT ff g(T) di"}
= %[f(:r+ct)—f[ct#z)]+—gz[[) g(T) dT )

x+ct

~ Lperay-fet-sieg [ @z

ct—x
the method of characteristics is helpful. R.ccal} th?t
hetsum of F (moving to the right) and G (m{c;;vntlgt hz
Y s not atlec )
ini ith ¢, the boundary does 1o ;

semi-infinite problems with z > ct, | ouc e e
e ICﬂ;}. 'Fglc;sb?f;; T‘ff‘ig. 12.4.2). If & < ct, then Fig. 12.4.3 ?osvi;ehii ;ht_mwing
L?i:f:t\z:imc {E? constant) not affected by the b()in(l;zrﬁovﬁl e et D
charact . i ant 1

isti » boundary. F is cons / e right.
Chafade“s“dc Cma;‘i;‘;: icf)l;J T;TPG :) 0 at z = 0, the right-moving wave q}i ;n;;ta Elk:g
' C ‘ ' "

o b(')un u?;;\rie The wave inverts as it “bounces oft” the bou;darj.< e T
1?ft-m0vm§1 : wa\'ﬂe —Glct — z) is called the reflected wa\;e. (:fl : Wa,vé-
m%h?r;g;mirs tgk’le reflected wave plus the as yet unreflected left-moving
solut cte

u(z.t) = Gz +ct) — Gl=(z — ct)}.

To interpret, this solutiorll,
for infinite problems u(z, t) is t

Figure 12.4.2: Chuaracteristics.
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One way to obtain this is to extend the initial position fiz) for x > 0 as an odd
function [such that f(—z) = —f(x)] and also extend the initial velocity ¢(x) for
T > 0 as an odd function [then its integral, [ ¢(Z) d7, will be an even function].
in summary, the solution of the semi-infinite problem withu =0atx =0

is the same as an infinite problem with the initial positions and velocities
extended as odd functions.

As further explanation, suppose that u(z, t) is any solution of the wave equation.
Since the wave equation is unchanged when z is replaced by —z, u{—=2,t) (and any
multiple of it) is also a solution of the wave equation. If the initial conditions
satisfied by u{x.t) are odd functions of z, then both u(z,t) and —u{-zx,t) solve
these initial conditions and the wave equation. Since the initial value problem has
a unique solution, u(w,t) = —u(—x.t); that is, u{x,t), which is odd mitially, will
remain odd for all time. Thus, odd initial conditions vield a solution that will satisfy
a zero boundary condition at z = 0.

Example. Consider a semi-infinjte string & > 0 with a fixed end u(0,t) = 0,
which is initially at rest, du/dt(z,0) = 0. with an initial unit rectangular pulse,

R S

) otherwise.

Since g(x) = 0, it follows that

4<x<h
otherwise (with 2 > 0}.

led M

Fla) = Gz} = 2 f () = {

F' moves to the right; G moves to the left. negatively reflecting off x = 0. This can
also be interpreted as an initial condition {on an infinite domain) with f{z) and

g{x) extended as odd functions. The solution is sketched in Fig. 12.4.4. Note the
negative reflection.

Problems with nonhomogeneous boundary conditions at £ = 0 can be analyzed
n a similar way.

moves to the right. It beh&vesl as
boundary, the right-moving
actly the wave

The negatively reflected waxze —)G(I-f- (&,1 :-ecizire o
initially at t = 0 it were —G(—=x). e : e
ga‘:;t? Esg —¢t) would be initially F(z). Thus, the reflected wave

that would have occurred if
F(z) = —G{-z) forz< 0,

. g =ct Figure 12.4.3: Reflected
e characteristics.

or equivalently

: 1 L[ g ar
%f(a:)*—g-lg/o 9(®) df:—:zf(-m)—cho 9{T) dT
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Figure 12.4.4: Reflected pulse.

EXERCISES 12.4
*12.4.1. Solve by the method of characteristics:

F?u 0% 50
582 ° or

(., 0] 2 = = h{t).
subject to u(zx,0] =0, %—;(:L‘,O) =0, and u(0,t) )

*12.4.2. Determine u(r, ) if

2 2
o7u 22-2 for z < O only,

5 " ° Or2
where u(z,0) =cosz 7 <0, 7 1 O
Do not sketch the sclution. However, draw a. space-1 ;

all important characteristics.
12.4.3. Consider the wave equation on a semi-infinite interval
2 2
é\—li:c?(ly— for 0 < x < 0C
ot? Hx?

‘tion 2¥(0, £) = 0 and the initial conditions
with the free boundary condition (0 ) = 0 and

0 O<o<d 5
ufz,0)=4¢ 1 2<x<3 2 (r,0)=0.
0 >3

Deterrine the solution. Sketch
w is continuous at @ = 0, t = 0.)

12.4.4. {a) Solve for > 0,¢>0 {using the method of characteristics)

Ou_ 0%
Bz o2

a — < 0, u(0,t) =€t t> 0
HE 0 = ot O including

i i t
the solution for various times. (Assume tha
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oo - ),
U x>
370 = glz)

Ou
708=0 >0

(Assume that % is contintous at = = G, ¢t =0

{(b) Show that the solution of part (a) may be obtained by extending the
initial position and velocity as even functions (around = = 0).

(c) Sketch the solution if y(z) = 0 and

_J 1 4<z<5
f(z) = { 0  otherwise.

12.4.5. (a) Show that if u(z,#} and Ou/dt are initially even around z = xa,
u{z,t) will remain even for all time.

(b) Show that this type of even initial condition vields a solution that will
satisfy a zero derivative boundary condition at z = Tp.

*12.4.6. Solve (z > 0, > 0)
9% 8%
— i 1 ——
d 12 D2
subject to the conditions w(z,0) = 0, 2%(z,0) = 0, and 2800, ¢} = h(e).

*12.4.7. Solve

9% _ 20%u 2 >0
92 " FZ t>0
Ju

subject to u(x,0) = f(z}), %%(x,0) =0, and £%(0,t) = h(t). (Assume that
w is continons at r =0, £ = §.)

12.4.8. Solve ) .
*u 0% du
FE T g Mith (@ 0) = 0 and Z2(r.0) =0,

subject to u(x.£) = g(¢} along x = £t(c > 0).

12.5 Method of Characteristics
for a Vibrating String of Fixed Length

In Chapter 2 we solved for the vibration of a finite string satisfying

PDE: (12.5.1)
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(12.5.2)

u(z,0) = flz) (12.5.3)

IC: | du iz
5‘;(:’3&0) g( )1

i ive itl SOme ways more

ing Fourier series methods. We can obtain an equivalent, bl%t 1n1 o L » mor

asel . i - di 8 wave € ion;
useflgll result by using the general solution of the one- dimensiona q

u(z,t) = F(z —ct) + G(x + ct). {12.5.4)

: ¥ las
The initial conditions are prescribed only for 0 < z < L, and he1}je the formm
for F{x} and G{z) previously obtained are valid only for 0 < x < L:

L [ oz dz 12.5.5
Fa) = 3He)-5 [ @ dz (125.5)

L @ ax 12.5.6
G = 3@+ [ o e (125.6)

o< ct < Land 0 <o+ ct < L as shown in Fig. 12.5.1, then d’Alembert’s
r—ct

solution is valid: .
z—ct)+ flztet) 1 7 =\ 47, (125.7)
U(xvt) = f( 2 + 2c g(a:)

r—et

i rists; i tion
In this region the string does not know that either houndary ems(f;ls, the ]Enforma
n i B ho I
that there is & boundary propagates at velocity ¢ fromz =0 and x =

|

|

t
i : istics.
Figure 12.5.1: Characteris
({)Z )

i already
If one’s position and time is such that signals from the 1;)0111:::13:3: }i:;\fdition >
arrived, then modifications in (12.5.7) must be made. The hou A

z = 0 implies that (12.5.8)

0=F{—ct) +G(ct) fort=>0,
while at 7 = L. we have

59
0=F(L—ct) +G(L+ct) fort>0 (12.5.9)

e eflect t € i i in Fig. 12.5.2.
These in turn imply reflections and multiple reflections, as illustrated in Fig. 1
es y .
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Figure 12.5.2: Multiply reflected
characteristics.

Alternatively, a solution on an infinite domain without boundaries can be con-
sidered which is odd around z = 0 and odd around z — L. as sketched in Fig. 12.5.3.
In this way, the zero condition at both x = 0 and T = L will be satisfied. We note
that u(x, ) is periodic wit, period 27, In fact, we ignore the oddness around 7 — L,
since periodic functions that are odd around z — 0 are autumatically odd around
x = L. Thus, the situplest way to obtain the solution is to extend the initial
conditions as odd functjons (around = = 0) which are periodic (with pe-
riod 2L). With these odd periodic initial conditions, the methad of characteristics
can be utilized as wel] as d’Alembert’s solurion {12.5.7).

Figure 12.5.3: 0dd periodic extension,

Example. Suppase that a string is initially at yes with prescribed initia} con-
ditions u(z,0) = f (). The string is fixed at z — 0 and & = L. Instead of using
Fourier series methods, we extend the initial conditions as odd funetions around
C=0and »={,. Equivalently, we introduce the odd periodic extension. (The odd
beriedic extension is also used in the Fourier series solution.) Since the string is
initially at rest, 9(z) = 0, the odd periodic extension is g(x) = 0 for all 4. Thus,
the solution of the one- dimensional wave equation is the sum of two simple waves;

WD) = 517w —et) + St o),
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EXERCISES 12.5
12.5.1. Consider

2 ,0) = T
Pu _ pou g = @ } O<z<l
= _
a2 Hx? E(T, 0) g(T)
w0 ) = O wL,t) = 0.

(a) Obtain the solution by Fourier series techniques.
*(h) If g{x) = 0, show that part [a) is equivalent. to the results of Chapter 12.
(c} If f{z} = 0, show that part (a} is equivalent to the results of Chapter 12.

12.5.2. Solve using the method of characteristics:

: 2
9%u 2 0%

91z 02

w(z, 0) = 0 w(,t) = h(t)  Z2{x.0)=0  wu(L.t)=0.
12.5.3, Consider o
Pu_ 200
otz 7 fx?
Il 4<ax<h 08 =0
ufz,0) = fla) = { 0 otherwise w0, 1)
0 v =
3?—(:1:, 0y =pir)= T (L,1) = 0.

{a} Sketch the solution using the method of characteristics.
(.h) Obtain the solution using Fourier - series - type techniques.

' Bl - - 't
{c) Obtain the solution by converting to an equivalent problem on an infinite

domain.

12.5.4. How should initial conditions be extended if &u/0x(0,t) = 0 and u{L,t) =

07

12.6 The Method of Characteristics

for Quasi-linear Partial Differential Equations

12.6.1 Method of Characteristics

ing li ial di i tions
Most of this text describes methods for solving linear partlalddl[ffer;:;;;agr;,‘z:; o
" ‘ i i i i Fourier and Lap
aration of variables, eigenfunction expansions, : o
gfg:;z lfunctic;ns) that cannot be extended to nonlinear problems. However,
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method of characteristics, used to solve the wave equation, can be applied to partial
differential equations of the form

(126.1)

where cand @ may be functions of T, &, and p. When the coefficient ¢ depends on the
unknown solution p, (12.6.1) is not linear. Superposition is not valid. Nonetheless
(12.6.1) is called a quasi-linear partial differentia) equation, sinee it is linear in the
first partial derivatives, 9p/8¢t and dp/0z. To solve (12.6.1), we again consider an
observer moving in some prescribed way r(¢). By tomparing (12.2.7) and (12.6.1),
we obtain

(12.6.2)

if

(12.6.3)

The partial differential equation {12.6.1) reduces to two caupled ordinary differen-
tial equations along the special trajectory or direction defined by {12.6.3). known
as a characteristic curve, or simply a characteristic for short. The velocity
defined by ( 12.6.3) is called the characteristic velocity, or local wave velocity.
A characteristic starting from » = 2, as illustrated in F ig. 12.6.1, is determined
from the coupled differential equations (12,6.2) and ( 12.6.3) using the initial condi-
tions p{z,0) = f(z). Along the characteristic, the solution  changes according to
(12.6.2). Other initial positions yield other characteristics, generating a family of

{ dt = ¢
P =q
at Figure 12.6.1: Characteristic starting
from » = 24 at time ¢ = 0.
_

sS4
o=p{zp,0) = flzy)

Example. If the local wave velocity ¢ is a constant ¢ and @ = 0, then the
Guasi-linear partial differential equation (12.6.1) becomes the linear one, {12.2.6),
which arises in the analysis of the wave equation. In this example, the characteris-
tics may be obtained by directly integrating (12.6.3) without using (12.6.2). Each
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¥ . y s are
11 t h th arl nstan 10(: 'Y, [#)) Th al [0 har T Ci
(',lla.] acteristi as the s e CO t ' t ve lt A e i ll]. ‘ C ac ‘e lbtl a
pala“ei Sl la.]gllt lllleS, as Ske‘( hed 111 I lg 12.....]..

nal space. If the independent vari-

A . T ‘o pend ‘
Quasi-linear in two dimensi AT

ables are x and y instead of z and £, then a quasi-linear first-order p

equation is usually written in the form

O 520 . (12.6.4)
" By |
here a. b, ¢ may be functions of z, ¥, p- The method of characteristics 18
where a, b, |
do _ ¢ (12.6.5)
dr o
) dy _ b (12.6.6)
de  a ' f
This is written in the following (easy to memorize) equivalent torm
de _dy _dp, (12.6.7)
@ b ¢

12.6.2 Traffic Flow

smation it is possible to model a
- density and flow. As an approxm IS E ' el o
Traﬂ:{c(c;d%?le dh?;ctional highway by a quasi-linear partial d1fferent1_flai Z?uta; I:; .
5t - . et
iﬁ:ﬁi‘l‘croduce the traffic density p(:n,(f), ghe num:)e(ilr (l-oliaiiz:ylyizrth{) le at e
it j measu s the
A at position 2. An easily observe an ] |
110(?5; thepnumber of cars per hour passing a fixed place z (at time t)

. . be
i si bitraty section of roadway,
of cars. We consider an at ' ‘ .
Conservatlog b. Tf there are neither entrances nor exits on this segment 0O

tween £ = ¢ and T :_aand;r:r—b(N:f:P(I’ﬂdw’the

then the number of cars betwee'n T d z ’ (1) d B
gt?i;?ézdi’ntegral of the density) might still change in time. The rate of chang

it ti i t x = a [the
the number of cars, dN/df, equals the numberf per unit tlﬁl‘i fir::,;mgivs;ng = [: °
i the number of cars per u :
traffic flow g(a,t) there] minus

[the traffic low g(b,t) there]:

b (12.6.8)
% /; p(z, t) dx = glo,t) — q(b,1).

| i AS Wltll heah
i e e integl I of conser vation Of cAars. -

s p i i i 5‘ d 1 ed
L( W, a pat t a dlﬂ{erelﬂ 13.1 equa.tlon ma; be erlv ! .
Ways. OIIB wa; s t() [lOI l l kl()ll O t h O & e I SSed as an

integral over the region:

b 9
Q(as t) - Q(bv t) = —/ %Q(.’B,t) dr. (126 )
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Thus, by taking the time-derivative inside the integral (making it a partial deriva-
tive) and using {12.6.9) it follows that

(12.6.10)

since ¢ and b are arbitrary (see Section 1.2). We call {12.6.10) conservation of
cars,

Car velocity. The number of cars per hour passing a place equals the density

of cars times the velocity of cars. By introducing u(x,t) as the car velocity, we
have

(12.6.11)

In the mid-1950s, Lighthill and Whitham [1955] and, independently, Richards [1956]
made a simplifying assumption, namely, that the car velocity depends only on the
density, u = u(p), with cars slowing down as the traffic density increases; i.e.,
du/dp < 0. For further discussion, the interested reader is referred to Whitham
[1974] and Haberman [1977]. Under this assumption, the traffic flow is only a

function of the traffic density, g = g(p). In this case, conservation of cars (12.6.10)
becomes

dp dp
at T oy T 12.6.1
5¢ T llg, =0 (12.6.12)

where c(p) = ¢'(p), a quasi-linear partial differential equation with Q = 0 (see
(12.6.1)). Here c{p) is considered to be a known function of the unknown solution
p- In any physical problem in which a density p is conserved and the flow g is a
function of density, p satisfies (12.6.12).

12.6.3 Method of Characteristics (Q=0)

The equations for the characteristics for (12.6.12) are

a =Y (12.6.13)
along
dx
- = o) (12.6.14)

The characteristic velocity ¢ is not constant but depends on the density p. It is
known as the density wave velocity. From (12.6.13), it follows that the density
# remains constant along cach as yet undetermined characteristic. The velocity of
each characteristic, ¢(p), will be constant, since p is constant. Each characteristic
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i i 5 However
i i 5 1 in which ¢{p) is a constant co). \
. strajght line (as in the case in W on ‘ vever.
ﬁf;:;ij chara%teristics will move at different constant velocml.les. begaqsi Eh?ren:l O}t
1 ' isti raj

1 i it ' teristics, though each 18 straight, :

th different densities. The charac cs, : each ‘
Startlf:llto one another. Consider the characteristic that is initially a; tlie (})z?moﬁ
par-a:n as shown in Fig. 12.6.2. Along the curve de/dt = clp), dp/ 7lt = o ;(ome
ionstzftlt. Initially p equals the value at & = Zq (ie., at t = 0). Thus, along

characteristic, ’ N
pla,6) = pls0,0) = F(0), (12.6.15)
that determines the character-

el i -al wave velocity :
which is & known constant. The local wa et e eniatic 1 a et

‘tic is a constant, dz/dt = o(f{za))- Consequently,

e r= C(f{;ﬂ{))}t + Zp. (12616)

. . i b 1 harace
i = i of zp vield different straight-line ¢
since @ = 3 8 L= D valuelSQ.B.Z.DA);ong each characteristic, the traffic

e et e 0.15). To determine the density at some later time,

sity p is a constant; see (12.6.15). = er time,
?E: ;1}zxricteristic with parameter xo that goes through that space- time pon

he obtained from (12.6.16).

1 plat) = FE) g 12.6.2: Possibly nonparallel

I / straight-line characteristics.
S
o $o

Graphical solution. In practice, it is often difﬁcultr aiI;(.;unC:;, izir’f;;;l:ﬂg
interesting actually to determine Zg from (12.6.16) as an exp 1(:1151c tl)l o e the
t. Instead, a graphical procedure may he us?d to dete.rmmehpél ;15'&' Do tbe
i;ﬁtial density is as sketched in Fig. 12.6.3. We knovs{ that eac Ateti eyt pshe N
same, moving at its own constant density wave velocity c(po). me t,

in B .6.3. This
po will have moved a distance ¢(po)t as illustrated by the arrow in Fig. 12.6.3

IO 30 + C(po)t

Figure 12.6.3: Graphical solution.
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process must be carried out for a large number of points (as is elementary to do on
any computer}. In this way, we could obtain the density at time £.

Fan-like characteristics. Asan example of the method of characteristics,
we consider the following initial value problem:

: 3 <0
/)(I,O)-ﬁ{4 Y

The density p(z,t) is constant moving with the characteristic velocity 2p:

dx
— =2p.
a P
Thus, the characteristics are given by
x = 2p(xg, 0Vt + zo. (12.6.17)

I xg > 0, then p(rq,0) = 4, while if xy < 0 then p(£a,0) = 3. The characteristics,
sketched in Fig. 12.6.4, show that

4 x> 8t
3 <6t

pl,t) = {

as illustrated in Fig. 12.6.5. The distance between p =3 and p = 4 is increasing; we
refer to the solution as an expansion wave. But, what happens for 6t < z < &7
The difficulty is caused by the initial density having a discontinuity at z = 0. We
imagine that all values of p between 3 and 4 are present initially at x = 0. There
will be a straight line characteristic along which p equals each value between 3 and
4. Since these characteristics start from x = 0 at ¢ = 0, it follows from (12.6.17)
that the equation for these characteristics is

T = 2pt, for 3 < p < 4,

also sketched in Fig. 12.6.4. In this way, we obtain the density in the wedge-shaped
region
T

P=o for 6t < z < 8t,

which is linear in x (for fixed £). We note that the characteristics fan out from & = 6t
to x = 8¢ and hence are called fan-like characteristics. The resulting density is
sketched in Fig. 12.6.5. It could also be obtained by the graphical procedure.

12.6.4 Shock Waves

Intersecting characteristics. The method of characteristics will not always
work as we have previously described. For quasi-linear partial differential equations,
it is quite usual for characteristics to intersect. The resolution will require the



Chapter 12. Method of Characteristics

Figure 12.6.4: Characteristics (in-
<" ¢hiding the fan-like ones).

Figure 12.6.5:  Expansion
wave,

II' 11‘;) C IOV I (1 5 tinu es ca. eli Qh() 2h aues I“ O‘[‘d; O
rOduC L )f O 1b) 15conuin ltl A . 1 - C;\; IRH N €r t/ Illake the
"

at £ Y < 1 y ne thn tO llaSI—hIleaI
h p[‘ 2 at] 11 1 we npie, rest . 1 q
m =1 | F‘l‘l. A 5 ]lt onre ﬁt Pl Six l'? we estrict ou al te]l

partial differential equations with =0, in which case

Op 9 _q (12.6.18)
at +clp) ox
= z1, with p =

In Fig. 12.6.6 two characteristics are sketch_e_d, oniisﬁa;tligfa(th
f(x1.0) = m and the other starting at « Tf :;:tger o e op
characteristics intersect if {p1) >.c(_pg), the fas

density is constant, along characteristic
densities p1 and py decreases, Thus,
the initial condition in Fig. 12.6.7(

i i d {2)].
ime increases [Fig. 12.6.7(b) an _
tﬁ:ol‘y predicts the density is simultaneously gy and po

/

Figure 12.6.6: Intersecting character-

e(py) > elpg) e

=M #=P

2,0) = p2. These
o the slower. The
s. As time increases, the distance between ihz
his is called a compression wave. We ske (;S
a). The density distribution becommes steeper

istics intersect; the
entunally characteristics n
o ' 1f we continue to apply

mathematically modeled ag being discontinuous, t
are the sound emitted from an explosion or the th
results from exceeding the soumd barrier, it is kn
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the method of characteristics, the faster-moving characteristic passes the slower.
Then we obtain g, 12.6.7(d). The method of characteristics predicts that the
density becomes a “multivalued” function of position: that is, at some later time our
mathematics predicts there will be three densities at some positions [as illustrated
in Fig. 12.6.7(d)]. We say the density wave breaks. However, in many physical
problems (such as traffic flow) it makes no sense to have three values of density at
one place.? The density must be a single-valued function of position.

Figure 12.6.7: Density wave steepens
(density becomes triple - valued).

Discontinuous solutions. On the basis of the quasi-linear partial differ-
ential equation (12.6.18), we predicted the physically impessible phenomenon that.
the densily becomes multivalued. Since the method of characteristics is mathemat-
cally justified, it is the partial differential equation itself which must not be entirely
valid. Some approximation or assumption that we used must at times be invalid.
We will assume that the density {as illustrated in Fig. 12.6.8) and velocity have a
Jurnp- discontinuity, which we call a shock wave, or simply a shock.* The shock
occurs at some unknown position z, and propagates in time. so that z,(#). We
imroduce the notation z,  and I, for the position of the shock on the two sides
of the discontinuity, The shock velocity, di, /dt, is as vet unknown,

p{a:,t) : p{:]:ﬁ+?t)

p(mi 0 Figure 12.6.8: Density discontinuity
e at @ = r(t).

2

3The partial differential equations describin
shallow waler) are similar to the equ
of breaking is then quite significant!

1The terminolngy shock weve is introduced because uf the analogous behavior that ocewrs in
Bas dynamics. There, changes in pressure and density of air, for exarnple, propagate and are heard
{due to the sensitivity of the human ear). They are called sound waves. When fluctuations of
Pressure and density are small, the equations describing sound waves can be linearized. Then
sound is propagated at a constant speed known as the sound speed. However, if the amplitudes
of the fluctuations of pressure and density arc not small, then the partial differential equations
re quasi-linear. Characteristics may intersect. In this case, the pressure and density can he
he result being called a shock wave. Examples

under resulting from lighining. If a shock wave
oWh as a sonic boom.

g the height of water waves near the shore Le., in
ations for traffic density waves. In this situation the prediction
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Shock velocity. On either side of the shock, the quasi-line?r pa/r;lal (\l{f—e
ferential equation applies, dp/01 + c{ p)Op/ie = 0, W]Ili:’l‘e l(:( pz) %‘e!rv (i,((f)m‘,g; . a
need to determine how the discontinuity prOpa.gates. I .15. c ns 1 ,f t,he e
dié ontinuity, then the flow relative Lo thie moving shock on one side (.)‘ ! t‘_ nm‘lt
muit equal Jt}ile flow relative to the moving shock on the other side, This stateine
of relative inflow equaling relative outflow becomes

dr, .
AT | it g Lt (12.6.19)
) [utee 0 G| = et esnt) |
, s Qv U
since flow equals density times velocity (here relative velocily). Selving for the
shock velocity from (12.6.19) yields

diay glaese, t) — qlre_,t) . [_ql (12.6.20)

ils P(_-r.s+-t) - pc.msfsﬂ {P],

where we recall that ¢ = pu and where we '1ntro_d uce %he. f-lotﬂtiO}l 1[1q.] lagtli [;é} dfl?lr\ iL:,l:
ju]ﬁpb: in ¢ and p, respectively. In gas dynamics, (1.2.6‘20} 15 aa} 5; + ;q/aa; e
Hugoniot condition. In ;ummar}'é foi‘lthso(igziii‘:%tl(:g éa::w C;}){ ve.lodty s
i . ntit x is actually red), ' equL
Eifetj}:fmqpu?n thz f{()‘\)v divided by the _jump in the 'd.ens?iiyllof' :ﬁ:ﬁ?jiﬁﬁi
uantity. At points of discontinuity, tth; shiock coudition l'Lp:“m.C.,: e use of the
gartial differential equation, which is valid elscwhere. Howgvu. we 1aw:) 3
explained where shocks veeur and how to determine p{z,.t) and plo, - 1)

Example. We consider the initial value problem

ap dp
N Yt |
at - '0‘0;1:

4 z <0
ple.0) = 3 z>0

. o teer s tion
We assume that p is a conserved density. Putting the partial differ ?pgl E%E;‘Oif
in éonservation form {Op/Ot + Dq/0x = 0) sklf)urs that/ thti ﬂo;\; {q}—z sz)é]/[p] "fhe
there is a discontinuity, the shock vetocity satisfies dr/dt = [qi/{p

e I
density p(z,t) is constant moving at the characteristic velocity 2p:

dr

— =2p
dt
Therefore, ihe equation for the characteristics 18

x = 2p(xg, 0}t + To.

p - . Pa-ral [) Of t [lstll(/b lIltjerscCts
If X () EheIl & 0 4 [hlS lel gIOll Chﬂl‘ac €

< ) ( 01 }

thOSe Staltlng flo[]l o > G (V\'ltil p(.’L(], G) - 3) mn [.he CrOS&.-hdiCh(d leglotl m

In the example considered, the density was initially discontinuous; thus, the shock

[2.6. Quasi-finear PDEs 505G
Fig. 12.6.9(a). The method of characteristics vields a multi-valued solution of the
partial differential equation. This diffienlty is remedied by mtroducing a shock wave
[Fig. 12.6.9(b)], a propagating wave indicating the path at which densities and ve-
locitics abruptly change (i.e.. are discontinuous). On one side of the shock, the
method of characteristics suggests the density is constant p = 4, and on the other
side p = 3. We do not know as yet the path of the shock. The theory for such a
discontinnous solution implies that the path for any shock must satisfy the shack

condition, (12.6.20). Substituting the juinps in flow and density yields the following
equation for the shock velocity:

dﬂ»‘sfq(?l)--q(:%)_42_32‘7
dt N 4-3 - 4 -3 — 5

since in this case ¢ = p2. Thus, the shock moves at a constant velocity. The
initial position of the shock is known, giving a condition for this first-order ordinary
differential cquation. In this case. the shock must initiate at z, = 0at ¢ =0,
Consequently, applying the initial condition results in the position of the shock,

Xy = 7#

The resulting space- time diagram is sketched i F ig. 12.6.9(c}. For any time ¢ > 0,
the traffic density is discontinuons, as shown in Fig. 12.6.10,

. Figure 12.6.10: Density shock wave.

Initiation of a shock. We have described the propagation of shuck waves.
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wave formed immediatety. However, we will now show that shock waves take a finile
time to form if the initial density is contmuous. Suppose that the first shock ocenrs
at t = 7 due to the iniersection of two characteristics initially a distance Az (not
necessarily small) apart. However, any characteristic starting between the two at
t = () will almost always intersect one of the other two characteristics before £ = ».
Thus shocks cannot first occur due to characteristics that are a finite distance Ax
apart. Instead. the first shock actually occurs due to the intersection of neighboring
characteristics (the limit as Az — 0). We will show that even though Azr — 0, the
first intersection occurs at a finite positive thme, the time of the earlicst shock. The
density p is constant along characteristics, satisfving dz/di = (). We will analyze
neighboring characteristics. Consider the characteristic emanating from & = 2y at
t = 0, where p{z,0) = f(x),

and the characteristic starting from « — xg + Az at + =0,
z = c[f(rg+ At +ap 1 Az,

Only if ¢{f(wo)] > c[f(zo + Az); will these charucteristica intersect (in a positive
time). Solving for the intersection point by eliminating & vields

o (ao)]t + 1o = [f{xo + Az)lE + 2o + Az

Therefore, the time ai which nearly neighboring curves intersect is
_ Ax _ 1
cif (zo)] — elflmo + Ax)]  {cflzol] — cff (w0 + Ax)]}/ A
The characteristics are paths of observers following constant density. Then this
equation states that the time of Intersection of the two characteristics is the initial
distance between the characteristics divided by the relative velecity of the two
characteristics. Although the distance in hetween is small, the relative velocity is
also small. To consider neighboring characteristics, the limit as Az — § must be

calculated:

(12.6.22)

Characteristics will iutersect (¢t > 0) only if (d/daoic[f{xa)] < 0. Thus, we conclude
that all neighboring characteristics that emanate from regions where the charac-
teristic velocity is locaily decreasing will always intersect. To determine the first
time at which an intersection (shock) occurs, we must minimize the intersection
time over all possible neighboring characteristics. i.e., find the ebsolute minimum
of ¢ given by equation (12.6.22). This can be calculated by determining where
d*/dxieiflzo)]) = 0.

Shock dynamics. We will show that the slope of the solution is infinite
where neighboring characteristics intersect. Since p(z, ) = p(xp,0), we have

o _ dpOn _ dp [f de,
Bz dzg Ox - dxg drp .
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This has also used the regult

T of partial different;

ation of { 12.6.21) with respect to

O
lz‘k’“ 1_{__d_('1
Or { d.’l,'{)f.

Th'e slope Is infinite gt
pomits of the triplo-
characteristies {the envelo
teristics, the solution is

This shows that the turning

of neighborin g

triple. vy e euvelope of charae.
§ nvelope of the char

acteristics is cusp -« i
5 Cusp-shaped, as indjes ted in Fj
s s c ed. as ated in Fig. 12.6.1]. How ; i
S Wag: 19 )i(lizt:he t-::uap. region) makes no Serise Imtea((Jl“(af;eg'the o oy
X18ts satis L1t} , k o ot .

located e thp‘él‘i\?;“g (.112.?.20), imitiating at the cusp poilzlus¥§ ea}-l"helr.- .

g (202 itiatin, 8 . e shock is
oo e lo act, the triple - valueq solution, obtained by)'c !jhn’
Whitham | 1974 : - ok

mined by cuttin
The reason for

this i that th

&

mtroduced, the number of cars (represented b\ \rfb en [y ey When ks
Presented by the

o o 1t B Parea [ p die) must also be the

cation of the shock uay be deter-

Figure 126 1.

Envelope
e of char-
acteristics, ; Char

te S docus of intersectiong of
neighboring characteristics

Figure 126.12.

Whitham’s
area principle. vk

Zy(t)

12.6.5 Quasi-Linear Example

Consider the quasi-

lineay example

o o _
51 " P53 = ~p, (12.6.23)
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subject to the initial conditions Thus, an explicit solution can be ob
' e obtained

plz,0) = f(x) (12.6.24)

This could model a traffic flow problem (with p a sealed version of the density)
where cars are not conserved but instead leave the roadway (at exits) at a rate
proportional to the density (as though cars oxit the highway to avoid congestion).

2z

Ly = ——— .
14e2

118 i € erist
Note th for each x and here is only one charact ristic x (
O

condition wa; 3
s chosen such that the family of characteristics d because the initial
) wr i dla 0es

The method of characteristics vields From (12.6
6.28), the solution of ooas ti .
S ; the initial not intersect itsclf. )
equation value probl it s :
%% = -2p, (12.6.25) s problem for the partial differential
. , P(mst):ﬂ: 2
along the characterlstic 1 fe 2t .
dz General soluti ‘ L+e
e - solution. il .
7 P (12.6.26) solutions {as with the liiar?vl;as:-hnear_ partial differential equations have
These equations are sometimes written in the equivalent form integrating (12.6.25) and (12.6 ;g)e}?ilé?glon)_ Without specifying initial concii?fral
oM. ) g OIS,
dp dx
__-2_5 = —_7) = dt. (12627) _ ple, t) = cle2
T = (-;16721‘,_*_62.

Sometimes the coupled systerm of ordinary differential equations can be directly
solved. In this case the ordinary differential equation for p may be solved first, and
its solution used to determine the characteristic x. Because of the initia} condi-
tion (12.6.24), we introduce the parameter Xo representing the characteristic that

111 gen(}ral on 118 a[lt e Y 21 l ax h

i € Co t can b ar al"b' a HI1C 1 on o I [ (Iil on

| i ltr r i s
we O rl.a 11} 1[5 gel‘lel‘al SOlutl()n Of (12_6 2-?;) | - . "

bl

emanates from z = Ip (at t = 0). From (12.6.25), along the characteristic, we z = p+ fpe).
ohtaln
ple, £) = plao, 0)e = Jlao)e ™ (12.6.28) EXERCISES 12.6
The parameter Ty is copstant along each characteristic. The solution (density) expo- 12.6.1. Determine the solution p(z, #) satisfyi
pentially decays along the characteristic as time increases. Thus, the characteristic | if p{zr.t) satisfying the initial condition plz,0) =
velocity becomes . ,0) = f()
A -2 «(a) 22 =
By integrating the velocity, we obtain the position of the characteristic: () g% =-3zp (d) 2 — 2tp
- t Bt —_
1 . *12.8.2 mi
1= -if(-’-‘”fo)f — Ef(%) + xq. (12.6.29) | -2. Determine the solution of dp/ot = s . _
. along » = —2t. p, which satisfies p(x,t) = 1 + sinz

since x must equal g at t = 0. Here, the characteristics are not straight lines.
The parametric representation of the solution is obtained from (12.6.28), where 20
should be considered as a fanction of  and t from (12.6.29). Usually an explicit
solution is impractical.

12.6.3. Su N
ppose 5 + o3 =0 with ¢y constant.
* .
(a) Determine p(z,?) if p(z,0) =sinz.

*(b) I e > 0, det i
» determine p(x, §) for z > 0 and
. t
z > 0 and p(0,¢) = g(t) for ¢ > 0. > 0, where p(x,0) = f(x) for

(c) Show that part (b) cannot be solved if ¢, < 0

Explicit solution of an initial value problem. For the nasi-linest
partial differential equation (12.6.23), suppose the initial conditions are

o(2,0) = fiz) = G T -
- Ifup) = a+3p, determine o and 3 such that u(

1n {his casc, from (12.6.29), ibe characteristics satisfy 0. 0) = tmax and 4{pruax) —
1 g 1 (a) What is the flow
== - as i .
T = 5%of + 5% of the density, a function of density? Graph the flow as a function
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| 0 l 2 : - )
56 . 2 What is the corresponding ve- x (a) g% _ %ﬁ _3p ®) %‘% +p§% »
y ity is the flow maxanum!  cor r
(b) flt f};aw}':ts 1i53 the maximum flow (called the capacity}’ @ g% . tzp%g . N g% ) pgf -
ocity? s t
i = 1—p° ?nax)' .
1205, T e B0 i) el ! 12.6.1((). g())lveogg + tzgﬁ‘ = 4p for z > 0 and ¢ > 0 with 20,8} = A(t) and
pLe, = L
51 ific flow problemn
12.6.6. Consider the tra
ap

if the initi itions are
(p) = tmax{l — 0/ Pmax). Solve for pla, t) if the initial conditio
Assume u(p) = Umax / Pma

onds to ; By differentiating the integral [with a discontinuous integrand at z,(t)], derive
) = 8. This corvesp (12.6.20)
_ < 0 and plz,0) =0 for £ > : 6.20).
(@) oo ) ﬁ-'l p:{:;:;?; That results after an infinite line of stopped traffic is
the trafhc sy b )
iarted by a ved light turning green.

vy
Pmax $<0‘<a u:U(p)*_.'g_a_g7
(b) plz,0) =14 == 0<2
0 e where ~ is a constant.
FPmax
e " { pigx z ; 8 (a) What sign should  have for this expression to be physically reasonable?
5
llowing problems:
12.6.7. Solve the fo

@) oo =0 tor o> Oy
4

12.6.14. Consider Burgers’ equation as derived in Exercise 12.6.13. Suppose that
r <0 a solution exists as a density wave moving without change of shape at velocity
ezt V.p(z,8) = flx - V1),
z>1 0 *(a) What ordinary differential equation is satisfied by f7
r.0)=5 z>
pla,0) =5 @ ) (b} Integrate this differential equation once. By graphical techniques show
pLOMY =2 > that a solution exists such that f — P28 T — +oo and f — p; as
. 2,0} = f() T — —ocoonly if py > p;. Roughly sketch this solution. Give a physical
12.6.8. Solve subject to the initial condition p(x,0) interpretation of this result.
(b) gg 4 3$.§.% =4 *{c) Show that the velocity of wave propagation, V, is the same as the shock
! velocity separating p = py from p = pz {occurring if v = Q).
(d) 28 +5t5 =3p _
at 12.6.15. Consider Burgers’ equation as derived in Exercise 12.6.13. Show that the
() %gt + 2 gﬁ- =0 change of dependent variables
— Dbmax bu
umax ¢ !

1STyY (‘r’ )
12.6.9. ])ete[lll][le A patra Ile‘ 1C repre ellta (8]} ()‘ t e 50 l ) Sal E" n 0

flz):

ap 12.6.11. Solve -g’% + (1 + t)gf =3pfort >0 and 2 > —1/2 with p(x,0) = flz) for
TR Mg = 0. x >0 and p(z,t) = ¢(¢) along = = —¢/2.

12.6.12. Consider (12.6.8) if there is a moving shock z, such that a < z,(t) < b.

12.6.13. Suppose that, instead of u = Ulp), a car’s velocity u is

(b) What equation now describes conservation of cars?
(c) Assume that U{p) = uman(1 — £/ Pmax). Derive Burgers’ equation:
z>0

dp 20 10p 0%
<1

pmax

introduced independently by E. Hopf and J. D. Cole, transforms Burgers’
N . - . . 2 N
equation into a diffusion equation, %? + umx%f = u-‘?ﬁ?. Use this to solve




Chapter 12. Method of Characterisics

flr) for —x < T < 0. (In Whitham

ically analyzed as
is € ol an be asymptotically analy
A OmAl it s 1 that this exact sohtion can be as) np , R
1974] it is sh;w rll;t:?s method for cxponential integrals t(:i shfo\;r1 t};&:}teﬂsticl
o soetio = i ' characte ‘
X rouaxlzlli;:g';he slz)‘mtion obtained for v = 0 using the method o
app

with shock dynamics.}

the injtial value problem p(z, 0 =

( ; 0 and
it ' sy 5,0} = g for x <
at the initial traffic density is p(z, . = om
12.6.16. Suppose Elid ‘;: >eU, Consider the two cases, po < p1f dnc.l 51 ; S; .
P(ﬁ"; ?1) ?tﬁ; pieceding cases 1s a density shock necessary? Briefly
which of the . |
12.6.17. Consider a traffic problem, with u(p) = Hmax(l — 0/ Pryax)

plx, 1) if

. Determine

Loz <0
{b) P(xs 0.) = { 2{’1[1;.«.:{ >0

Erriax T < O

* {2 p(r,U):{ Spse 550

— p?{pt,). Determine the traffic density p

12.6.18. Assume that ‘Lb(,U\) 7 Umax (] for z > 0.

(for t > 0} if p(z,0) =, for « < 0 and p{x,0) = p2

ssume that pa < p1.
(a) Assume that p > o1 *(b) Assume o

12.6.19. Solve the following problems:

4 r<0
(a) $5+ P =0 P(I!O)Z{g £>0
3 el
(b) %%+4p%§=0 P'\iﬁvu)-{ 2 e>l
4 <0
. 4 ey ’k
: 9 g, =4 2 O<u<
(©) g3 =0 pED 1>
2,0 =2 z>¢0
an 2 _ g for x> 0only ol -5 t>»0
(d) 22 | Bp3k — O p(0,1)

i linear
12.7 First-Order Non .
Partial Differential Equations

12.7.1 Derive Eikonal Equation from Wave Equation

E« TSI h‘]‘t we 5]9]_‘ he LW - 1IMEns10] al wave © u th
o) p O sv' COLBIAE the 1 q_ a T

PE L, PR PE 27

FT el

Plane waves and their reflections welkrle a.ne
exist under many circumstances. If the co

avel
alyzed in Section 4.6. Nearly pl@e Y:)wl
ficient ¢ is not constant but vanes s

127, birst-Urder Nonfinear Plikg a6

then over a few wave lengths the wave sees nearly constant ¢. However, gver long
distances (relative to short wave lengths) we may be interested in the effects of
variable ¢. Another situation in which uearly plane waves arise is the reflection of a
plane wave by a curved boundary {or reflection and refraction by a curved interface
between twu medias with different indices of refraction). We assume the radius of
curvature of the boundary is much longer than typical wave lengths. In many of

these situations the temporal frequency w is fixed (by an incoming plane wave),
Thus,

E= Az, y)e ™t (1272
where A(x,y) satisfies the Helmholtz or reduced wave equation:
?A 824
—_ 2 — \2 R ey -
WA = (o +9pe) (12.7.3)

Again the temporal frequency w is fixed {and given) but ¢ « c(a, y) for inhomoge-
neous media or ¢ = constant for uniform medja,

In uniform media (¢ = constant), plane waves of the form b = Ayet(Frothay-—wt)
or

A = Ape'lrzikay) (12.7.4)
exist if
w? = (k2 4 k2. (12.7.5)
For nearly plane waves, we introduce the phase w(x,y) of the reduced wave
equation;
A(r,y) = Rz, y)e"*=9), (12.7.6)
The wave numbers k; and # for uniform media are usually called p and g respec-
tively and are defined by
du
= 7.7
P i {(12.7.7)
e
= - 12.7.8
g 5y (12.7.8)

As an approximation {(which can be derived using perturbation methods), it can
be shown that the (slowly varying) wave numbers satisfy (12.7.5), corresponding to
the given temporat frequency associated with plane waves,

w? = (p? + ). (12.7.9)

This is a first order nonlinear partial differential equation (not quasi-linear} for the
Phase u(xz, ), known as the eikonal equation

(12.7.10)
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quency and ¢ = c(:r.,;y) for 12?0225221?;2
media or ¢ = constant for u1.1'1f01'1mt Cl)nzdiarfhio:;g;ilrirtlis;i ;h; (1:3;3); o eqpations
n(j""y) . irémdr:f?isggs():;:; as tci;e transport equations, which describe the
S::;(;zav:foannéﬂergy of these nearly plane waves.

where w is a fixed reference temporal fre

. . di
12.7.2 Solving the Eikonal Equation in Uniform Media

and Reflected Waves

e I8¢ St X e o I e klb a e(l O | i. (] O 1 lEO ed
Th ].€‘ el amp f t el Tl ua 33 ( 2. 1 ) CCurs 1in UL ro I 1a
5 p

(¢ = constant):
2 ‘ 2 wg
Jz dy c

s. Rather than solve for u(z,y) directly,

(12.7.11)

we will show
where w and ¢ are constant

e === = g% e consider
gu . Thus, we consid
that it is easier to solve first for p = 5 and ¢ = 7y
4+ = —-—2 (12.7.12)
o2

ith r ields
Differentinting {12.7.11) or (12.7.12) with respect to  yi¢

O i—a—q-z[).
p55+q8$

si-1i tial differential equation
i st-order quasi-linesr par
Since 91 — 5L, p satisfles a first

(12.7.13)

a 1 .i Y O Vel] I) e cnay € B 12-6.])!
Equ tlUI .

(12.7.14)

f ll ere 18 a l)()ull ary CO d t | ‘ en . !.4 € he (]1\8(1 fOI' p Slnce
I d 1l 101 10 p, h (12 i. ) an =
ek

g=t\/ — P i tant along €
+ 1 2.7.14) shows that p s cons :
2 (from (12.7.12). Since (1
& v

ChaIa.CteIISUC lt albU :[ 110WS fl'OIn- (12 i 1-4 tl}la't e
. 1 tl Way p can Ube detel‘IHIHG d- HOWB VET, gerﬂ p - ¥ ]n.teglatvlllg f()l‘ U
i1e n 118 535

straightforward. - ' o o 1 instoad
mt\(?:\?m}ll)let&elc}{ifferengtiated the eikonal equation with respect
e hav

differentiate with respect to y we obtain:

dp . 9 _ 4
Ly g—=0
Pay qay

12,7, First-Urder Nonlinear Pk 565
A first-order qu

. 3 p)
using =% = e

asi-linear partia] differential equation for g can be obtained by again

dq g :
— +g— =0 12.7.15
P T 95, ( )
Thus, 4;”’ = %9- = %ﬂ » which when combined with (12.7.14) yields the more general
result
dy dp dg
P g 0 0
However, usually we want to determine u so that we wish to determine how u
varies along this characteristic: du = g—;‘-dz + gJydy = pdz + qdy = pz‘% + qQ%‘i =
(p* +¢*)4E = f;—ip"i, where we have used (12.7.16) and (12.7.12). Thus, for the
eikonal equation

dr _

(12.7.16)

dr _dy dp dg du

—=— = == 12.7.17

P g 0 0 wr/e? ( )
The characteristics are straight, lines since p and g are constants along the charac-
teristics.

Reflected waves. We consider an elementary incoming plane wave iR &-wt)
where ky represents the given constant Incoming wave number vector and where
w = clkr|. We assume the plane wave reflects off a curved boundary (
trated in Figure 12.7.1} which we represent with a parameter T as x = 2o{7) and
¥ = yo(T). We introduce the unknown reflected wave, Rz, t)eruimwle—it and we
wish to determine the phase u(z,y) of the reflected wave. The eikonal equation

as illus-

2
5 W
p‘2+92:_c?:“c112

can be interpreted as saying the slowly varying reflected wave number vector {p, q)
has the same length as the constant incoming wave number vector (physically the
slowly varying reflected wave will always have the same wave length as the incident
wave). We assume the boundary condition on the curved boundary is that the total
field is zero (other boundary conditions yield the same equations for the phase):
0 = HRr®-wt) | poy fleinley)e—ivt Thus, on the boundary the phase of the
incoming wave and the phase of the reflected wave must be the same:

u({xg. yo) = ki - zq. (12.7.18)

kg
z = zy(7)
¥=yo(m)

Figure 12.7.1: Reflected wave from curved boundary.
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Taking the derivative of (12.7.18) with respect to the parameter T shows that

Sudre  Budyo dxo dijo dxy dxg
dudsy | Budye _ 420 WO g, — = kp = 12.7.19
oy P A T = (12719)

where we have noted that the vector {p,q) is the unknown reflected wave number
vector kg (because p and g are constant along the characteristic). Since o /dr is
a vector tangent to the boundary, (12.7.19) shows that the tangential component of
the incoming and reflecting wave numbers must be the same. Since the magnitude
of the incident and reflecting wave number vectors are the same, it follows that the
normal component of the reflected wave must be minus the normal component of
the incident wave. Thus, the angle of reflection off a curved boundary is the same
as the angle of incidence. Thus at any point along the boundary the constant value

n for the reflected wave. Because g = £ 15_ — p? there are two

of p and g is know
solutions of the eikonal equation: one represents the incoming wave and the other

(of interest to us) the reflected wave.
To obtain the phase of the reflected wave, we st solve the characteristic

equations (12.7.17) for the eikonal equation with the boundary condition specified
= |ks\” is a constant, the differential

by (12.7.18). Since for uniform media =’;—
\k 2
= Lg—, can be integrated (since

equation for u along the characteristic, % = ‘—3—-}1;
p is constant) using the boundary condition to give

2
i {z — o) -+ k1 To

p
along a specific characteristic. The equation for the characteristics p(¥ — yp) =
g{z — 20) corresponds to the angle of reflection equaling the angle of incidence.
Since p? + ¢ = |k 7|7, the more pleasing representation of the phase {solution of the
cikonal equation) follows along a specific characteristic: '

2
P

u{z,y) =

w(z,y) = plz — w0} +aly — yo) -+ k1 To, (12.7.20)

where u{xg, yo) = K1 To is the phase of the incident wave on the bhoundary.

12.7.3 First-Order Nonlinear Partial Differential Equations’

Any first-order nonlinear partial differential equation can be put in the form

(12.7.21

As with the eikonal equation example of the previous subsection, we show
p = %& and ¢ = -g—‘; solve quasi-linear partial differential equations, and hen
(12.7.21) can be solved by the method of characteristics. Using p and g gives

F(sc,y, U, P, Q) =10. (1272
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Takine t . o
aking the partial derivative of (12.7.22) with respect to b
z, we obtain

F5+Fup+Fp££+F % =0
) dx “9x 7
where we use the subscri i

wh ; bscript notation for parti tvati

A A ;iaralal derivatives, For example F, =

differential equation for p: 5t — B, We obtain a quasi-linear partjal

ap 7
F—= r
p8x+any—LFn_Fup.
T

hus, the method of characteristies for p yields

dz  dy

E,  F,

dp

—F. - Fp’ (12.7.23)

l]a]l)' ta.kl t}le pa-lt al dEI Vat Ve Of 2- l . W t}l re [)eCt tO ‘161
SIIII s I]g 1 1 1 (l 22) 1 S
y} ds

Fy+Fuq+Fp@+FQg:()_

Here £ .
ere 91 = b y4 i-1i
;;% 5y vields a quasi-linear partial differential equation for g:
dq 3
ot 9 _ y
pax+anyn—F‘y—Euq.

e acte rect is =] i
- ion Is the same as in (12. 7 .23), so that (12. 7 .23) is amended
dr dy

dp d
F, F, 4

-F.-Fp —F,-Fq (12.7.24)

IIl ()Ide[ tO SO]\/ We W i de Ve a (hffe = ]tla]. equ t, on Ior u y
e fOI‘ U, ant Q Il rey atl f ( )
3;',

the characieristics: wlone
du =8y . 20 d
3 =—dy = pdx + qdy = pF, “r dy
T ED y=rp pr+quFq:(pr+qu)%£'
he complete system to solve for p, ¢, and wu is p
d_dy_ i ;
F = —P_‘ — = pr— u
»  Fo z~ Fup —Fy—F.q  pF,+qF, (12.7.25)






