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11.3.5. Consider 

au 
at = 

a 2 u 
k dx' + Q(:r, t) u(x,O) = f(x) 

au 
ox (O,t) = A(t) au (L i"'1 ,t;

C.T 
= B(t), 

(a) Solve for	 the appropriate Green's function using the method of eigen­
function expansion. 

(b)	 Approximate the Green's function of part (a), Under what conditions is 
your approximation valid? 

(c) Solve for the appropriate Green's function using the infinite space Green's 
function. 

(d) Approximate the Green's function of part (c). Under what cOlluitiulls is 
your approximation valid? 

(e)	 Solve for u(x, t) in terms of the Green's function. 

11.3.6.	 Determine the Green's function for the. heat equation subject to zero bound­
ary conditions at x - 0 and x = L by applying the lllp.thod of eigenfunction 
expansions directly to the defining differential equation. [Hint: The answer is 

given by (11.3.35)·1 

Chapter 12 

The Method of 
Characteristics 
for Linear and Quasi-Linear 
Wave Equations 

12.1 Introduction 

In previous chapters we Obtained cert.ain results concerning the one _dimensional 
wave equation, 

8 2 u ') D2,U 

Ot' =c- dx2 ' (12.1.1) 

subject t.o the initial condit,ions 

,,(x.O) = f(:r)	 (12.1.2) 

au
 
at (:r.O) = g(:r). (12.1.3)
 

For a vibrating string with zero displacernent at :r = 0 and x = L we obtained a 
~omewhat complicated Fourier .sine .serie8 solution by the method of separation of 
variables in Chapter 4: 

. ~ . mrx ( mret .mrct)
u(:r, t) = L sm L CLrL cos --y;- +bn S111 L . (12.1.4) 

n=l 

Further analysis of this solution [see (4.4.14) and Exercises 4.4.7 and 4.4.8j shows 
that the solution can be represented as the Stun of a forward and backward moving 
wave. In particular, 

x+d 
fix - et) + fix + ct + 2. g(xo) dxo,) 1u(x, t) = 2 2e x-c'	 (12.1.5) 

525 
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where f(x) and g(x) are the odd periodic extensions of the functions given in (12.1.2) 
and (12.1.3). We also obtained (12.1.5) in Chapter 11 for the one- dimensional wave 
equation without boundaries, using the infinite space Green's function. 

In this chapter we introduce the more powerful method of characteristics to solve 
the one- dimensional wave equation. We will show in general that u(x, t) = F(x­
ct) + G(x + ct), where F and G are arbitrary functions. We will show that (12.1.5) 
follows for infinite space problems. Then we will discuss modifications needed to 
solve semi-infinite and finite domain problems. In Section 12.6, the method of 
characteristics will be applied to quasi-linear partial differential equations. There 
shock waves will be introduced when characteristics intersect. 

12.2	 Characteristics For First-Order
 
Wave Equations
 

12.2.1 Introduction
 
The one-dimensional wave equation can be rewritten as
 

[)2 U	 iJ2 u -a2 - c2 
_[)2 = o. 

t x 

(12.2.1) 

A short calculation shows that it can be "factored" in two ways: 

(!!.... + c!!....) (iJU _ cau) = 0 
iJt ax at ax 

iJ a)	 (au au)
( at - c ax 1ft + c iJx = 0, 

since the mixed second~derivative terms vanish in both. If we let 

(12.2.2)au iJ':\w=lft-c 
axJ 

(12.2.3)au au 
v=lft+ciJx' 

we see that the one _dimensional wave equation (involving second derivatives) yieldS 

two first-order wave equations: 

(12.2.4)ow aw 
tit+cax =0 

12.2. First-Order Wave Equations 

aV_Cav=o. (12.2.5)
iJt ax 

12.2.2	 Method of Characteristics for First-Order 
Partial Differential Equations 

We begin by discussing either one of these simple first-order partial differential 
equations: 

aw aw 
(12.2.6)tit +ca;: = O. 

The methods we will develop \vill be helpful in analyzing the one- dimensional wave 
equation (12.2.1). We consider the rate of change of w(.r(t), t) as measured by a 
moving observer, x = x(t). The chain rule l implies that 

d aw dxiJw 
(12.2.7)-dw(x(t), t) = -iJ + -d -:;-.t t t U.r 

The firot term aw / iJ t represents the change in w at the fixed position, while 
(dx/dt)(oW/al') represents the change due to the fact that the observer moves 
into a region of possibly different w. Compare (12.2.7) with the partial differential 
equation for w, equation (12.2.6). It is apparent that if the observer moves with 
velocity C, that is , if 

~
 (12.2.8) 

~
 
then 

w 
- = O.	 (12.2.9)
dt[B


Thus, w is constant. An observer moving with this special speed C would measure 
no changes in IV. 

Characteristics. In this way, the partial differential equation (12.2.6) has 
been replaced by two ordinary differential equations, (12.2.8) and (12.2.9). Inte­
grating (12.2.8) yields 

I (12.2.10)x = ct + Xn, I 

1 Here d/dt as measured by a moving observer is sometimes called the substantial derivative. 
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the equation for the family of parallel characteristics2 of (12.2.6), sketched in 
Fig. 12.2.1. Note that at t = 0, x = .TO. w(x, t) is constant along this line (not 
necessarily constant ever,ywhere). w propagates a.<; a wave with wave speed c 

[see (12.28)J 

I 

~ Figure 12.2.1: Characteristics for the 
I first-order wave equation. 

~~~ ~~ L /~- " 
"" 

General solution. If w(x, t) is given initially at t = 0, 

(12.2.11)w(x,O) = P(x), 

then let US determine 'W at the point (x, t). Since w is constant along the charac­

teristic) 
w(x, t) = w(xo, 0) = P(xo). 

Giveu x and t, the parameter is known from the characteristic. Xo = x - ct, and 

thus 

(12.2.12)w(x, t) = P(x - ct), 

which we call the general solution of (12.2.6). 
We can thiuk of P(x) as being an arbitrary function. 1b verify this, we substitut.e 

(12.2.12) back int.o t.he partial differential equation (12.2.6). Using the chain rule 

Ow dP a(x - ct) dP 

OJ' = d(x - el) Ox d(J' - ct) 

and Ow dP O(x-d) dP 
_= . . =-r 
at d\x - et) aI . d(x - cf:)' 

Thus, it is verified that (12.2.6) is "'t.isfied by (12.2.12). The general solution of 
a first-order partial differential equation contains an arbitrary function, while the 
general solution to ordinary differential equations contains arbitrary constants. 

Example. Consider ow ow
_+2-=0. 
at ax 

subject to the initial condition 

x<O 
O<x<lw(x,O) = { ~x 

--0--------
x>!. 

:.:: A characteristic is a curve along which a PDE reduces to an ODE. 

• a.:i. First-Urder Wave Equations 

\iVe have shown that w is constant along' the characteristics x - 2t = constant, 
keeping its same shape moving at velocity 2 (t.o the right.). The important charac­
teri'5tics, x ~ 2t + 0 and x = 2t + 1, as well as a sketch of the solution at various 
times, appear in Fig. 12.2.2. w(x, t) = 0 if x > 2t + I or if x < 2t. Otherwise, by 
shift.ing 

w(x,t) =4(x - 2t) if 2t < x < 2t+ 1. 

To derive this analytic solution, we Use the characteristic which starts at x = xo: 

X = 2t +xu. 

Along this characteristic, w(x, t) is constant. If 0 < Xo <.: 1, then 

w(x, t) = w(xo, 0) = 4xo = 4(x - 2t), 

as before. This is valid if 0 < Xo < 1 or equivalently 0 < x _ 2t < 1. 

w=o ~t=3
~~"'-t=2 

- ~ t=l 
t=O 

Figure 12.2.2: Propagation for the first-order wave equation. 

Same shape. In general w(x, t) = P(.T - et). At fixed t, thc solution of the 
first-Order wave equation is the same shape shifted a distance ct (distance = velocity 
times t.ime). We illustrate this in Fig. 12.2.3. 

t=o t = 11 

x=o x = ell 

Fignre 12.2.3: Shape invariance for the first-order wave equation. 

Summary. The method ofcharacteristics solves the first-order wave eqnation 
(12.2.6). In Sections 12.3-12.5, this method is applied to solve the wave equation 
(12.1.1). The reader may proceed directly to Section 12.6 where the method of 
characteristics is described for quasi-linear partial differential equations. 
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EXERCISES 12.2 

12.2.1.	 Show that the wave equation can be considered as the following system of 
two coupled first-order partial differential equations: 

au au ow ow 
--c- ~ w -+c- - O. 
a t ax at 01' 

*12.2.2. Solve 
Ow aw
--3-=0 with w(:r,O) = cos I. 
at ax 

12.2.3. Solve 
ow ow 
-+4-=0 with w(O. t) = sin3t. 
f) t a.r. 

12.2.4. Solve 

ow aw
-+c-=O (c > 0) for x > 0 and t > 0 if 
at ax 

w(x. 0) ~ f(x) x>p w(O. t) h(t) t > O. 

12.2.5. Solve using the method of characteristics (if necessary, see Section 12.6): 

(a) D.w + c~w = e'x with W(I, 0) = f(x)
dt o:r: 

*(b)	 ~"( + x~:: = 1 with 11I(x, 0) = f(x} 

(c) ~"( + t%'i- = 1 with w(x, 0) = f(x) 

*(d) ~~ + 3t~:: = w with w(:r, 0) ~ f(x) 

*12.2.6. Consider (if necessary, see Section 12.6): 

au {)u
-+2u-=0 with u(x,O) = f(x).
at ax 

Show that the characteristics are straight lines. 

12.2.7. Consioer Exercise 12.2,.6 with 

1 x<O 
u(x,O) = f(.r.) = { 1 + xlL O<x<L 

2 x> L. 

(a) Determine equations for the characteristics. Sketch the characteristics. 

(b) Determine the solution u(x,t). Sketch u(x, t) for t fixed. 

*12.2.8.	 Consider ExefClse 12.2.6 with
 

1 x < 0

u(x,O) = f(I) = { 2 .E > O. 

Obtain the solution u(x, t) by considering the lirrlit as L ~ 0 of the charac­
teristics obtained in Exercise 12.2.7. Sketch characteristics and u(x, t) for t 

fixed. 

.lL,.u.	 Vllt:-1JJ11H:;1J~lUllUl vrctvt: ~LJua"lUl1 
vve 

12.2.9.	 As motivated by the analysiH of a llloving observeL llHtke a change of in­
dependent variables from (x, t) to a coordinate system moving with velocity 
c, t.~, I'), whf're ~ = 2' - ct and t' = ( in order to solve (12.2.6). 

12.2.10. For the first-order (;quasi-linear" partial differential equation 

ij" au a-a + be> = C,x uy 

where a, o. and c are fllnction~ of x, y and 11" show that the method of 
characterititics (if necessary, see Section 12.6) )rield.;; 

dx dy du
-;;=b"=-;; 

12.3 Method of Characteristics 
for the One-Dimensional Wave Equation 

12.3.1 Introduction 

From the one - dimensional wave equation, 

a2 u a'u --c2_-0 (123.1)at2 . ih,2 - , 

we derived two first-order partial differential el{\mtions, () w!Dt + co 11.' / ax = 0 and 
iJ v/D t - ca,,/ax = 0, where u = iJ u/a t - co u/ax and v = iJ uliJ t + co u/ax. We 
have ShO\\'1l that w remains the same shapE' moving at ve10rity c: 

all au 
w = - - c- = P(x - et).	 (12.3.2)at ax 

The problem for V is identical (replace c by -c). Thus, we could have shown that 
u is trl'lJlslRted unchanged at velocity e 

au au 
v = - + C-.~- = Q(.r + et).ax .	 (12.3.:J)at 

By combining (12.3.2) and (12.3.3) we Obtain, for example, 

au 1
'" = -[P(x - et) + Q(x + et)],ut 2 

and thus 

u(x, t) = F(x - et) + G(x + ct), (123.4) 
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where F and G are arbitrary functions (-cF' = tP and cG' = tQ)· This result 

was obtained by d'Alembert in 1747. 
The general sulutiull is the sum of F(x ct)l a wave of fixed shapP moving to 

the right with velocity c, and G(x + eI), a wave of fixed shape moving to the left 
with velocity -c. The solution may be sketched if F(x) and G(x) are known. We 
shift F(x) to the right a distance et and shift G(x) to the left a distance ct and add 

(12.3.6)

(12.3.5) 

the two. Although each shape is unchanged, the sum will in general be a shape that 
is changing in time. In Sec. 12.3.2 we will show how to detcrmine F(x) and G(x) 

from initial conditions. 

Characteristics. Part of the solution is constant along the family of char­

acteristics x - ct = constant, while a different part of the solution is constant along
 
;l' + ci = constant,. For the one-dimensional wa,ve equation, (12.3.1), there are two
 
farnilies of characteristic curves, as sketched in Fig. 12,3.1.
 

x-ct=a
",+cl=;3 ~ 

~ 
/XX><IX><x.>13 - - x 

'" 
Figure 12.:3.1: Characteristics for the one - dimen::;ional wave equation. 

12.3.2 Initial Value ProbleIll (Infinite Domain) 

[n Sec. 12.3.1 we showed that the general solution of the one - dimellBional wave 

equation is 

n(x, t) = FCT - r1;) + G(x + eI). 

Here we -will determine the arbitrary functions in order to satisfy the initial condi­

tions: 

U(x.O) = fix) -oo<x<oo 

ou( .) - 00 < x < 00.at x,OJ = g(x 

These initial conditions imply that 

fix) = F(x) + G(x) 
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g(x) = _dF + dG (12.3.9) 
c dx dJ' 

We solve. for G(X) by eliminating F(x); for example, adding the derivative of (12.3.8) 
to (12.3.9) yields 

dG = ~ (df + g(X)). 
dx 2dx c 

By integrating this, we obtain 

G(x) = -1 fix) + -1 1,' g(7) d7 +k (12.3.10)2 2c () , 

1 1 1,"F(x) = -fix) - ---: g(E) d7 -k, (123.11)2 2, 0 

where the latter equation was obtained from (12.3.8). k can be nel(lectcd since 
u("',I) b obtained from (12.3.5) by adding (12.3.10) and (12.3.11) (with appropriate
shifts). 

Sketching technique. The solution u(.1', t) can be graphed based on 
(12.3.5) in the following straightforward manner: 

1. Given f(x) and g(x). Obtain the graphs of 

1
2f (x) and 2c11X 

g(7) dE 
• 0 ' 

the latter by integrating first. 

2. By addition and subtraction, from F(x) and G(x); see (12.3.10) and (12.3.11). 

3. lraJlslate (shift) F(x) to the right a dbtance ct and G(x) to the left ct. 

4. Add the two shifted fUllctions, thus satisfying (12.3.5). 

Initially at rest. If a vibrating string is initially at rest [8n/D I(x. 0) = 
g(x) = 0], then from (12.3.10) and (12.3.11) F(x) = G(x) = tf(x). Thus. 

1 
,,(x, t) = 2[J(x - eI) + f(x +ct)]. (12.3.12) 

The initial condition nix, 0) ~ f(x) sphts into twu parts; half moves to the lett and 
half to the right. 

Example. Suppose that an infinite vibrating string is initially stretched into the 
shape of a single rectangular pnlse and is let go from rest. The corresponding initial 
conditions are 

1 Ixl < h
u(x, 0) = fix) = { 0 Ixl > h. 

L. ___ 
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and aui)t(X, 0) = g(x) ~ O. 

The solution io given by (12.3.12). By adding toget.he.r these two rectangular pulses, 
we obtain Fig. 12.3.2. The pulses overlap until the left end of the right-moving one 
passes the right end of the othf';f. Since each is traveling at :::;peed c, they are moving 

1 \ 1- ­
1
 1::1 r\ !flljt=f,!L~IJ~IIL . 

02 

1 J ~L ~]l 't-~ ,~_ 10o~___1 -~~~ - ~' ---- - -------- 8~~_ 6 ­
~-<~. ~ ~-,-- 4

8 6 ~__ --' ~ __ 
4 -~~~_~ 2 

2 0 0 
t x 

1 
1 

081 
6 

0_ 1_ 

0.4 

0.2 j 
o 

10 

o 0 x 

J 1 
------h tok 

h 

___..J 9
, 

e Odd/e 
-h-et -h+ct: h-et h+et 

~ 1/2.c:l III e t>hle 
-h-et h-ct ',-h+et h+et 

Figure 12.3.2: Initial value problem for the one - dimensional wave equation. 

12.:3. Une-lJimensionaJ Wave f!;quation 

apart at velocity 2c. The ends are initially a distance 2h apart, and hence the time 
at which the two pulses separate is 

distance 2h ht= =_=_ 
veioelty 2c c 

Important characteristics are sketched in Fig. 12.3.3. F stays constant moving to 
the right at velocity c, while G stays constant moving to the left. From (12.3.10) 
and (12.3.11) 

Ix] <hF(x) = C(x) = { ! Ixl > h. 
This information also appears in Fig. 12.3.3. 

t 

x+d=h I 
x - ct = -h 

x+cf= -h 
x-ct=hF~ol 

G~OI 
t> hie 

F~O F~ 1/2 (x t)

F=O G ~ , .I g~o
t/2 ,_o~,O 
G~O'__ F_~ 1/2 ", F~ 0
F=G=o----~--G~11/2' _~---.--.'----G=O

-h F=G=lI2 . _ '.. t<hlc 
. h F_G-- x 

- ~O 

Figure 12.3.3: Method of characteristics for the one- dimensional wave equation. 

Example not at rest. Suppose that a.n infinite otring is initially horizontally 
stretched with prescribed initial velocity 1'1."\ follows: 

U(x,O) = f(.r) o au I Ixl < hot (x,O) = g(x) { o Ixl > h. 

In Exercise 12.3.2 it is Shown that this corresponds to instantaneously applying 
a constant impulsive force to the entire region Ix) < h, fiR though the string is 
being struck by a broad ([xl < h) hammer. The calculation of the solution of the 
wave equation with these initial conditions is more involved than in the preceding 
example. From (12.3.10) and (12.3.11), we need J~' g(x) dx, representing the area 
under g(x) from 0 to x: 

r { -h x <-h 
2cG(x) = -2cF(x) = io g(x)dx = x -h < x < It 

o h x> h. 

Thc solut.ion u(x, t) is the SUIn of F(x) shifted to the right (at velocity c) and G(x) 
shifted to the left (at velocity c). F(x) and G(x) are sketched in Fig. 12.3.4, as is 
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I ,--', I -\i\ 
~' 

~,~ .--------1]<..1=14 
02 .. I I \~ hic<t=ts 

'	 '--LiN, - ,.hj, 

~- -I---:-Ll T:-N--- -~_ 11<1 = "2<h/c 
____ ":--~--t----i-I--!--:! O<f=i1<h!cI w 

-~-------:r~::P~H7"-t~t =0 

o 0	 ------­

Figure 12.3.4: Time evolution for a struck string. 

their ::;hifted sum. The striking of the broad hammer causes the displacement of the 
string to gradually increase near where the hammer hit and to have this disturbance 
spread out to the left and right as time increase8. Eventually, thp, string reaches an 
elevated rest position. Alternatively, the solution can be obtained in an algebraic 
way (see Exercise 12.3.5). The characteristics sketched in Fig. 12.3.3 are helpfnl. 

12.3.3 d'Alembert's Solution 

The general solution of thE' OIle - dimensional wave equation can be simplified some­
what. Substituting (12.3.10) and (12.3.11) into the general solution (12.3.5) yields 

d 
fix + et) + fIx - ct) + "':'lc1x 

+ g(x) dx -l,-d g(x) dXJl 
'u(x,t) = 2 2c	 (J(J 

or 

) _ fIx - ct) + fix + ct +;-: g(x) dx. (12.3.13)
u(x, t) - 2 2(. x-d1 f·'+d::J 

known as d' Alembert's solution (previously obtained by Fourier transform meth­
ods). It is a very elegant result. However l for sketching solutions often it is easier 
to work directly with (12.3.10) and (12.3.11), where these are shifted according to 

(12.3.5). 

Domain of dependence and range of influence. The importance 
of the characteristics x - ct = constant and x + ct = constant is clear. At position x 
at time t the initial position data are needed at x ± 1....1;, while all the initial velocity 
data between x - ct and x + ct is needed. The region between x - et and x + ct 
is called the domain of dependence of the solntion at (x, t) as sketched in Fig. 
12.3.5. In addition, we sketch the range of influence, the region affected by the 

initial data at one point. 
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(x,t) = Xu - ct x =x	 xo + ct 

tf tr 

( , x v xx-ct x+ct Xo
(a) (h) 

Figure 12.3.5: (a) Domain of dependence; (b) range of influence. 

EXERCISES 12.3 

12.3.1.	 Suppose that ulx, t) = F(x - ct) + G(x + et), where F and G are sketched 
in Fig. 12.3.6. Sketch tIle solution for various times. 

~~~L L __ 
x=o x=2 

Figure 12.3.6 

--~~~ 
x=O x=l 

12.3.2.	 Suppose that a stretched string is unperturbed (horizontal, u = 0) and at 
rest (au/at = 0). If all impulsive force is applied at t = 0, the initial value 
problem is 

a2 u a'u . 
- = c-.- + a(x)5(t)
at" ox' 

u(x, t) = 0 t < O. 

(a) Without using explicit solutions, shm\i that this is equivalent to 

a'u a'u -- =c2 __ t > 0 
at' dx' 

subject to u(x, 0) = 0 and ~;' (x, 0) = a(x). 

Thus, the initial velocity a(x) is equiva.lent to an impubive force. 

(b) Do part (a) using the explicit solntion of both problems. 

12.3.3.	 An alternative way to solve the one-dimensional wave equation (12.3.1) 
is based on (12.3.2) and (12.3.3). Solve the wave equation by introdncing a 
change of variables from (x, t) to two moving coordinates (e, I}) one moving 
to the left (with velocity -c) and one moving to the right (with velocity c); 

~ = x - ct and '] = x + ct. 
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*12.3.4. Suppose that u(x, t) = F(.r - el). Evaluate 

(ll) ~~ (0, t)
(a)	 ~~ (x, 0)
 

Dptennine analytic fonnula::; fora(x 1 t) if
12.3.5. 

U(X,O) = f(.r) o 
D·u	 ITI < " 
iJt(x,O) = g(.r) {~ 1.1'1> h. 

(Hint: Using charaeteristies a~ sketched in Fi.g. 12,3,3, show there are two
 
distinct regions t < hie and t > hie, In each, show that the solution h8.-':I five
 

different forms: depending on x ,I
 

12.3.6. Consider the three ~ dimensional wave equation 

a2u 2 2 
iJt' = c \I u. 

Assume that the solution is spherically symmetric, so that 

\I'll = (l/rl)(D/Dp)(p'Du/3p).
 

Make the transformation Jl = (1/ p)w(p. t) and verify that

(a) 

a2 w oj 8 2 
1lJ 

Dt' = c- Dp' .
 

Shuw that the mo~t genpral spherically symmetric solutlon of the wave
 
(b) equation COIl::iists of the ~um of two spherically synunetric waves, 

moving outward at speed c and the other inward at speed c. 

decay of the amplitude. 

12.4 Semi-Infinite Strings and Reflections 

We wiH solve the one- dimensional wave e4.uation on a semi-infinite interval, x > 0: 

1 D2u a2 u II 
PDE: I -:C-2 = c'-a231 x 

u(X,O) = f(x)lCl 

3u
at(x,O) = g(x).lC2: 

one 
Note the 

12.4. Serni-Infinite Strings and Reflections 

A condition is lH'ct'ssary at the bounclary J.." = O. \Ve SUppOSf' that til{' string is fixen 
at .r = 0: 

(12.4.4)DC: Iu(O, I) = 0·1 

Alt.hongh a Fourier sine transform can be Ilsed, we prefer to indicate how to use the 
general solution and the method of characteristics: 

u(:r, t) = F(x - ct) + G(T + ct). (12.4.5) 

As in Sec, 12.3, the illiti<11 conditioll::; are satisfied if 

1 l'G(T) -1 fl.r) + - g(x) dx .r > 0 (12.4.6)
2 2c (I 

1 1"G(.r) -1 f(x) - - g(x) dx x> O. (12.4.7)
2 2c 0 

Howevpr. it is very important to note that (unlike the case of the infinite string) 
(12.4.6) awl (12.4.7) art' v"lid only for T > 0; the arbitrary functions an' only de­
tennined from tIll' initial conditions for po:-:;itive argument.... In the general solution, 
G(L' + d) requires only positive argument.1:; of G (since x > 0 and t > 0). On the 
other h'1nd, F(.T - ct) requires po~itive arguments if .T > ct but rp<1uires negative 
arguments if.r < ct. As indicat.ed by a space-time diagram, Fig. 12.4.1. the in­
formation that. there is a fixed end at x = 0 travpls at a finite velocity c. Thus, if 
:r > ct, the string does not know that. there is any boundary. In this case (.1' > ctL 
the ,olntion is oblained as before [using (12.4.6) and (12.4.7)], 

_	 f(.r - ct) + f(·T + et) + ~ 
.dd 

g(x) dx, x> ct, (12.4.8)u(.r, t) - 2 2c . [ .1'-('t 

d'Alembert's solution. However, here thb is not valid if x < ct. Since x + ct > 0: 

G(l: + et) = ;;f(.r1 + el) + -1 1'+'" g(x) dx, 
~ 2c IJ 

as determined earlipl'. To obtain F for negative argument.s, we cannot use the initial 
conditions. Inst.ead: the boundary condition must be utiliz.ed. n(O, t) = 0 implies 

t 

I 
Figure 12,4.1: Characteri1:>tic emanat­
ing from the boundary.I~x~ct 

-	 x 
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that [from (12.4.5)] o= F(~ct) + G(c!) for t > O. (12.4.9) 

Thus, F for negative arguments is -0 of the corresponding positive argument: 

F(z) = -G(-z) for z < O. (12.4.10) 

Thus, the solution for x - ct < 0 is 

n(r, t) = F(x - et) + G(x + ctl = G(x + ct) - G(c! - x) 

1 . 1 [1x
+", 1,,,,-r ]

-If(x + et) - flct - x)] + - g(x) dx - g(x) dx 
2	 2c 1) 0 

1	 . 1 jX+ct 

-[f(.r + c!) - f(et - X)I + - g(x) dx. 
2	 2c tt-x 

To interpret this solution, the method of characteristic~ i~ helpful. Recall that 
for infinite problem, n(x. t) is the sum of F (moving to the right) and G (moving to 
the left). For se-mi-infinite probleIIls with x > ctl the boundary does not affect the 
characteristics (see Fig. 12.4.2). If;c < ct, then Fig. 12.4.3 shows the left-moving 
characteristic iG constant) not affected by the boundary, but the right-moving 
characteristic emanates from the boundary. F is constant moving to the right. Due 
to the boundary condition, F + G = 0 at x = 0, tIl{;' right-lllovillg wave is minus the 
left-moving wave. The wave inverts as it "boullces off" the boundary. The resulting 
right-moving wave -G(ct - x) is called the reflected wave. For x < ct, the total 
solution is the reftee.ted wave plu.~ the as yet unrefleeted left-moving wave: 

,"(;c,t) = G(;c + ct) -G(-(;c-ct)). 

, 

I 
I 

I Figure 12.4.2: CharacteristicS.x=ct 
I 

I 
I 

I 

_~ x 
I 

The negatively reflected wave -G(-(x - ct)) moves to the right. It behaves as 
if initially at t = 0 it were -G( -;c). If there were no boundary, the right-moving 
wave F(;c _ et) would be initially F(;c). Thus, the reflected wave is exactly the wave 

that would have occurred if
 

F(;c) = -G(-;c) for;c < 0,
 

or eqUivalently 

1	 11 1"	 1 1-'2 f (X) - 2c 0 g(x) dx= -2J(-;C) - 2c 0 g(7) dx. 
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One wi\Y to obtain this is to extend the initial position f(x) for ;C > 0 as an odd 
function [such that f( -.r) = - f(x)1 and also extend t.he initial velocity g(.r) for 
;c > 0 as au odd function [then its integral, Jo' g(x) dx, will be an even function]. 
in summary, the solution of the semi-infinite problem with u = 0 at x = 0 
is the same as an infinite problem with the initial positions and velocities 
extended as odd functions, 

As further explanation, suppose that u(x, t) is any solution of the wave eqnation. 
Since the wave equation is unchanged when;c is replaced by -;c, a( -;c, t) (and any 
multiple of it) is also a solution of the wave equ<ttiuH. If the initial conditions 
satisfied by 1L(.~, t) are odd functions of ;c, then hoth lI(;C, t) and -1L( -;c, t) solve 
these initial conditions and r,he wave equation. Since the initial value problem has 
a unique solution l u(;:r, t) = -11( -;T~ t); that is) u(;r

j 
t), which is odd initially, will 

remain odd for all time. Thus, odd initial conditiom; yield a solution that will satisf:.r 
a zero boundary condition at ;(: = O. 

Example. Consider a semi-infinite string :E > 0 with a fixed end u(O, t) = 0, 
which is initially at rest, au/at(x, 0) = O. with an initial unit rectangular pulse, 

4<x<5
f(;c) = { ~ 

otherwise. 

Since g(.x) = 0, it follows that 

1 { 1 4<;c<5F(x) = G(;c) = 2f(x) = 6 
ot.herwise (with x > 0). 

F moves to the right; G mOves to the left, negatively reflecting off ;c = O. This can 
also be interpreted as an initial condition (on an infinite domain) with f(x) and 
g(;c) extended as odd functions. The solution is sketched in Fig. 12.4.4. Note the 
negative reflection. 

Problems with nonhomogelleuu~boundary conditions at x = 0 can be analyzed 
in a similar way. 

t 

;c =ct	 Figure 12.4.3: Reflected 
characteristics. 

Fconstant 
G constant 

"- G constant 
;c 
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o+ --<----~-~~~--c--

Figure 12.4.4: Reflected pulse. 

o 2 4 6 8 10 

EXERCISES 12.4
 
*12.4.1. Solve by the method of characteristics:
 

8'u	 8'u
_=(;2_ x>O 
8/' 8x' 

subject to u(x,O) = 0, ~~ (x, 0) = 0, and u(O, t) = h(t). 

*12.4.2. Determine u(x, ti if 

a2u 2 0?U.at2 = C &x2 for x <.. 0 only, 

t 
where u(x, 0) = COS1' X < 0, %7(x,O) = 0 x < 0, u(O,t) = e- t> O. 
Do not sketch the solution. However 1 draw a. space - time diagnull l including 

all important characteristics. 

12.4.3. Consider the wave equation on a semi-infinite interval 

8'u	 a'u 
at' =c' 8x' forO<x<oc· 

with the free bounda.ry condition ~~ (0, t) = a and the initial conditions 

00<X<2 
u(x,O) = 1 2 < x < ~ ~~(x,O) = O. 

{ Ox> 3 

Determine the solution. Sketch the solution for various times. (Assume that 

u is continuous at x = 0, t ==:: 0.) 

12.4.4.	 (aJ Solve for x > 0, t > 0 (using the method of characteristics) 

8'u 8'u 
8 t' = c? 8Il 

12.5. Method of Characteristics for a Vibrating String of Fixed Len/{th 

u(x,O) = J(X)}
8u	 x> 0 
8t (x,O)	 = g(x) 

8u 
",,(O,t) = 0 t> O. 
uT
 

(Assume that u is continuous at x = 0, t = 0.)
 

(b) Show	 that the solution of part (a) may be obtained by extending the 
initial position and velocity as even functions (around x = 0), 

(c) Sketch the solution if y(x) = 0 and 

4<x<5
J(x) = { ~ othcnvjse. 

12.4.5.	 (a) Show that if u(x,t) and 8u/at are initially even around x = Xn, 
u(x,t) will remain even for all time. 

(b) Show	 that this type. of e.ven initial condition yields a solution that will 
satisfy a zero derivative boundary condition at x = XQ. 

*12.4.6.	 Solve. (x > 0, t > 0) 

8'u 282U 
--=c -­
8 t 2 8,,'
 

subject to the conditions u(x,O) = 0, ~~(x,O) ~ 0, and %;,(0, i) = iL(t).
 

*12.4.7. Solve
 

8'u 28'U x> 0
 
8t' ~c 8Il t>O
 

subject to u(:r, 0) = j(x), ~~(x,O) = 0, and %;-(O,t) = h(t). (Assume that 
u is continllous at x = 0, t = 0.) 

12.4.8. Solve 
[)2 U	 8'u 8u 
[) 2 = c',...,. with u(x,O) = 0 and ""(,,,0) = 0,

t uX	 ui 

subject to u(x, t) = y(t) along x = ~i(c > 0). 

12.5	 Method of Characteristics 
for a Vibrating String of Fixed Length 

In Chapter 2 we solved for the vibration of a finite string satisfying 

a'u 8'u_=c2 _PDE: (12.5.1)
8 t' 8x' 
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(12.5.2) 

(12.5.3) 
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~. 
u(O.t) =0 

v. 
ulL,t)=U 

11(X,0) = f(x) 
au 
a;-(x,O) = g(x), 

B 

Ie: 
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t 

l~~~~1 ."=".,,C'_,"'''.. 
o L 

If one's position and time is such that signals from the boundary have already 
arrived, then modifications in (12.5.7) must be made. The hOllndary condition at 
x = 0 implies that 

0= Fl ~et) + G(ct) for i > 0, (12.5.8) 

using Fourier series methods. \Ve can obtain an equivatent 1 but in some ways more 
useful, result by using the general solution of the one- dimensional wave equation: 

u(x, t) = F(x ~ ct) + G(x + et). (12.5.4) 

The initial conditions are prescribed only for 0 < x < L, <;tnd hence the formulas 
for F(x) and G(x) previously obtained are valid only for 0 < x < L: 

. 1 1 1x 

F(x) - - f(x) ­ - g(x) dx (12.5.5)
2 2c 0 

1 1 r 
G(x) = 2f(x) + 2e Jo g(x) dx. (12.5.6) 

If 0 < x ­ et < L and 0 < x + ct < L a, shown in Fig. 12.5.1, then d'Alembert's 
solution is valid: 

f(x - et) + f(x + ct) 1 1'+0'u(x, i) = + - g(x) dx. (12.5.7)
2 2c x-ct 

In this region the string does not know that either boundary exists; the information 
that there is a boundary propa~ates at velocity c from x = 0 and x = L. 

while at x = L we have 

0= F(L ­ ci) + GlL + et) for t > o. 

These in turn imply reflections and multiple reflections, as illustrated in Fig. 12.5.2. 

12.5. Vibrating String of Fixed Length 

t 

I 

I Figure 12.5.2: 
characteristic-so 

MUltiply reflected 

I 

L 
o 

L 

Alternatively, a solution on an infinite domain 1vithout boundaries can be Con­
sidered which is odd around x = 0 and odd around x = L. as sketched in Fig. 12.5.3. 
In t.hi,., way, the zero condition at both x = 0 and x = L will be satisfied. We note 
that u(x, t) is periodic with period 2L. In fact, we ignore the oddness around x = L, 
since periodic functionR that are odd around x = 0 are auLumatically odd around 
x = L. Thus, the simplest way to obtain the solution is to extend the initial 
conditions as odd functions (around x = 0) which are periodic (with pe­
riod 2L). With these odd periodic initial conditions, the method of characteristics 
can be utilized a~ \vel] as d'Alembert's solution (12.5.7). 

Pigure 12.5.3: Odd periodic extension, 

Example. Suppose that a string is initial1y at rest with prescribed initial con­
ditions u(x,O) = f(x). The string is fixed at x = 0 and.T = L. Instead of using 
Fourier series methods, we extend the initial conditions as odrl fllllctions around 
x = 0 and J: = L. Equivalently, we introduce the odd periodic extension. (The odd 
periodic extension is also used in the Fourier series solution.) Since the string is 
initialfy at rest, g(x) = 0, the odd periodic extension is glx) = 0 for al1 x. Thus, 
the solution of the One- dimensional Wave equation is the sum of two simple waves: 

1 
u(x, t) = 2[f(x - el) + f(x + Ci)], 

Where f(x) is the odd periodic extension of tire given initiai position. This solution 
is much simpler than the summation of the first 100 terms of its Fourier sine series. 
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EXERCISES 12.5 

12.5.1. Consider 

a2u 2 02U D:(T, 0) f(x) }
--=c--	 O<x<L
Df'	 Dx' at(x,O) gCT) 

u(O, t) o u(L, f) O. 

(a) Obtain the solution by Fourier series techniques. 

*(b) If g(]') ~ 0, show that part. (a) is equivalent. to the results of Chapter 12. 

(c)	 If f(x) = 0, show that part (a) is equivalent to the results of Chapter 12. 

12.5.2. Solve using the method of characteri~tics: 

iJ2 n 2 82u 
iJ t2 = C ax2 

u(x,O) = 0 n(O, t) = h(l) Bu(].
' 
0) = a u(L, I) = O.fi t, 

12.5.3. Consider 
{)2 U	 8 2u ____ (,2 __ 

o < x < 10iJ f' -. ax' 
u(x 0) = f(x) = { 1 4 <.r < 5 n(O, t) = [) , 0 otherwise 

au	 au 
8i(;r,O) = g(.T) = 0 ax (L, f) = O. 

(a)	 Sketch the solution using the method of characteristics. 

(b)	 Obtain the solution using Fourier- series- type tcchniquL"'S. 

(c)	 Obtain the solution by converting to an equivalent problem on an infinite 
domain. 

12.5.4.	 How should initial conditions be extended if au/D:r(O, t) = a and u(L, I) = 
07 

12.6	 The Method of Characteristics 
for Quasi-linear Partial Differential Equations 

12.6.1	 Method of Characteristics 

fvlost of this text describes methods for solving linear partial differential equations 
(separation of variables, eigenfunction ex-pansions, Fourier and Laplace transforms, 
Green's functions) that cannot be extended to nonlinear problems. However 1 the 

12.6. Quasi-linear PDEs 

!nethod of characteristics, used to solve the wave equation, can be applied to partiaJ
differential equations of the form 

ap a la + c-!!.t	 ax = Q, (12.6.1 ) 

where c and Q may be functions of;T, t 1 and p. 'Vhen the coefficient. c depends on the 
unknown solution p, (12.6.1) is not linear. Superposition i8 not valid. Nonetheless 
(12.6.1) i~ called a quasi-linear partial differential equation, since it is linear in the 
first part.ial derivatives, lip/a I and ap/a". To solve (12.6.1), we again consider an 
observer moving in Some prescribed way .r(t). By comparing (12.2.7) and (12.6.1).
\VP obtain 

dp 
df = Q(p,x,!).	 (12.6.2) 

if 

d.T

di = c(p, .7:, f),
 (12.6.3) 

The partiaJ differential equation (12.6.1) reduC'c.-; to two coupled ordinary differen­
tial equat.ions along the special traject.ory or direction defined by (12.6.,3), known 
as a characteristic curve, or simply a characteristic for short. The velocity 
defined by (12.6.3) is called the characteristic velocit.y, or local wave velocit.y. 
A characteristic starting from x = ;ro, as illustrated in Fig. 12.6.1, is determined 
from the coupled different.ial equations (12.6.2) and (12.6.3) using t.he init.ial condi­
tions p(x,O) = f(x), Along the characterist.ic, the solution I' changes according to 
(12.6.~). Other initial positions yield other characteristics. generating a family of
characteristics. 

t 

l
I	 

dx 
(It = c 

<ip~ Q 
dt 

Figure 12.6.1: Characteristic starting 
from ;t = Xo at time t = O. 

x x=xo
 
p~p(xo,O) ~ f(.xo)
 

Exatnple. If t.he local wave velocit.y c is a const.ant Co and Q = 0, then the 
quasi-linear partial different.ial equat.ion (12.6.1) becomes t.he linear one, (12,2.6), 
which arises in the analysis of the wave equation. In this example, the characteris­
t.ics may be obtained by direct.ly int.egrat.ing (12.6.3) wit.hout. using (12.6.2). Each 
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characteristic has the same constant velocity, C{). The falnily of characteristics are 

parallel straight lines, as sketched in Fig. 12.2.l. 

Quasi-linear in two _dimensional space. If the independent vari­
ables are x and y instead of x and t, then a quasi-linear first-order partial differential 

equation is usually written in the form 

op op (12.6.4)
a-+b- =cox oy , 

where a, b, c may be functions of X, y, p. The method of characteristics is 

dp c (12.65) 
dx =~' 

if dy b (12.6.6) 
dx =-;;, 

This is written in tb.e following (easy to memorize) equivalent form 

dx dy dp (12.6.7) 
--;; = b = 7· 

12.6.2 Traffic Flow 
Traffic density and flow. As an approximatiou it is possible to model a 
congested one _directional highway by a quasi-linear partial differential equation. 
We introduce the traffic density p(x, t), the number of cars per mile at time t 
located at position x. An easily observed and measured quantity is the traffic flow 
q(x, t), the number of cars per hour passing a fixed place x (at time t). 

Conservation of cars. We consider an arbitrary section of roadway, be­
tween x = a and x = b. If there are neither entrances nor exits on this segment of 

the road, then the number of cars between x = a and x = b (N = f: p(x, t) dx, the 
definite integral of the density) might still change in time. The rate of change of 
the number of cars, dN j dt, equals the number per unit tlIne entering at x = a lthe 
traffic flow q(a, t) there] minus the number of cars per unit time leaving at x = b 

lthe traffic flow q(b, t) there]: 

d 1b (12.6.8)
dt a p(x, t) dx = q(a, t) - q(b, t). 

Equation (12.6.8) is called tb.e integral form of conservation of cars. As with heat 
flow, a partial differential equation may be derived from (12.6.8) in several equivalent 
ways. One way is to note that the boundary contribution may be expressed as an 

illtegral over the region: 

1
b 0 

q(a, t) - q(b, t) = - a oxq(x, t) dx. 

Thus, l,y taking the time-derivative inside the integral (making it a partial deriva­
tive) and using (12.6.9) it follows that 

op + oq = ~l
 (12.6.10)at 01· J
 
since a and b are arbitrary (see Section 1.2). We call (12.6.10) conservation of 
cars. 

Car velocity. The number of cars per hour passing a place equals the density 
of cars times the velocity of cars. By introducing u(x, t) as the car velocity. we 
have 

G= pu. , (12.6.11) 

In the mid-1950s, Lighthill and Whitham [1955J and, independently, Richards [1956] 
made a simplifying assumption, namely, that the car velocity depends only on the 
density, u = 1L(p), with cars slowing down as the traffic density increases; i.e., 
dujdp 0:: o. For further discussion, the interested reader is referred to Wb.itham 
[1974] and Haberman [1977]. Under this assmnption, the traffic flow is only a 
function of the traffic density, q = q(p). In this case, conservation of cars (12.6.10) 

becomes I ~ 
op opat + c(p)&; = 0, (12.6.12) 

where c(p) = q'(p), a quasi-linear partial differential equation with Q = 0 (see 
(12.6.1)). Here c(p) is considered to be a known function of the unknown solution 
p. In any physical problem in whicb. a density p is conserved and tb.e flow q is a 
function of density, p satisfies (12.6.12). 

12.6.3 Method of Characteristics (Q = 0) 

The equations for the characteristics for (12.6.12) are 

dp 
dt 

= 0 
(12.6.13) 

along 
dx 
dt = c(p). (12.6.14) 

The characteristic velocity c is not constant but depends on the density p. It is 
known as the density wave velocity. From (12.6.13), it follows that the density 
p remains constant along each as yet undetermined characteristic. The velocity of 
each chara.cteristic, c(p), will be constant, since p is constant. Each characteristic 
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is thus a straight line (as in the case in which c(p) is a constant CO). However, 
different characteristics will move at different constant velocities because they may 
start with different densities. The characteristics, though each is straight, are not 
parallel to one another. Consider the characteristic that is initially at the position 
x = XO, as shown in Fig. 12.6.2. Along the curve dx/dt = c(p), dp/dt = 0 or pis 
constant. Initially p equals the value at x = Xo (i.e., at t = 0). Thus, along this one 

characteristic, 
p(x, t) = p(xo, 0) = f(xo), (12.6.15) 

which is a known constant. The local wave velocity that determines the character­
istic is a constant, dx/dt = c(f(xo)). COl"equently, this characteristic is a straight 

line, 
x = c(f(xo))t + Xo. (12.6.16) 

since x = XQ at t = O. Different values of XQ yield different straight-line charac­
teristics, perhaps as illustrated in Fig. 12.6.2. Along each characteristic, the traffic 
density p is a constant; see (12.6.15). To determine the density at some later time, 
the characteristic with parameter XQ that goes through that space - time point must 

be obtained from (12.6.16). 

t II p(x.t) ~ f(xo) Figure 12.6.2: Possibly nonparallel 
straight-line characteristics. 

L ~x 
Xo 

Graphical solution. In practice, it is often difficult and not particularly 
interesting actually to determine Xo from (12.6.16) as an explicit function of x and 
t. Instead, a graphical procedure may be used to determine p(x, t). Suppose the 
initial density is as sketched in Fig. 12.6.3. We know that each density Po stays the 
same, moving at its own constant density wave velocity c(po). At time t, the density 
Po will have moved a distance c(Po)t as illustrated by the arrow in Fig. 12.6.3. This 

, 

p(x,O) ,," 
,, p(x,t) 
, 

~ • I - //1 --_ .... / 

x 
xo + c(Po)tXo 

Figure 12.6.3: Graphical solution. 

12.6. Quasi-linear PDEs 

proce~s must be carried out for a large number of points (as is elementary to do on 
any computer). In this way, we could obtain the density at time t. 

Fan-like characteristics. As an example of the method of characteristics, 
we consider the following initial value problem: 

op op
-+2p-, =0ot ox 

3 x < 0
p(x,O) = { 

4 x> O. 

The density p(x, t) is constant moving with the characteristic velocity 2p: 

dx 
dt = 2p. 

Thus, the characteristics are given by 

x = 2p(xo, O)t + xo. (12.6.17) 

If Xo > 0, then p(xo, 0) = 4, while if Xo < 0 then p(xo, 0) = 3. The characteristics, 
sketched in Fig. 12.6.4, show that 

p(x. t) = x> 8t{4

3 x < 6t, 

as illustrated in Fig. 12.6.5. The distance between p = 3 and p = 4 is increasing: we 
refer to the solution as an expansion wave. But, what happens for 6t < x < St? 
The difficnlty is caused by the initial density having a discontinuity at x = O. We 
imagine that all values of p between 3 and 4 are present initially at x = O. There 
will be a straight line characteristic along which p equals each value between 3 and 
4. Since these characteristics start from x = 0 at t = O. it follows from (12.6.17) 
that the equation for these characteristics is 

x = 2pt, for 3 < p < 4, 

also sketched in Fig. 12.6.4. In this way, we obtain the density in the wedge-shaped 
region 

x 
p = 2t for 6t < x < 8t, 

which is linear in x (for fixed t). We note that the characteristics fan out from x = 6t 
to x = 8t and hence are called fan-like characteristics. The resulting density is 
sketched in Fig. 12.6.5. It could also be obtained by the graphical procedure. 

12.6.4 Shock Waves 

Intersecting characteristics. The method of characteristics will not always 
Work as we have previously described. For quasi-linear partial differential equations, 
it is quite usual for characteristics to intersect.. The resolution will require the 
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Figure 12.6.4: Characteristics (in­
cluding the fan-like ones). 

p ~ xj2t 

p=4 
p~3 

x = 6t x = 8t 

Figure 12.6.5: Expansion 

wave. 
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introduction of moving discontinuities called shock waves. In order to make the 
mathematic,al presentation relatively simple. we feHtrict our attention to quasi-linear 

p"rti"l differential equations with Q = 0, in which case 

[)p ap .at + c(p) ax = ° (12.6.18) 

In Fig. 12.6.6 t.wo characteristics arE' sketched, one starting at x = Xt, with p ::= 

!(XI,O) '" PI e.nd the other starting at x = X2 with P = !(X2'O) '" P2' These 
characteristics intersect if c(pJl > C(P2), the faster catching up to the slower. The 
density is constant along characteristics. As time increases, the distance between the 
densities PI and P2 decrea<;es. Thus, this is called a compression wave. We sketch 
the initial condition in Fig. 12.6.7(a). The density distribution hecomes steeper as 
time i.ncreases [Fig. 12.6.7(b) and (e)]. Eventually charaderistics intersect; the 
theory predicts the denslty if> simultaneously PI and pz· If we continue. to apply 

~ Figure 12.6.6: Intersecting character­
C(PI) > e(p,) 

istics. 
.~ IP~P2 -- x 

P = PI 

12.6. Quasi-linear PDEs 

the method of characteristics~ the fHster-moving characterititic PH.S~PS the slower. 
Then we obtain Fig. 12.6.7(d). The method of characteristics predicts that the 
density becomes a "rnultivalued" fnnction of position; that iR, at some later time our 
mathematics predicts there will be three densitief) at sOme positions [as illustrated 
in Fig. 12.6.7(d)]. We say the density wave breaks. However, in many physical 
problems (such as traffic flow) it makes no sense to have three values of density at 
One place. 

3 
The density must be a siuRle-valued function of position. 

p­

(.J 
Figure 12.6.7: Density wave r;teepens 
(density becomes triple - valued).~"~_X
 

Discontinuous solutions. On the bllliis of the qUlllii-linear partial differ­
ential equation (12.6.18), we predicted the physically impossible phenomenon that 
the density becomes multivalued. Since the method of characteristics is mathemati­
cally justified, it is the partial differential equation itself which must not be entirely 
valid. Some apprOXimation or assumption that we used must at times be invalid. 
We will assume that the density (as illustrated in Fig. 12.6.8) and velocity have a 
jllrup- dbcontinuity, which we call a shock wave, or simply a shock.4 The shock 
occurs at SOme unknown position X 8 and propagates in time. so that x,~ (1). We 
illtruduce the notation ;r,~_ and x s -'- for the position of the shock on the two sides 
of the discontinuity. The shock velocity, dx,/dt, is a5 yet unknown. 

p(x,t) p(xM,t) 

.•~ 
~,_,t) Figure 12.6.8: Density di::::continuity 

at x = x,(t). 

X,(t) 
-x 

3The partial differential equation~ describing the height of water wave'" near the shore i.e., in 
shallow waleI') are similar to the equation:; for traffic density waves. In this situation the prediction 
of breaking is then quite significant! 

4The terminology .~h()ck wave is introduced because uf the analogous behavior that occurs in 
gas dYnamics. There, changes in pressure and density of air, for example, propagate and are heard 
(due to the sensitivity of the human ear). They are called sound wave.';. \\Then fluctuations of 
prC.5sure and density are small, the equations describing sound waves can be linearized. Then 
sound is propagated at a Constant speed known as the sound speed. However, if the amplitudes 
of the fluctuations of pressure and density arc not ::;Illall. t}U,!H the partial differential equations 
are quasi-linear. Characteristics may intersect. In this case, the pressure and density can be 
mathematically modeled as being discontinuous, the result being called a shock 1l1avp. Exa.mples 
are t.be 50und emitted from an explosion or the thunder resulting from lightning. If a shack wave 
results from exceeding the sound barrier, it is known as a sonic boom. 
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Shock velocity. On either side of t.he shock, t.lle quasi-linear partial dif­
ferent.ial equation applies, ap/at + c(p)ap/a.r = O. where c(p) ~ dq(p)/dp. We 
need to determine how the discontinuity propagates. If p is conserved even at, a 
discontinuity: then the flow relative tu tbe moving ~hock on Olle sid", of the ~h()rk 
mnst equal the flow [dative to the moving shock on the other ~ide. This statement 

of relative inflow equaling relrttive outflow beeomes 

rh.,l.dX.] [ (l26.1Q)p(x.,_.t) u(x,-,t)-di' =p(x .•+,t) U(XH,t)[ ell J 
Solving for the(here relative velocUy).since flO'\' equals den..,it;r times velocity
 

shock velocity from (12.6.19) yields
 

q(:r .• +, t) - qCr,_, i) [q]d:f.~ = (12.6.20) 
elt p(x.,+. t) - p,:r,_, t) = [pi' 

where we recall that q = pu and where we introduce the notation [q] and [pi for the 
jumps in q and p~ respectively. In ga." dynamics, (12.6,£U) is calkd the Hankiue­
Hug;oniot condition. In summary, for the conservation law 8pI8 t+8q/8x = 0 
(if the quantity .r p dx is actually conserved), the shuck velocity equals 
the jump in the flow divided by the jump in the density of the conserved 
quantity. At points of discontinuit,v, thb ~1rock condition replaces the use of the 
partial differential equation, which i~ valid elsewhere. However. ViE' have not yet 
explained where shock~ uccur and how to determine p(X1j+' t) and fI(X,,-, t). 

Example. We conr--icier the initial yallle problplll 

81' 2 ap_ 
at + I' ax - 0 

4 ,1; < (J
p(x,O) = { 3 x> O. 

We a.<;;sume that p is a conserved densit.y. Putting the partial differential equation 
in conservat.iun form (ap/at + aq/ax = 01 shows that t.he flow q = 1'2 Thus, if 
t.here is a discontinuity, the ,hock velocit.y sat.isfies elx1elt = [ql/[p] = [(J"l/Ip] The 
densit;v p(.T, t) is constant. moving at the characteristic velocity ?p: 

elx = 2(J 
elt 

Therefore, the equation for the characterbtics is 

x = 2p("'u, OJt + xu· 

If XQ < 0, then p(:l'o, 0) = 4, This parallel group of characteristict; intersects 
those st.art.ing from Xu > a (with p(Xn,O) = 3) in the cross - hatched region in 

Cl.G. Quasi-linear PDEs 

Fig. 12.o.9(a). The lllC't.hod of characteristics yields a multi-valued solution of the 
partial differentia.l eqwltion. Tlli.'i diffiClllty is n>medied by introducing a shuck wave 
[Fig. 12.6.9Ib)], a propagating wave indicating the path at which densities and ve­
locities abrnptly change (i.e.. are discontinuous). On one side of the shock, the 
method of charactf'risti(~s suggests the densit~r is constant p = 4) and on the other 
side I' = 3. We do !lot know as yet t.he pat.h of the shock. The theory for SUell a 
discontiullouS solution implies that the path for any shock Illllst satisfy the ~hock 
condition, (12.G.20). Suhstitutillg the jumps in flow and den",ity yields the following 
equation for the shock \'E'locjt.y: 

d:.c$ q(4) q(:3) 4' - 3' 
4 _ 3 - , ,,= 7,dt "'i-a 

sinc£> in thi....: case q = p2. Thus, the shock moves at a constant velocity. The 
initial po1:iition of the shock is Known, giving a condition for this first-order ordinal'.r 
diH'erential equation. In this case. the shock must initiate at x., = 0 at t = o. 
COllsequently', applying che initial condition results in the position of the shock 

::1:'8 = 7t. 

The n>sulting spacE'- time diagram is sketch(-,(l ill Fig. 12.6.9(c). For any time t > 0, 
the traffic density is rliscnntinuOlIS, lis shown in Fig. 12.G.I0. 

(a) (bJ (c) 

Figure 12.6.9: Shock cau.-;ed by inter1'lecting characteristics. 

p~J t, 
Figure 12.6.10: Density shock wave. " ,,, 

".
0.( 

"A' 

~ 

Initiation of a shock. We have described the propagation of shuck waves. 
In the example considered, the density was initially discontinuous; thus, the shock 
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wave formed immediately. However 1 'we will now show that shock waves take a finiLe 
time to form if the initial density is continuous. Supf.lose that the first shock 0('('Uf5 

at t = r due to the intersection of two characteristics initially a distance D..x (not 
necessarily small) itpart. However, any characteristic starting between the two at 
t = 0 will almost always intersect one of the other two characteristic:; before t = r. 
Thus shocks cannot first occur due to characteristics that are a finite distance ~x 

apart. In,';tead~ the first shock actually occurs dup to the intersection of neighboring 
charaderistics (the limit as t.x __ 0). We will show that even though fu -- 0, the 
first intersection occurs at a finite positive time, the time of the earliest shock. The 
density p is constant along <..:haracteri~ticsl satisfy·jug d:rjdt = c(p). 'Ve will analyze 
neighboring characteristics. Consider the characterbtic emanating from x = ;:ro at 

t = 0, where p(x,O) = f(x), 
x = c[J(xo)]t + Xu (12.6.21) 

and the characteristic :;tarting from .r -' X(J + .6..x at t --::; 0, 

X = elJ(xo + t.";)]t + Xo I t.x. 

Ouly if clJ(xo)J > c[J(xo + i'lx); win the,c chmacteristicsintuscct (in" positive 
time). Solving fUf the intersection point by pliminating X ~yield:" 

c'J(XD)]t + Xv ~ CIJ(XO + L'>x)lt + Xo + D.x. 

Therefore, the time at which nearly neighboring curves intersect is 

i'll; 1 
t= = --. 

elJ(xoIJ- c[J(xo + t.x)] {clJ(xolJ - c[J(xu + t.x)]}/t.x 

The characteristics aI'/? paths of obseryers following constant density. Then this 
equation states that the time of intersection of the two characteristics is the initial 
distance between the characteristics dividt:!d by the relative velocity of the two 
characteristicti. Although the distance In hetween is small. the relative velocity is 
also small. To consider neighboring chal'actel'istics 1 the limit as ~x --+ 0 must be 
calculated: 

~
 ~ (12.6.22) 

Charaeteri'tics will intersect (t> 0) only if (d/d.ro)c[J(xo)] < O. Thus, we conclude 
that all neighboring characteristics that emanate from regions where the charac­
teristic velocit.y is locally decreasing will always intersect. To ddermine the first 
time at which an intersection (shock) occurs, we must minimize the intersection 
time over all possible neighboring ('haracteristics~ Le., find the absol'ute minimum 
of t given by equation (12.6.22). This can be calculated by determining where 
d2/dx6C[f(xo)] = o. 

Shock dynamics, We will show that the slope of the solution is infinite 
where neighboring characteristics intersect. Since p(x, t) = p(xo, 0), we have 

8p = dp DXD = .:!:!!.- / [1 + de t] . 
8x dxo 8x dao dxo 

12.6. Quasi-linear PDEs 

5.S7 

7"TIlis has also u,ed the result of partwl differentiation of (12.6.21) with re'pcet to 

. . ax" de][1
1-_ +-1 

- 8T d:eu' 

The slope is inrinite at tho,e place' satisfying (12.6.22). Thi, shows that the turning 
points of the triplc- valued solutiu!1 correspond to the intersection of neighboring 
characteristics (the envelope of the eh"Taeteristies). Within the envelope> of charac­
teristics, the 'olution is triple- valued. It is known that the envelope of the char­
acteristics lS cU'P-shaped; aB indicated in Fig. 12.6.11. How{>ver, the triple-valued 
,olution (within the cusp region) makes no seI"e. Iu,tcad, as d"cussed earlier. a 
shock W"ve exists satis(yillg (12.0.20), initiating at the (;llSp point. The shock is 
located within the envelope. In fact, the triple - valued solution, obtained by the 
method of characteristics, may be used to determine the location of the shock. 
Whitham [1974] ha' shown that the correct location of the shock may be deter­
mined by cutting the lobes off to form equal arms (Fig. 12.6.12). The rpa."'11 for 
thb is that the method of chamcteristics conserves cars and that, when a shock is 
introoucpd. the number of cars (represented Ly the '"'ea Ip dx) must al,o be the same aN it is initially. 

~~ 
Figure 12.611: Euvelupe of char­
acteristics. locus of inter~ections of 
neighborillg charact~ristics. 

Figure 12.6.12: \Vhitham's equal-
area principle. 

~ 

xAt) 

12,6,5 QuaSi-Linear Example 

Consider the quasi-linear example 

{}p a 
- pP8t - 7h = -2p, 

(12.6.n) 
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subject to the initial conditions 
(12.6.24)

p(x, 0) = f(x). 

This could model a traffic flow problem (with p a scaled version of the density) 
where cars are not conserved but irl,·;tead leave the roadway (at exits) at a rate 
proportional to the density (as though cars e"it the highway to avoid congestion). 

The method of characteristics yields 

(12.6.25)dp _ -2p, 
dt ­

along the characteristic dx	 (12.6.26) 
-=-p.
dt 

These equations are sometimes written in the equivalent form 

(12.6.27)dp	 _ dx = dt. 
-2p - -p 

Sometimes the coupled system of ordinary differential equations can be directly 
solved. In this ewe the ordinary differential equation for p may be solved first, and 
its solution used to determine the characteristic x. Because of the initi111 condi­
tion (12.6.24), we introduce the parameter Xo representing the characteristic that 
emanates from x = Xo (at t = 0). From (12.6.25), along the characteristic, we 

ohtain	 2 (12.6.28)
p(x,t) = p(xo,O)e-2t ~ fl:ro)c- '. 

The pal'ameter Xu is constant along each characteristic. The solution (density) expo­
nentially decays along the characteristk as time increases. Thus, the characteristic 

velocity becomes 
d:r	 =- f() .__ xoe -2< 

dt 
By integrating the velocity, we obtain the posltion of the characteristic: 

(12.6.29)1 -2t 1 f( )x = '5/(xo)e -"2 1'0 + :ro, 

since x must equal Xo at t = O. Here, the characteristics are not straight lines­
The parametric representation of the solution is obtained fWIll (12.6,28), where "'0 

should be considered as a function of :r and t from (12.6.29). Usually an explicit 

solution is impractical. 

Explicit solution of an initial value problem. For the quasi-linear 

partial differential eqnation (12.6.23). suppose the initial conditions are 

p(x,O) = f(x) = x. 

In this casc, froul (12,6.29), the characteristics satisfy 

1 -2< 1 
x =	 '2xoe + "2 xo. 

l~Uj. <..!uasi-linear }-'l)l'.,'s 
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Thus, an explicit solution can be obtained 

2x 
Xo = 2t'I+c 

Note that for each :r and t there is only one characteristic Xo (because the initial 
condition was chosen such that the family of characteristics ooes not intersect itself.) 
From (12,6.28), the solution of the initial value problem for the partial differential 
equation is 

. 2xe- 2t 2x 
Plx,t) = 1 2, = -12t"' +c +e 

General solution. Quasi-linear partial differential equations have general 
solutions (as with the linear wave equation). "Tithout specifying initial c-onditions, 
integrating (12.6.25) and (12.6.26) yields 

p(x,t) _ cle-2t 

2tX = cle- +c2' 

In general) One constant can be an arbitrary function of the other contant. Thus 
we obtain the general solution of (12.6.23), 1 

x = p + f(pe"). 

EXERCISES 12.6 

12.6.1­ Determine the solution p(x, t) satisfying the initial condition p(x, 0) = f(x)
if 

* (a) ~=O	 (b1 ~=_~+~n. at
 
* (c) ~ = -3:rp ~ ~=X2~
 

*12.6.2. Determine the solution of Dp/Dt = p, which satisfies p(x, t) 1 + sinx
along :r = - 2t. 

12.6.3. Suppose f!i + co~ = 0 with Co constant. 

*(a) Determine p(x,t.) if p(:r, 0) =sinx. 

*(b) If co> 0, determine p(x, t) for:r > 0 and t > 0, where p(x, 0) = f(x) for 
x> °and p(O, t) = get) for t > 0. 

(c)	 Show that part (b) cannot be solved if Co < O. 

*12.6.4. If u(p) = a+ r3p, determine (} ancl,q such that u(O) = U and "(Pm.x) ~ 
0.	 max 

(a)	 What is the flow as a function of density? Graph the flow as a function 
of the density. 
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(b)	 At what density i, the flow ffiiL'Cimum? What i' the corresponding ve­
locity? What is the maximum flow (called the capacity)? 

12.6.5. RecIo Exercise 12.6.4 ifu(p) =	 umax(1- p3/p~,ax)' 

12.6.6. Consider the trathc flow problelll 

31' 31' 
3t + "(1') ox =O. 

Assume u(p) = u (l- P/Pmax). Solve for p(x, t) if the initial conditions are 
mnx

(a)	 p(x,O) = pmax for x < 0 and p(x,O) = °for x > O. This corresponds to 
the traffic density that results aft.er an infinite line of stopped traffic is 

started by a red light turning green. 

PIT,ax x<O
 
lb) p(x,O) = ''",ox 0 < x < a
 

Ox> a
 
X,	 

{ 

{3p 
ma	 X < 0 

(c)	 p(x, 0) = p,,~, I> 0 

12.6.7. Solve the following problems: 

x<o 
p(x, 0) = { ~ (a)	 ~ + p2~ = U X>O
 

x < 1
 
p(x,O) ~ (bl	 Wi +41'* =0 U x> 1 

x<o 
O<x<1p(x, 0) =(c)	 ~ + 3pj); =° { ~ 
x>1 

8 £E. . , p(x, 0) = 5 x> ° 
(d)	 7!t+6pax =Oforx>Oon.y plO,I)=2 1>0 

12.6.8. Solve subject to the initial condition p(x, 0) = fl x)
 

3x (b) ~ + 3xj); = 4
* (a)	 !ift + c~ ~ e­

(d)	 £E. + 5t£e. = 31'at ax£E. + t£E. =5* (e)	 () i ax 
(f)	 £E. + tz£e. = ° £J2. _ t"2!!'£' = -p	 a t ax* (e) at ax
 

* (g) %i + xj); = t
 

12.6.9.	 Detennine a parametric representation of the solution satisfying p(x, 0) 

f(x): 

l~.U,	 l..tW:LN-lIIH:::dl- rU£jb 
LlO.1 

* (a) ~ - p'j); = 31' (b)	 if, + pj); = t 

* (c) £e.at + t'p£e. = _I' (d)	 '!e + p£e. = -xl'a,T Dt	 Ox 

12.6.10. Solve *+ t'~ = 41' for	 x > 0 and t > °with 1'(0, I) = h(l) and 
p(x,O) = O. 

12.6.11.	 Solve ~ + (I + t)~ = 31' for I > 0 and x > -1/2 with p(x, 0) = f(l) for 
x > °and p(x, t) = 9(1) along x = -t/2. 

12.6.12. Consider (12.6.8) if there is a moving shock x, such that a < x,(I) < b. 
By differentiating the integral [with a discontinuous integrand at x,(I)], derive 
(12.6.20). 

12.6.13.	 Suppose that, instead of u = U(p), a car's velocityu is
 

v 31'
 
u = U(p) - --,

I' 3x
 

where v is a constant.
 

(a)	 What sign should v have for this expression to be physically reasonable? 

(b)	 What equation now describes conservation of cars? 

(c) Assume that U(p) = u rr,ax(1- P/Pmax)' Derive Burgers' equation: 

31' +u [1-~] 01' = v32p (12.6.30){) t max Pmax AX Ox2 . 

12.6.14. Consider Burgers' equation as derived in Exercise 12.6.13. Suppose that 
a solution exists as a density wave moving without r;hange of shape at velocity 
V, p(x, I) = f(x - VI). 

'(a)	 What ordinary differential equation is 'etisfied by f? 

(b)	 Integrate this differential equation once. By graphical techniques show 
that a solution exists such that f -> 1'2 as x -> +00 and f -> PI Il.S 

X -4 -00 only if P2 > Pl. Roughly sketch this solution. Give a physical 
interpretation of this result. 

*(c) Show that the velocity of wave propagation, Ii, is the same as the shock 
velocity separating I' = Pl from I' = 1'2 (occurring if v = 0). 

12.6.15.	 Consider Burgers' equation as derived in Exercise 12.6.13. Show that the 
change of dependent variahles 

VPmax cPx1'=----, 
U max ¢ 

introduced independently by E. Hopf and J. D. Cole, transfuflns Burgers' 

equation into a diffusion equation, ~ + U max ~ = v~. Use this to solve 
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the initial value problem ('Cr,O) = i(x) for -00 < x < 00. [In Whitham 
[1974] it i~ shown that thi8 exact solnti01l can be asymptotically analy'Zed as 
!J _ 0 using Laplace'::; method for exponential integrals to show that p(x, t) 
approaches the solntion obta~nE'd for v = 0 using the method of characteristics 

with shock dynamics.] 

12.6.16.	 Suppose that the initIal traffic den"ity is p(x,O) = PD for x < 0 ann
 
p(x,O) = PI lor x > O. Consider the two case". Po < Pl and Pl < po· For
 
which of the preceding ca...,es is a den~ity shock necessary? Briefly eX}lli:Lin.
 

12.6.17.	 Consider a traffic problem, with u(p) = '1L11lUX(1 - pi PmB,x)' Determine
 

p(x,t) if
 

P',"' x<O 
~ 'C'O 

(b)	 p(x,O) = 2/?;", ~ > 0* (a)	 p(x.O) = ,,/,,,- ~: 0 {{	 , 
12.6.18.	 Assume that u(p) -:- 'Umax(1 ~ (>'21 P~w,J· Determine the traffic density p
 

(for t > 0) if p(x. 0) = Pl for :r < 0 and p(x,O) = p, for x > O.
 

* (b)	 Assume that P, < Pl·(a) Assume that P, > Pl· 

12.6.19.	 Solve the following problems:
 

x < 0
 
(a.1 Qe + p2Qe = IJ pix 0) = { 4at	 . ' 3 x>O[-Ix 

x < 1 .	 { 3(b) Yi + 4p£!i: = 0 p(x,O) = 2 .£ > I 

x < 0 
Ozx<l

(c) *+ 3p* = 0 p(x, IJ} = { ~ 
x>l 

PIx, IJ) = 2 x>O 
(d) ¥t 1 6p*-Oforx>Ocmly p(0,t)~5 t>O 

First-Order Nonlinear12.1
 
Partial Differential Equations
 

12.7.1 Derive Eikonal Equation from Wave Equation
 

For simplicity we cUllsider the two -dimensional wave equation
 

{)2£ 2 iJ2E iJ2E 
{) t' = c (ax2 + iJ y2 ). 

Plane waves and their reflections were analyzed in Section 4.6. Nearly p~ane waV'1
 
exist under many circumstances. If the t:oefficient c is not constant but varies slowl
 

1:L. /. rlTst-Urder Nonlmear JJUl!h' 
;'OJ 

then oyer a few wave lengths thp. wave sees nearly constant c. However, over long 
distances (relative to short wave lengths) we may be interE'sted in the effects of 
variahle c. Another situl.1tion in which nearly plane waves arise is the reflection of a 
plane wave by a curved boundary (or reflection and refraction by' a curved interface 
between two rnedias with different indices of refraction). We assume the radius of 
curvature of the boundar,V if:' much longer thaD typical wave lengths. III mallY of 
these situations the temporal frequency w b fixed (by an incoming plane wave). 
Thus.
 

'(
E =fixlye) -iwt , (12.7.2) 
where A(.£,y) satisfies the Helmholtz or reduced wave equation: 

{)2A {)2A 
-w'A = C2(ax2 + DyZ)' (12.7.3) 

Again the temporal frequency W is fixed (and given) but c --.:... c(J~, y) for inhomoge­
neous media Or c = con:-:;tant for uniform media. 

In 1lniform media (c = constant); plaue waves of the form .6' = Aoei(kp·+k2y-wt) 
or 

A = Aoei(k1X-/-kZY) 
(12.7.4)

exist if 
2	 2 

w = c (kf + ki)· (12.7 ..5) 

For nearly plane \-"aves, we introduce the phase v(x, y) of the redueed wave 
equation: 

A(:e,y) = R(x,y)e'"lx.y ). 
(12.7.6) 

The wave numbers k1 and k2 for uniform media are usually called p and q respec­

tively and are defined by
 

f),1./. 
P = (12.7.7){)x 

Ou 
q = (12.7.8)Oy' 

As an approximation (which can be derived using perturbation methods), it can 
be shown that the (slowly varying) wave numbers satisfy (12.7.5), corresponding to 
the given temporal frequency associated with plane waves, 

2 w =	 c'(p' + q'). (12.7.9) 

This is a first order nonlinear partial difff'l'€ntial equation (not quasi-linear) for the 
phase u(x, V), known as the eikonal equation 

2 

w = (~)2 + (iJU)'2 (12.7.10)c {)x iJy 
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where 1.4-' is a fixed reference temporal frequency and c = C\T, y) for inhomogeneous 
media or c = constant for uniform media. Sometimes the index of refraction 
n(x, y) is introduced proportional to~. The amplitude R(x, y) solves equations 
(which we do not discuss) known as the transport equations, which describe the 

propagation of energy of these nearly plane waves. 

12.7.2	 Solving the Eikonal Equation in Uniform Media
 
and Reflected Waves
 

The simplest example of the eikonal equation (12.7.10) occurs in uniform media 

(0 = constant), 

(12.7.11)au)' (au)' w' 
( ax + ay = c.,' 

where wand c are constants. Rather than solve for u(x, y) directly, we will show 
that it is easier to solve first for p = ~~ and q = %; . Thus, we consider 

W'	 (12.7.12)
p2 +q' = ?i. 

Differentiating (12.7.11) or (12.7.12) with respect to x yields
 

&p iJq

p_+q- =0. 

ax ax 

Since ~ -= ~, p satisfies a first-order quasi-linear partial differential equation
 

iJp up

p-u· + q-u = o. 

r Y 

Equation (12.7.13) may be solved by the method of characteristics [,ee (12.6.7)] 

dx dy dp
;=-q=O 

If there is a boundary condition for p, then (12.7.14) can be solved for p since: 

q=±V1r - p' (from (12.7.12). Since (12.7.14) shows that p is constant along e 

characteristic, it abo fonows from (12.7.14) that each characteristic is a strai 
line. In this way P can be determined. However, given p = ~, integrating for 1J, .' 

not cortlpletely straightforward.
We have differentiated the eikonal equation with respect to x.
 

differentiate with respect to y we obtain:
 

{)p uq
p_+q_=O.

()y ay 

12.7. First-Urder ."IIonIinear PlJb:, 
!j(i5 

A first-order quasi-linear partial differential equation for q can be obtained by again 
using 29- = E2... 

ax By' 

~ ~	 .P-a +q" = O.	 (12.7.15)x uy 

Thus, d; = 7 = ~ , which when combined with (12.7.14) yields the more general 
result 

q
dx = dy = dp = d	 (12.7.16) 
p q 0 o 

However 1 usually we want to determine u so that we wish to determine how u 
varies along this characteristic: du = dB" dx + 2JAdy = pdx + qdy = p2cix + q2!!:JL = 

:r. a y	 p p 

(p' + q')~ = ';? ~T, where we have used (12.7.16) and (12.7.12). Thus, for the 
eikonal equation 

dx = dy _ dp = dq =~. (12.7.17) 
P q 0 0 w' /c2 

The Characteristics are straight lines since p and q are constants along the charac­
teristics. 

Reflected waves. We consider an elementary incoming plane wave ei(kl.X~wt) 
where k[ represents the given constant incoming wave numher vector and \vhere 
w = clkII· We assume the plane wave reflects off a curved boundary (as illus­
trated in Figure 12.7.1) which we represent with a parameter T as x = XO(T) and 
Y = YO(T).	 We intruuuce the unknown reflected wave, R(x, t)eiu(x'Y)e~iwt, and we 
wish to determine the phase u(x, y) of the reflected wave. The eikonal equation 

2 
2 w 2p2 + q = _ = IkII

c' 
Can be interpreted as saying the slowly varying reflected wave number vector (P, q) 
has the same length as the c.onstant incoming wave number vector (physically the 
slowly varying reflected wave will always have the same wave length as the incident 
wave). We assume the boundary condition on the curved boundary is that the t.otal 
field is zero (other boundary conditions yield the same equations for the phase): 
o = eiik,.X-wt) + R(x, t)e;~(x'Y)e-;w'. Thus, on the boundary the phase of the 
incoming wave and the phase of the retlected wave must be the same: 

u(xo, Yo) ~ k,· "'0. (127.18) 

R 
x = XO(T)k 

I y=yo(r) ~ 
/ 

Figure 12.7.1: Reflected wave from curved boundary. 

I:' 
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Taking the derivative of (12.7.18) with respect to the parameter r shows that 

(12.7.19)~dxo + au dyo = pdxo + qdyo = k R . dxo = k I . dxo
 
ax dr 0 y dr dr dT dr dr '
 

where we have noted that the vector (P, q) is the unknown reflected wave number 
vector kR (because p and q are constant along the characteristic). Since dxo/dr is
 
a vector tangent to the boundary, (12.7.19) shows that the tangential component of
 
the incoming and reflecting wave numbers must be the same. Since the magnitude
 
of the incident and reflecting wave number vectors are the same, it follows that the
 
normal component of the reflected wave must be minus the normal component of
 
the incident wave. Thus, the angle of reflection off a curved boundary is the same
 
as the angle of incidence. Thus at any point along the boundary the constant value 

of p and q is known for the reflected wave. Because q = ±J;?- p2 there are two 
solutions of the eikonal equation: oue represents the incoming wave and the other 

(of interest to us) the reflected wave.
To obtain the phase of the reflected wave, we DlUst solve the characteristic 

equations (12.7.17) for the eikonal equation with the boundary condition specified 
by (12.7.18). Since for uniform media ~ = IkI I,2 is a constant, the differential 

equation for u along the characteristic, ~; = ;?~ = 'lk:
I' , can be integrated (since 

p il:i consta.nt) using the boundary condition to give 
2

\kI1u(x, y) = _(x - XO) + kI . Xo, 
p 

along a specific characteristic. The equation for the characteristics ply - YO) = 
q(x _ xa) corresponds to the angle of reflection equaling the angle of incidence. 
Since p2 + q2 = \kI\2, the more pleasing representation of the phase (solution of the 

eikonal equation) follows along a specific characteristic: 
(12.7.20)

u(x, y) = p(x - xo) + q(y - YO) + kI . Xo, 

where u(xo, YO) = kI . Xo is the phase of the incident wave on the boundary. 

12.7.3 First-Order Nonlinear Partial Differential Equations' 

Any first-order nonlinear partial differential equation can be put in the form 

ou ou)=o.
F x,y,u, ox' oy( 

Taking the partial derivative of (12.7..22) with respect to x, we obtain 

op oq
Fx + Fup + Fpax + Fqox = 0, 

where we use the subscript notation for partial derivatives. For example F =: 
u 

~~ keeping x,y,p,q con~tant. Since *= ~, we obtain a quasi-linear partial 
differential equation fo1' p: 

op op
Fp - + Fq", = -p, - Fup.

ax uy 

Thus, the method of characteristics for p yields 

dx = dy = dp (12.723)
Fp Fq -F, - Fup 

Similarly, taking the partial derivative of (12.7.22) with respect to y, yields 

ap oq
Fy + Puq + Fpc> + Fq- = O. 

uy oy 

Here f}; = ¥; yields a quasi-linear partial differential equation for q: 

aq oq ,
F + F = -Fy - ruq.pox qay 

The characteristic direction is the same as in (12.7.23), so that (12.7.23) is amended 
to become 

dl: = dy = dp = dq. (12.7.24) 
Fp Fq -F" - Fup -Fy - Fuq 

In order to solve for u, we want to derive a differential equation for u(x, y) along 
the characteristics: 

ou au	 dx dy dx 
du = 7>:'dx + ",dy = pdx + qdy = pFp'F + qFq-F, = (pFp + qFq)'F

(.IX uy	 p q p 

The complete system to solve for p, q, and u is 

dx dy dp	 dq du 
Fp = Fq = -F" - Fup = -Fy - ~!q pFp + qF ' 

(12.7.25) 
q 

As with the eikonal equation example of the previous subsection, we show 
p = ~; and q = g~ solve quasi-linear partial differential equations, and hen' 

(12.7.21)	 can be solved by the method of characteristics. Using p and q gives 

F(x, y, u,p, q) = O. 




