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Chapter 1

Heat Equation

1.1 Introduction

We wish to discuss the solution of elementary problems involving partial differ-
ential equations, the kinds of problems that arise in various fields of science and
engineering. A partial differential equation (PDE) is a mathematical equation
containing partial derivatives. for example,

du du )
57 T35 = 0. (L.1.1)

We could begin our study by determining what functions u{x, ¢) satisfy {1.1.1).
However, we prefer to start by investigating a physical problem. We do this for
two reasons. First, our mathematical techniques probably will be of greater inter-
est to you when it becomes clear that these methods analyze physical problems.
Second, we will actually find that physical considerations will motivate many of our
mathematical developments.

Many diverse subject areas in engineering and the physical sciences are domi-
nated by the study of partial differential equations. No list could be all-inclusive.
However, the following examples should give you a feeling for the type of arveas
that are highly dependent on the study of partial differential equations: acoustics,
aerodynamics, elasticity, electrodynamics, fluid dynamics, geophysics (seismic wave
propagation), heat transfer, meteorology, oceanography, optics, petroleum engineer-
ing, plasma physics (ionized liquids and gases), quantum mechanics.

We will follow a certain philosophy of applied mathematics in which the analysis
of a problem will have three stages:

1. Formulation
2. Solution
3. Interpretation

We begin by formulating the equations of heat flow describing the transfer of
thermal energy. Heat energy is caused by the agitation of molecular matter. Two
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2 Chapter 1. Heat Eqguation

basic processes take place in order for thermal energy to move: conduction and con-
vection. Conduction results from the collisions of neighboring molecules in which
the kinetic energy of vibration of one molecule is transferred to its nearest neighbor.
Thermal energy s thus spread by conduction even if the molecules themselves do
not move their location appreciably. In addition, if a vibrating molecule moves from
one region to another, it takes its thermal energy with it. This type of movement
of thermal energy is called convection. In order to begin our study with relatively
simple problems, we will study heat flow ounly in cases in which the conduction of
heat enerpy is much more significant than its convection. We will thus think of
heat How primarily in the case of solids, although heat transfer in fluids (liquids
and gases} is also primarily by conduction if the finid velocity is sufficiently small.

1.2 Derivation of the Conduction of Heat
in a One-Dimensional Rod

Thermal energy density. We begin by considering a rod of constant cross-
sectional area A, oriented in the z-direction (from x = 0 to « = L) as illustrated
in Fig. 1.2.1. We temporarily introduce the amount of thermal energy per unit
volume as an unknown variable and call it the thermal energy density:

e{x,t) = thermal energy density.

We agsume that all thermal quantities are constant across a section; the rod is one-
dimensional. The simplest way this may be accomplished is to insulate perfectly
the lateral surface area of the rod. Then no thermal energy can pass through the
lateral surface. The dependence on x and ¢ corresponds to a situation m which
the rod is not uniformly heated; the thermal energy density varies from one cross
section to another.

Q o[z, tl{ [z + Axz,t) - U
A - r
z=0

T x4+ Ar r==5L

Figure 1.2.1: one- dimensional rod with heat energy flowing into and out of a thin
slice.

Heat energy. We consider a thin slice of the rod contained between x and z+
A as tllustrated in Fig. 1.2.1. If the thermal energy density is constant throughout
the volume, then the total energy in the slice is the product of the thermal energy
density and the volume. In general, the energy density is not constant. However, if
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A is exceedingly small, then e(z, £} may be approximated as a constant thronghout
the volume so that

heat energy = e(x, )4 Axr,

since the volume of a slice is A Az,

Conservation of heat energy. The heat cuergy between & and o + Az
changes in time due only to heat energy flowing across the edges (& and » + Az) and
heat energy generated inside (due to positive or negative sources of heat energy).
No heat energy changes are due to flow across the lateral surface, since we have
assumed that the lateral surface is insulated. The fundamental heat How process is
described by the ward equation

rate of change heat. energy flowin

& Ly flowing heat encrgy genrerated
of heat enerpy = across boundaries + A e
- ' o inside per unit time.
mn timne per unit time

This is called conservation of heat energy. For the small slice, the rate of change
of heat energy is

% le{x. t)A Ax],
a

where the partial derivative #7 is used because x is being held fixed.

Heat flux. Thermal energy flows to the right or left in a one-dinensional
rod. We introduce the heat flux

heat flux (the amount of thermal energy per unit
time flowing to the right per unit surface area).

¢’('L'st) =

If ¢z, t} < 0, it 1neans that heat energy is flowing to the left. Heat energy flowing
per unit time across the boundaries of the slice is ¢{w, #) A — é(x + Az, t) A, since the
heat filux is the flow per unit surface area and it st be multiplied by the surface
area. If ¢(x.t) > 0 and ¢(x + Ax.t) > 0, as illustrated in Fig. 1.2.1. then the heat
energy flowing per unit time at z contributes to an increase of the heat energy in
the slice, whereas the heat flow at £ + Ar decreases the heat energv.

Heat sources. We also allow for internal sources of thermal energy:

2(z.1) = heat energy per unit volume generated per unit time,
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perhaps due to chemical reactions or electrical heating. C{x,t) is approximately
cotistant in space for a thin slice, and thus the total thermal energy generated per
unit time in the thin slice is approximately (J(x,#}4 Ax.

Conservation of heat energy (thin slice). The rate of change of
heat energy is due to thermal energy flowing across the boundaries and internal
SOUrces:

% le(z, }A Ax] = ¢z, t)A — ¢(x + Az, 1) A + Ha, 1) A Ax. (1.2.1)

Equation (1.2.1) is not precise hecause various quantities were assumed approxi-
mately constant for the small eross-sectional slice. We claim that (1.2.1) hecomes
increasingly accurate as Az — (1. Before giving a careful (and mathematically rigor-
ous) derivation, we will just attempt to explain the basic ideas of the limit process,
Az — 0. In the limit as Az — 0, (1.2.1) gives no interesting information, namely,
0 = 0. However, if we first divide by Az and then take the limit as Az — 0, we

obtain 5 ; Awt

a—i = Jigu 9z, ) (’g(f +4at) + Q(x. ), (1.2.2)
where the constant cross-sectional area has been canceled. We claim that this
result is exact (with no small errors), and hence we replace the = in {1.2.1) by = in
(1.2.2). In this limiting process, Az — 0, is being held fixed. Consequently, from
the definition of a partial derivative,

de 09
37 = ,_8; + Q. (1.2.3)

Conservation of heat energy (exact). An alternative derivation of
conservation of heat energy has the advantage of our not being restricted to small
slices. The resulting approximate calculation of the limiting process (Azx — 0} is
avoided. We consider any finite segment (from r = a to = = b) of the original one-
dimensional rod {see Fig. 1.2.2). We will investigate the conservation of heat energy
in this region. The total heat energy is f; e{z,t)dz, the sum of the contributions of
the infinitesimal slices. Again it changes only due to heat energy flowing through
the side edges (x = a and x = b) and heat energy generated inside the region, and
thus (after canceling the constant A)

b b
%/ e dz = ¢(a,t)—¢(b,t)+/ Q dz. (1.2.4)

Technically, an ordinary derivative d/dt appears in (1.2.4) since fabe dz depends
only on ¢, not also on x. However,

d b Je

b
Efa edr= ) mdm,
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?(a,t) é(b,t)
Figure 1.2.2: Heat energy flowing into
and ont of a finite segment of a rod.
0 T=a z=bh L

if @ and b are constants (and if e is continuous). This holds since inside the integral
the ordinary derivative now is taken keeping z fixed, and hence it must be replaced
by a partial derivative. Every term in {1.2.4) is now an ordinary integral if we notice
that

b
dat) = p0,0) =~ [ P,

(this! being valid if ¢ is continnously differentiable). Consequently,

briBe D¢
]a (a-’ra;_Q)dcc—U.

This integral must be zero for erbitrary a and b; the area under the curve must be
zero for arbitrary limits. This is possible only if the integrand itself is identically
zero.? Thus, we rederive (1.2.3) as

(1.2.5)

Equation (1.2.4), the integral conservation law, is more fundamental than the
differential form (1.2.5). Equation (1.2.5) is valid in the usual case in which the
physical variables are continuous.

A further explanation of the minus sign preceding d¢/8z is in order. For exam-
ple, if 3¢/0x > 0 for a < 7 < b, then the heat flux ¢ is an increasing function of
z. The heat is flowing greater to the right at £ = b than at 2 = a (assuming that
b > a). Thus {neglecting any effects of sources Q), the heat energy must decrease
between & = a and x = b, resulting in the minus sign in (1.2.5).

Temperature and specific heat. We usually describe materials by
their temperature,

! This is one of the fundamental theorems of calculus.

ZMost proofs of this result are inelegant. Suppose that f(z) is continuous and fb F=z)dz =0
(3

for arbitrary a and b. We wish to prove f(z) = 0 for all z. We can prove this by assuming that
there exists a point xp such that f(xo) # 0 and demonstrating a contradiction. If Flzo) # 0 and
f(x) is continuous, then there exists some region near xg in which f{x) is of one sign. Pick a

and b to be in this region, and hence f: Ff(z)dz # 0 since f(z) is of one sign throughout. This

contradicts the statement that f: f{z}dz = 0, and hence it is impossible for f(xg) £ 0. Equation
(1.2.5) follows.
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u(z,t) = temperature,

not their thermal energy density. Distinguishing between the concepts of tempera-
ture and thermal energy is not necessarily a trivial task. Only in the mid-1700s did
the existence of accurate expertmental apparatus enable physicists to recognize that
it may take different amounts of thermal energy to raise two different materials from
one temperature to another larger temperature. This necessitates the introduction
of the specific heat {or heat capacity):

specific heat (the heat energy that must be supplied to a unit
mass of a substance to raise its temperature one unit).

In general, from experiments (and our definition) the specific heat ¢ of a material
depends on the temperature u. For example, the thermal energy necessary to raise
a unit mass from 0°C to 1°C could be different from that needed to raise the mass
from 85°C to 86°C for the same substance. Heat flow problems with the specific
heat depending on the temperature are mathematically quite complicated. (Exer-
cise 1.2.1 briefly discusses this situation.) Often for restricted temperature intervals,
the specific heat is approximately independent of the temperature. However, exper-
iments suggest that different materials require different amounts of thermal energy
to heat up. Since we would like to formulate the correct equation in situations
in which the composition of our one - dimensional rod might vary from position teo
position, the specific heat will depend on x,¢ = ¢{x). In many problems the rod is
made of one material (a uniform rod), in which case we will let the specific heat ¢
be a constant. In fact, most of the solved problems in this text (as well as other
books) correspond to this approximation, ¢ constant.

Thermal energy. The thermal energy in a thin slice is e(z,t)A Az, How-
ever, it is also defined as the energy it takes to raise the temperature from a reference
temperature 0° to its actual temperature u{z,t). Since the specific heat is inde-
pendent of temperature, the heat energy per unit mass is just c(z)u{z,f). We thus
need to introduce the mass density p{z}:

p(z) = mass density (mass per unit volume),

allowing it to vary with z, possibly due to the rod being composed of nonuniform
material. The total mass of the thin slice is pA Ax. The total thermal energy in
any thin slice is thus e(z)u(z, t} - pA Az, so that

e(z,t}A Az = e{x)u(z, t)pA Az,
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In this way we have explained the basic relationship between thermal energy and
temperature:

ele.t) = clz)p(x)uiz,t). {1.2.6)

This states that the thermal energy per unit wolume equals the thermal energy
per unit mass per unit degree times the temperature times the mass density (mass
per unit volume}. When the thernal energy density is eliminated using (1.2.6).
conservation of thermal energy, (1.2.3) or (1.2.5), becomes

du do

(‘(33),0(7“)6—?S =5 +0Q. (1.2.7)

Fourier’s law. Usually, (1.2.7} is regarded as one equation in two unknowns:
the temperature u{x. ) and the heat flux (flow per unit surface area per unit time)
¢(x,t). How and why does heat energy flow? In other words, we need an expression
for the dependence of the flow of heat energy on the temperature field. First we
summarize certain qualitative properties of heat low with which we are all familiar:

1. If the temperature is constant in a region, no heat energy flows,

2. If there are temperature differences, the heat encrgy flows from the hotter
region to the rolder region.

3. The greater the temperature differences (for the same material). the greater
is the flow of heat energy.

4. The flow of heat energy will vary for different materials, even with the same
temperature differences.

Fourier (176% — 1830) recognized properties 1 through 4 and summarized them (as
well as numerous experiments) by the formula

(1.2.8)

known as Fourier’s law of heat conduction. Here du/8x is the derivative of
the temperature: it is the slope of the temperature (as a function of x for fixed t);
it represents temperature differences (per unit length). Equation (1.2.8) states that
the heat flux is proportional to the temperature difference (per unit length). If the
temperature u increases as x increases (i.e., the temperature is hotter to the right),
Jdu/8z > 0, then we know {property 2) that heat energy flows to the left. This
explaing the minus sign in (1.2.8).
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We designate the coefficient of proportionality K. It measures the ability of the
material to conduct heat and ix called the thermal conductivity. Experiments
indicate that different materials conduct heat differently; Ky depends on the partie-
ular material. The larger Ky is, the greater the flow of heat energy with the same
temperature diffcrences. A material with a low value of Ay would be a poor con-
ductor of heat energy (and ideally snited for horme insulation). For a rod composed
of different materials, Ky will be a function of r. Furthermore, experiments show
that the ability to conduct heat. for most materials is different at different temper-
atures, Kp{x, u) . However, just as with the specific heat . the dependence on the
temperature is often not important in particular problemns. Thus, throughout this
text we will assume that the thermal conductivity Ky only depends on z, Ky(x).
Usually, in fact, we will discuss uniform rods in which K is a constant.

Heat equation. If Fourier's law, (1.2.8), is substituted into the conservation
of heat energy equation, (1.2.7), a partial differential equation results:

du d ( du

ST = or ..%) + Q. {1.2.9)

We usually think of the sources of heat emergy @ as being given, and the only
unknown being the temperature u(x.t). The thermal coefficients ¢, p, K, all depend
on the material and hence may be functions of z. In the special case of a uniform rod,
in which ¢, p, Ky are all constants, the partial differential equation {1.2.9) becomes

Ju &2
r— — Kyp—— .
ot B2 e

If, in addition. there are no sources, (¢ = 0, then after dividing by the constant cp,
the partial differential equation becomes

du 32
bl (1.2.10)
ot 2
where the constant k,
K
=2
cp

is called the thermal diffusivity, the thermal conductivity divided by the product
of the specific heat and mass density. Equation (1.2.10) is often called the heat
equation; it corresponds to no sources and constant thermal properties. If heat
energy is initially concentrated in one place, (1.2.10) will describe how the heat
energy spreads out, a physical process known as diffusion. Other physical quan-
tities besides temperature smooth out in much the same manner, satisfying the
same partiat differential equation (1.2.10). For this reason (1.2.10) is also known
as the diffusion equation. For example, the concentration w(z,¢) of chemicals

1.2, Conduction of Heat in One-Dimension 9

(such as perfumes and pollutants) satisfies the diffusion equation (1.2.8) in certain
one- dimensional situations.

Initial conditions. The partial differential equations describing the flow of
heat energy, (1.2.9) or (1.2.10), have one time derivative. When an ordinary differ-
ential equation has one derivative, the initial value problem consists of solving the
differential equation with one initial condition. Newton's law of motion for the posi-
tion & of a particle yields a second-order ordinary differential equation, md?r/dt? =
forces. It involves second derivatives. The initial value problem consists of solving
the differential equation with two initial conditions, the initial position z and the
initial velocity da/dt. From these pieces of information (including the knowledge of
the forces), by solving the differential equation with the initial conditions, we can
predict the future motion of a particle in the z-direction. We wish to do the same
process for our partial differential equation. that is. predict the future temperature.
Since the heat equations have one time derivative. we must be given one initial
condition {IC) (usuaily at ¢ = (1), the initial temperature. Tt is possible that the
initial temperature is not constant, it depends on x. Thus, we must be given the
initial temperature distribution,

w(x.0) = flux).

Is this enough information to predict the future temperature? We know the initial
temperature distribution and that the temperature changes according to the partial
differential equation (1.2.9) or (1.2.10). However, we need to know that happens
at the two boundaries, ¢ = 0 and z = L. Without knowing this information, we
cannot predict the future. Twe conditions are needed corresponding to the second
spatial derivatives present in (1.2.9} or (1.2.10), usually one condition at each end.
We discuss these boundary conditions in the next section.

EXERCISES 1.2

1.2.1. Suppose that the specific heat is a function of position and temperature,
oz, u).

(a) Show that the heat energy per unit mass necessary to raise the temper-
ature of a thin slice of thickness Az from 0° to u(z,?) is not c(x)u(x. t),
but instead [, c(z, @)da.

(b) Rederive the heat equation in this case. Show that (1.2.3) remains un-
changed.

1.2.2. Consider conservation of thermal energy (1.2.4) for any segment of a one-
dimensional rod @ < r < b. By using the fundamental theorem of caleulus

a [t
5 | 1z = £0),

derive the heat equation (1.2.9).
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\/"1.2.3. If w(z, t) is known, give an expression for the total thermal energy contained

inarod (0 <x< L)

1.2.4. Consider a thin one- dimensional rod without sources of thermal energy
whose lateral surface area is not insulated.

(a} Assume that the heat energy flowing out of the lateral sides per unit sur-
face area per unit time s w(i, ). Derive the partial differential equation
for the temperature w(x, t).

(b) Assume that w(z,t) is proportional to the tcmperature difference be-
tween the rod u(r, ) and a known outside temperature y(r,?). Derive
that

du J ( LA

P f
g =5 Ud_a:) - E[u(;r:,t) —y{x, 1] h(x), (1.2.11)

where h{z) i{s a positive z-dependent proportionality, I” is the lateral
perimeter, and 4 is the cross-sectional area.

(¢) Compare (1.2.11) ta the equation for a one- dimensional rod whose lat-
eral surfaces are insulated. but without heat sources,

(d) Specialize (1.2.11} to a rod of circular cross section with constant thermal
properties and 0° outside temperature.

*(e) Consider the assumptions in part (d). Suppose that the temperatnre
in the rod is uniform [i.e., u(z, ) = u(#)]. Determine u(z) if initially
w(0) = uy.

1.3 Boundary Conditions

In solving the heat equation, either (1.2.9) or (1.2.10}, one boundary condition
(BC) is needed at each cud of the rod. The appropriate condition depends on the
physical mechanismn in effect at each end. Often the condition at the boundary
depends on both the material inside and outside the rod. To avoid a more difficult
mathematical problem, we will assume that the outside enviretinent is known, not
significantly altered by the rod.

Prescribed temperature. In certain situations, the temperature of the
end of the rod, for example x = 0. may be approximated by a prescribed tem-
perature,

u(0,8) = ug(t). (1.3.1)
wherc up(#) is the temperature of a fluid bath (or reservoir) with which the rod is
in contact.

Insulated boundary. In other situations it is possible to prescribe the
heat flow rather than the temperature,

(1.3.2)

—Ko(0)5(0,1) = #(t),
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where ¢{t) is given. This is equivalent to giving one condition for the first derivative,

du/dr, at r = 0. The slope is given at @ = (. Equation (1.3.2} cannot be integrated

in xr because the slope is known only at one value of . The simplest example of the

preseribed heat flow boundary condition is when au end is perfectly insulated

(sometimes we omit the “perfectly”). In this case there is no heat flow at the

houndary. [f o = (} is insulated. then
ﬁ(o. ) = 0. (1.3.3)

-

Newton’s law of cooling. When a one- dimensional rod is in contact. at
the boundary with a moving fluid (e.g.. air), then neither the prescribed temperature
nor the prescribed heat flow may be appropriate. For example, let us imagine a
very warty rod in contact with cooler moving air. Heat will leave the rod, heating
up the air. The air will then carry the heat away. This process of heat transfer is
called convection. Howoever, the air will be hotter near the rod. Again, this is a
complicated problem: the air temperature will actnally vary with distance from the
rod (ranging betwcen the bath and rod temperatures). Experinients show that, as a
good approximation, the hieat fow leaving the rod is proportional to the temperature
difference between the bar and the prescribed external temperature. This boundary
condition is called Newton’s law of cooling. If it is valid at » = 0, then

I}

—Ii*o(ﬂ)?af:(ﬂ,t) = —H[u{0,t] — up(t)]. (1.3.4)

where the proportionality constant H is called the heat transfer coefficient {or
the convection coefficient). This boundary condition® involves a linear combination
of v and du/8x. We must be carveful with the sign of proportionality. If the rod
is hotter than the bath [u{0.1) > up(t)], then usually heat flows out of the rod at
x = 0. Thus. heat is flowing to the left, and in this case the heat flow would be
negative. That is why we introduced a minus sign in (1.3.4) (with H > 0). The same
conclusion would have been reached had we assumed that «(0,%) < up(f). Another
way to understand the signs in (1.3.4} is to again asswme that u(0,#) > ug(). The
temperature is hotter to the right at x = 0 and we should expect the temperature
to continue to increase to the right. Thus, du/dx should be positive at x = 0.
Equation (1.3.4) is consistent with this argument. In Exercise 1.3.1 you are asked
to derive, in the same manner, that the equation for Newton’s law of cooling at a
right end point + = L is

*KO(L)%(L,#E) = Hlu(L,t) — un(t)), (1.3.5)

where up(t) is the external temperature at * = L. We immediately note the
significant sign difference between the left boundary (1.3.4) and the right boundary
(1.3.5).

The coefficient H in Newton’s law of cooling is experimentally determined. It
depends on properties of the rod as well as fluid properties (including the fiuid

*For another situation in which {1.3.4) is valid, see Berg and McGregor [1966).
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velocity). If the coefficient is very small, then very little heat energy flows across
the boundary, In the limit as H — 0, Newton’s law of cooling approaches the
insulated boundary condition. We can think of Newton's law of cooling for H # 0 as
representing an imperfectly insulated boundary. If H — ¢, the boundary condition
approaches the one for prescribed temperature, w{0.t) = up(t). This is most easily
seen by dividing (1.3.4), for example, by H:

7K(](U) du

TS (0.0) = ~{ul0.) — us (1)

Thus, H — oo corresponds to no insulation at all.

Summary. We have described three different kinds of boundary eonditions.
For example, at = = (:

u(0,ty = wuglf) prescribed temperature
—KU(W%‘((L B = t) prescribed heat flux
—KU(O)%—;(O, t} = —Hu(0,t) —up(t)] Newton's law of cooling

These same conditions could hold at ¢ = L, noting that the change of sign (—H
becoming H) is necessary for Newton’s law of cooling. One boundary condition
occurs at each boundary. It is not necessary that both boundaries satisfy the same
kind of boundary condition. For example, it is possible for zz = 0 to have a prescribed

oscillating temperature
u{0,t) = 100 — 25 cost,

and for the right end, z = L, to be insulated,

du
— (L, 1) =0.
Bx(L')

EXERCISES 1.3

1.3.1. Consider a one- dimensional rod, 0 < z < L. Assume that the heat energy
flowing out of the rod at = = L is proportional to the temperature difference
between the end temperature of the bar and the known external temperature.
Derive (1.3.5) (briefly, physically explain why H > Q).

\/ *1.3.2. Two one- dimensional rods of different materials joined at » = z are said

to be in perfect thermal contact if the temperature is continuous at x = zyg:
u(rg—,t) = u{xo+.t)

and no heat energy is lost at x = zgo (i.e., the heat energy flowing out of
one flows into the other}. What mathematical equation represents the latter
condition at £ = x¢? Under what special condition is & «/dz contimous at

x = xq7?
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*1.3.3. Consider a bath containing a fluid of specific heat ¢; and mass density g,
which surrounds the end x = L of a one - dimensional rod. Suppose that the
bath is rapidly stirred in a manner such that the bath temperature is ap-
proximately uniform throughout. equaling the temperature at « = L, u(L, t).
Assume that the bath is thermally insulated except at its perfect thermal
contact with the rod, where the bath may be heated or cooled by the rod.
Determine an equation for the temperature in the bath. (This will he a
boundary condition at the end @ = L.) (Hint: Sce Exercise 1.3.2.)

1.4 Equilibrium Temperature Distribution

1.4.1 Prescribed Temperature

Let us now formulate a simple, but typical, problem of heat How. If the ther-
mal coefficients are constant and there are no sonrces of thermal energy, then the
ternperature u(x.t) in a one- dimensional rod 0 < z < L satisfies

du 0%y

— = h=—. 1.4.1]

ot du? (4.1
The solution of this partial differential equation must satisfy the initial condition

u(r.0) = f{x) {1.4.2)

and one boundary condition at each end. For example, each end might he in contact
with different large baths, such that the temperature at each end is prescribed

u((),t) = Tt

U(L.1) T (t). (1.4.3)

One aim of this text is to enable the reader to solve the problem specified by (1.4.1
- 1.4.3).

Equilibrium temperature distribution. Before we begin to attack
such an initial and boundary value prohlem for partial differential equations, we
discuss a physically related question for ordinary differential equations. Suppose
that the boundary conditions at & = 0 and r = L were steady {i.c.. independent
of time), -

w(0,t) =1, and w(L.t) =15,

where 1" and 15 are given constants. We define an equilibrium or steady-state
solution to be a temperature distribution that does not depend on time, that is,
u(z,t) = u(z). Since §/0t u(z) = 0, the partial differential equation becotnes
k(92%u/d2?) = 0, but partial derivatives are not necessary, and thus

(1.4.4)
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The boundary conditionus are

T
(1.4.5)
Ts.

u(0)
u(L)

In doing steady-state calculations, the initial conditions are usually ignored. Equa-
tion {1.4.4) is a rather trivial second-order ordinary differential equation. Its gen-
eral solution may be obtained by integrating twice. Integrating (1.4.4) yields
du/dx = C, and integrating a second time shows that

u(z) = Crz 4+ Ca. (1.4.6)

We recognize (1.4.6) as the general equation of a straight line. Thus, from the
boundary conditions (1.4.5) the equilibrium temperature distribution is the straight
line that equals T} at £ = 0 and T3 at z = L, as sketched in Fig. 1.4.1. Geomet-
rically there is a unique equilibrium solution for this problem. Algebraically, we
can determine the two arbitrary constants, €1 and (%, by applying the boundary
conditions, w{0) = T} and w{L) = Tb:

w(0)y =77 implies T =3

. (14.7)
w{l}y=T, implies Tb=CL+Co.

It is easy to solve (1.4.7) for the constants Cy = T and € = (¥3 — T1)/L. Thus,
the unigue equilibrium solution for the steady-state heat equation with these fixed
boundary conditions is

Ty — 1T
u(z) =T, + —= 7% (1.4.8)

TQ
Figure 1.4.1: Equilibrium tempera-
T ture distribution.

Approach to equilibrium. For the time- dependent problem, (1.4.1) and
(1.4.2), with steady boundary conditions (1.4.5), we expect the temperature distri-
bution u{z,t) to change in time; it will not remain equal to its initial distribution
f(x). If we wait a very, very long time, we would imagine that the inflnence of the
two ends should dominate. The initial conditions are usually forgotten. Eventually,
the temperature is physically expected to approach the equilibrium temperature

1.4, bguilibrium lemperature Distribution 15

distribution, since the boundary conditions are independent of time:

Jim w(z,t) =ulz)=T1 + i ;Tl

T (1.4.9)

In Sec. 7.2 we will solve the time- dependent problem and show that (1.4.9) is
satisfied. However, if a steady state is approached, it is more easily obtained by
directly solving the equilibrium problem.

1.4.2 Insulated Boundaries

As a second example of a steady-state calculation, we consider a one - dimensional
rod again with no sources and with constant thermal properties, but this time with
insulated boundaries at » = (0 and 2 = L. The formulation of the time- dependent
problem is

du 8%y

PD M —
E S =k (1.4.10)
IC: ul(x, 0) = fix) (1.4.11)

du

BC1: (0.6 =0 (1.4.12)
BC2: QUi g 4.13
: —(L.t) = 0. (1.4.13)

The equilibrium problem is derived by setting 8@ ¢ = 0. The equilibrium tempera-
ture distribution satisfies

2
ope:| L% _, (1.4.14)
dr?
du
BCl: — =
—(0) =0 (1.4.15)
BC2: du{L' =0 (1.4.16)

where the initial condition is neglected (for the moment). The general solution of
d?u/dz? = 0 is again an arbitrary straight line,

u=~Cyz+ Cs. (1417}

‘The boundary conditions imply that the slope must be zero at both ends. (Geo-
metrically, any straight line that is flat (zero slope) will satisfy (1.4.15, 1.4.16) as
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u(z)
Figure 1.4.2: Various constant equi-
librium temperature distributions
(with insulated ends).
=0 =1L

iHlustrated in Fig. 1.4.2. The solution is any constant temperature. Algebraically,
from (1.4.17), du/dz = C; and both boundary conditions imply €7 = 0. Thus,

w(r) = Cy (1.4.18)

for any constant ;. Unlike the first example (with fixed temperatures at both
ends), here there is not a unique equilibrium temperature. Any constant tempera-
ture is an equilibrium temperature distribution for insulated boundary conditions.
Thus, for the time- dependent initial value problem, we expect

lim u(x,t) = Cy;
t—00

if we wait long enough a rod with insulated ends should approach a constant tem-
perature. This seems physically quite reasonable. However, it does not make sense
that the solution should approach an arbitrary constant; we ought to know what
constant it approaches. In this case, the lack of uniqueness was caused by the com-
plete neglect of the initial condition. In general, the equilibrium solution will not
satisfy the initial condition. However, the particular constant equilibrium solution
is determined by considering the initial condition for the time- dependent prob-
lem {1.4.11). Since both ends are insulated, the total thermal energy is constant.
This follows from the integral conservation of thermal energy of the entire rod [see
(1.2.4)]:

d [t du du .
— = —Kg—(0, —(L,1). 4.
dt/; cpu dx D(“)a:( _t)JrKUax( ) {1.4.19)
Since both ends are insulated,
L -
f cpu dr = constant. {1.4.20)
0

One implication of {1.4.20) is that the initial thermal energy must equal the fi-
nal (litng—,o) thermal energy. The initial thermal energy is cp fOL f(x)dz since
u(z,0) = f{z), while the equilibrium thermal energy is cp fOL Codz = epCy L since
the equilibrium temperature distribution is a constant w(x,t) = C;. The constant
(s is determined by equating these two expressions for the constant total ther-
mal energy, cp jOL flx)dr = ¢pCq L. Solving for Cy shows that the desired unique
steady-state solution should be

u(@)=Cr= 1 '/0 f(z) da, (1.4.21)

.4
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the average of the initial temperature distribution. It is as though the initial
condition is not entirely forgotten. Later we will find a w(x,t) that satisfies (1.4.10
~1.4.13) and show that lime . w({x, t) is given by (1.4.21).

EXERCISES 1.4

\/1.4.1. Determine the equilibrium temperature distribution for a one - dimensional
rod with constant thermal properties with the following sources and boundary

conditions:

*(a) Q=0 u(0) = 0, w(l)="T
(b) Q=0 w(0) =T, W(L) =0
() @=0, %(0) =1, uw(l) =T

x(d) @=0, u(0) =T, g—z(L) =«
{e) KQO =1, u(l) = T, w(L)=T;

a

+ () K% - 22, u(0) =T, a—E(L) ~0

(€) Q=0 w(0) =T, %(L) (L) =0
du i a
() @=0, (0~ [u(0) = 1] =0, (L) =0

In these you may assume that u(z.0) = f(z).

:;: V1.4.2. Consider the equilibrium temperature distribution for a uniform one - dimensional

. A

rod with sources (J/ Ky = x of thermal energy, subject to the boundary con-
ditions u(0) = 0 and u(L} = 0.

*(a) Determine the heat energy generated per unit time inside the entire rod.

(b) Determine the heat energy flowing out of the rod per unit time at z =0
and at x = L.

(¢) What relationships should exist between the answers in parts (a) and
(b)?

\/1.4.3. Determine the equilibrium temperature distribution for a one- dimensional
rod composed of two different materials in perfect thermal contact at z = 1.
For 0 < z < 1, there is one material {cp = 1, Ky = 1) with a constant source
(@ = 1), whereas for the other 1 < z < 2 there are no sources (Q = 0,cp =
2, Ky = 2) (see Exercise 1.3.2) with u(0) = 0 and u(2) = 0.

; \/ 1.4.4. If both ends of a rod are insulated, derive from the partial differential equo-
: tion that the total thermal energy in the rod is constant. -
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/ 1.4.5. Consider a one -dimensional rod 0 < z < L of known length and known
constant thermal properties without sources. Suppose that the temperature
is an unknown constant T' at x = L. Determine T if we know (in the steady
state) both the temperature and the heat flow at 2 = 0.

1.4.6. The two ends of a uniform rod of length L are insulated. There is a constant
source of thermal energy Qy # 0 and the temperature is initially «(r,0) =

flz).
(a) Show mathematically that there does not exist any equilibrium temper-
ature distribution. Briefly explain physically.
(b) Calculate the total thermal energy in the entire rod.

\/ 1.4.7. For the following problems, determine an equilibrium temperature distri-
hution (if one exists). For what values of J are there solutions? Explain

physically.
du 0% Ju du
du o = fle), 2L =1, ==(Lt)=3
*a) 33 =353 + 1, u(x,0) = fx), dr( b)) =1, ();r;( )=
du 2y du ou

{b) 57 = T u(r,0) = f(z), %(0,1) =1, %(L, ty=7

du du B du _
(C} E = W =+ & — ﬂ_ 71.(.’1,,0) = f(ﬂ-), (0. t) == 0. E(L.l() =10

1.5 Derivation of the Heat Equation
in Two or Three Dimensions

Introduction. In Sec. 1.2 we showed that for the conduction of heat in a
one - dimensional rod the temperature u{x, f) satisties

du d . du
5t " Br (ITC) tQ

In cases in which there are no sources (Q = () and the thermal properties are
constant, the partial differential equation becomes

du kazu
ETR

where k = Ko/cp. Before we solve problems involving these partial differential
equations. we will formulate partial differential equations corresponding to heat flow
problemns in two or three spatial dimensions. We will find the derivation to be similar
to the one used for one - dimensional problems, although important differences will
- emerge. We propose to derive new and more complex equations (before solving the
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simpler ones) so that when we do discuss techniques for the solutions of PDEs, we
will have more than one example to work with.

Heat energy. We begin our derivation by considering any arbitrary subregion
R as illustrated in Fig. 1.5.1. As in the one- dimensional case, conservation of heat
energy is summarized by the following word equation:

heat energy flowing
= across the boundaries
per unit time

rate of change
of heat energy

heat energy generated
inside per unit time,_

i

/
/

where the heat energy within an arbitrary subregion R is

heat encrgy = ]/f epu dV,

R

instead of the one- dimensional integral used in Sec. 1.2

Figure 1.5.1: three - dimensional subregion R.

Heat flux vector and normal vectors. We need an expression for
the flow of heat energy. In a one-dimensional problem the heat flux ¢ is defined
to the right (¢ < 0 means flowing to the left). In a three- dimensional problem
the heat flows in some direction, and hence the heat flux is a vector ¢. The
magnitude of ¢ is the amount of heat energy flowing per unit time per unit surface
area. However, in considering conservation of heat energy it is only the heat fowing
across the boundaries per unit time that is important. If, as at. point A in Fig. 1.5.2,
the heat flow is parallel to the boundary, then there is no heat energy crossing the
boundary at that point. In fact, it is only the normal component of the heat flow
that contributes (as illustrated by point B in Fig. 1.5.2). At any poiut there are two
normal vectors, an inward and an outward normal n. We will use the convention

of only utilizing the unit outward normal vector # (where the ~ stands for a
unit vector).

Conservation of heat energy. At each point the amount of heat energy
flowing out of the region R per unit time per unit surface area is the outward normal
component of the heat flux vector. From Fig. 1.5.2 at point B, the outward normal
component of the heat flux vector is [¢|cosd = ¢« n/|n| = ¢ - 7 . If the heat fAux
T«'ector ¢ is directed inward, then ¢ - 1< 0 and the outward flow of heat energy
1s negative. ‘To calculate the total heat energy fowing out of R per unit time, we
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Figure 1.5.2: Outward nortnal component of heat flux vector.

must muitiply ¢ - A by the differential surface area dS and “sum” over the entire
surface that encloses the region R. This* is indicated by the closed surface integral
§ & - A dS. This is the amount of heat energy {per unit time) leaving the region
R and (if positive) results in a decreasing of the total heat energy within R. If @
is the rate of heat energy generated per unit volume, then the total heat energy
generated per unit time is ([ @ dV. Consequently, conservation of heat energy
for an arbitrary three- dimensional region R becomes

%/f/cpudv_—#¢-ﬁds+fodV. (1.5.1)
i i

Divergence theorem. In one dimension, a way in which we derived a
partial differential relationship from the integral conservation law was to notice
(via the fundamental theorem of calculus) that

b 5
#la) = 90) =~ [ 57 an
that is, the flow through the boundaries can be expressed as an integral over the
entire region for one- dimensional problems. We claim that the divergence theorem
is an analogous procedure for functions of three variables. The divergence theorem
deals with a vector A (with components A;, 4, and A;;ie., A= Az%+Ay§+Azi§)
and its divergence defined as follows:

a o 7]
A=A, +—A, +=—A.. 1.5.2

v axr " + ay Y + dz ( )
Note that the divergence of a vector is a scalar. The divergence theorem states
that the volume integral of the divergence of any continuously differ-
entiable vector A is the closed surface integral of the outward normal

component of A :

48ometimes the notation ¢y is used instead of ¢ - #, meaning the outward normal component
of ¢.
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[[/V-A dV = ¢ A-nds. (1.5.3)
R

This is also known as Gauss’s theoremn. It can be used to relate certain surface
integrals to volume integrals, and vice versa. It is very important and very useful
(both immediately and later in this text). We omit a derivation, which may be based
on repeating the one - dimensional fundamental theorem in all three dimensions.

Application of the divergence theorem to heat flow. In partic-
ular, the closed surface integral that arises in the conservation of heat energy (1.5. 1
corresponding to the heat energy flowing across the boundary per unit time, CB,I;
be written as a volume integral according to the divergence theorem, (1.5.3). Thus,

{1.5.1) becomes
%ﬁjcﬂu v = ‘/f Vg dV + f/ Q dv. (1.5.4)
R R H

We note that the time derivative in (1.5.4) can be put inside the integral {since R
is fixed in space) if the time derivative is changed to a partial derivative. Thus, all
the expressions in (1.5.4) are volume integrals over the same volume, and they can
be combined into oue integral: '

f/] [c;)g—?: +V-p— QJ dV = 0. (1.5.5)
R

Since this integral is zero for all regions R, it follows (as it did for one - dimensional
mtegrals) that the integrand itself must be zero:

du
Cpm-{-v-(,b*Q:U

or, equivalently,

du
e V- + Q. (1.5.6)

Equation (1.5.6) reduces to (1.2.3) in the one- dimensional case.

Fourier’s law of heat conduction. In one-dimensional problems
frorp e)Fperiments according to Fourier’s law, the heat flux ¢ is proportional to th(;
derivative of the temperature, ¢ = —Kydu/0z. The minus sign is related to the
fact that thermal energy flows from hot to cold. du /8x is the change in temperature
per unit length. These same ideas are valid in three dimensions. In an appendix
we derive that the heat flux vector ¢ is proportional to the temperature gradient,

— dus Ju U T,
(Vu:ﬁt+ﬁ]+‘?j—zk):
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b = —KyVu, (1.5.7)

known as Fourier’s law of heat conduction, where again Kj, is called the thermal
conductivity. Thus, in three dimensions the gradient Vu replaces du/dz.

Heat equation. When the heat flux vector, (1.5.7), is substituted into the
conservation of heat energy equation, (1.5.6), a partial differential equation for the
temperature results:

cpg—? = V-(KyVu) + Q. {1.5.8)

Tu the cases in which there are no sources of heat energy (@ = 0) and the thermal
coefficients are constant, (1.5.8) becomes

ou
2 kV(Vu 1.5.9
=7 = kV-(V), {1.5.9)

where k = Ko/cp is again called the thermal diffusivity. From their definitions, we
calculate the divergence of the gradient of u:

3 (du o [ou) 8 [du A A —
. -zt — (= — == + — = V-u.
v(vu)_é‘zf(a;r)+8y (8y)+32(32) 8$2+6y2 B2 :

b X v JP) (1.5.11)

Equation (1.5.11) is often known as the heat or diffusion equation in three spatial
dimensions. The notation V2u is often used to emphasize the role of the del operator

v v=2iy

T ar By
Note that Vu is V operating on u, while V-A is the vector dot product of del with
A. Furthermore, V2 is the dot product of the del operator with itself or

_9 (8,9 (8 +E(ﬁ)
th_%(% +8y dy 0z \ 3z

operating on u, hence the notation del squared, V2.

d- 0
J+£k.
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Initial boundary value problem. In addition to (1.5.8) or (1.5.11)
the temmperature satisfies a given initial distribution.

ulr,y, 2,0} = fle.y.z).

The teinperature also satisfies 4 boundary condition at every point on the surface
that encloses the region of interest. The boundary condition can be of various types
(as in the one-dimensional problem). The temperature could be prescribed,

wiy, z,t) = Tx,y, z,t),

everywhere on the boundary where T is a known function of £ at each point of
the boundary. It is also possible that the flow across the boundary is prescribed.
Frequently, we might have the boundary (or part of the boundary) insulated. This
means that there is no heat flow across that portion of the boamdary. Since the
heat flux vector is —HKyVu, the heat Howing out will be the unit outward normal
component of the heat flow vector, —KoVu-fi, where #i is a unit cutward normal
to the boundary surface. Thns, at an insulated surface,

Vu-fi = 0.

Recall that Vu-# is the directional derivative of « in the outward normal direction:
it is also called the normal derivative.?
Often Newton’s law of cooling is a more realistic condition at the boundary.
It states that the heat energy flowing out per unit time per unit surface area is
proportional to the difference between the temperature at the surface w and the
temperature outside the surface w,. Thus. if Newton’s law of cooling is valid. then
at the boundary
—KoVun = H{u —w). (1.5.12)

Note that usually the proportionality constant H > 0, since if u > wy, then we ex-
pect that heat energy will flow out and — K, Vu-f will be greater than zero. Equa-
tion (1.5.12) verifies the two forms of Newton’s law of cooling for one - dimensional
problems. In particular, at = 0,7 = —z and the left-hand side (Lh.s} of (1.5.12)
becomes Kydu/dx, while at « = L, # = 7 and the Lhs. of (1.5.12) becomes
—KoOu/dz [see (1.3.4) and (1.3.5)].

Steady state. If the boundary conditions and any sources of thermal energy
are independent of time, it is possible that there exist steady-state solutions to the
heat equation satisfying the given steady boundary condition:

0=V-(KoVu)+Q.

Note that an equilibrium temperature distribution w(x,y, z) satisfies a partial differ-
ential equation when more than one spatial dimension is involved. Tn the case with

8Sometimes (in other books and references) the notation & u/On is used. However, to calculate
&u/dn one usually calculates the dot product of the two vectors, Vu and #, Vu-f, so we will not
use the notation du/9n in this text.
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constant thermal properties, the equilibrium temnperature distribution will satisfy
Viu=——=, (1.5.13)

known as Poisson’s equation.
If, in addition, there are no sources (¢ = 0), then

—

Viu =) (1.5.14)

the Laplacian of the temperature distribution is zero. Equation (1.5.14) is known
as Laplace’s equation. It is also known as the potential equation, since the
gravitational and electrostatic potentials satisfy {1.5.14) if there are no sources. We
will solve a number of problems involving Laplace’s equation in later sections.

Two - dimensional problems. All the previous remarks about three-
dimensional problems are valid if the geometry is such that the temperature only
depends on z,y and ¢. For example, Laplace’s equation in two dimensions, x and
y, corresponding to equilibrinm heat flow with no sources (and constant thermal
properties) is
3% 8%
57 By
since 82u/8:% = 0. two- dimensional results can be derived directly (without taking
a Jimit of three- dimensional problems), by using fundamental principles in two
dimensions. We will not repeat the derivation. However, we can easily outline the
results. Every time a volume integral ( fff, - - - dV') appears, it must be replaced by a
surface integral over the entire two - dimensional plane region ( f, - -- d5). Similarly,
the boundary contribution fot three- dimensional problems. which is the closed
surface integral ¢ -~ dS, must be replaced by the closed line integral $---dr, an
integration over the boundary of the two- dimensional plane surface. These results
are not difficult to derive since the divergence theorem in three dimensions,

/]fv-A dV = b A-n ds. (1.5.15)
R #

is valid in two dimensions, taking the form

Viu = 0.

ﬂV-A ds = fA R dr. (1.5.16)
Fd

Sometimes {1.5.16) is called Green's theorem, but we prefer to refer to it as the two-
dimensional divergence theorem. In this way only one equation need be familiar to
the reader, namely (1.5.15); the conversion to two - dimensional form involves only
changing the number of integral signs.
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Polar and cylindrical coordinates. The Laplacian,

8% 9%u 9%

Viu=—— 4+ — + ——
H;z‘g+8y2+8:2‘

(1.5.17)

is important for the heat equation {1.5.11) and its steady-state version (1.5.14), as
well as for other significant problems in science and engineering. Equation (1.5.17)
written as above in Cartesian coordinates is most useful when the geometrical region
under investigation is a rectangle or a rectangular box. Other coordinate systems
are frequently nseful. In practical applications, one may need the formula that
expresses the Laplacian in the appropriate coordinate system. In circular cylindrical
coordinates, with r the radial distance [rom the z-axis and 6 the angle

r = rcosf
y = rsinf (1.5.18)
z = z

the Laplacian can be shown to equal the following formula:

V%Lﬂli Bu 1 0% 0%
“ror\ ar +r_356'_2+§22— (1.5.19)

There may be no need to memorize this formula, as it can often be looked up in a
reference book. As an aid in minimizing errors, it should be noted that every term
in the Laplacian has the dimension of u divided by two spatial dimensions [just as
in Cartesian coordinates, (1.5.17)]. Since # is measured in radians, which have no
dimensions, this remark aids in remembering to divide 8%4/00% by r?2. In polar
coordinates (by which we mean a two-dimensional coordinate system with = fixed,
usually z = 0), the Laplacian is the same as (1.5.19) with 9%u/8z? = 0 since there
18 no dependence on z. Equation (1.5.19) can be derived (see the exercises) using
the chain rule for partial derivatives, applicable for changes of variables.

In some physical situations it is known that the temperature does not depend
on the polar angle 6; it is said to be circularly or axially symmetric. In that

case
o 18 [ 0u) 8% -
V“_Hﬁ05?+&? (1:5.20)

Spherical coordinates. Geophysical problems as well as electrical prob-
lems with spherical conductors are best solved using spherical coordinates {p, 6, ).
The radial distance is p, the angle from the pole (z-axis) is ¢, and the cylindrical
(or azimuthal) angle is 8. Note that if p is constant and the angle ¢ is a constant a
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circle is generated with radius psin ¢ (as shown in Fig. 1.5.3) so that

x = psingcosf
y = psingsind (1.5.21)
z = peoso.

The angle from the pole ranges from () to m {while the usual eylindrical angle ranges
from 0 to 27). It can be shown that the Laplacian satisfes

e s O
. 1 & Ou 1 3] . du 1 a%u
2. _ —  — |sinp— )+ ———. {1.5.22
Vi 7% Op Op + 2 sin ¢ ¢ sme Jdo p?sin? ¢ 062 )

N

magnified

Figure 1.5.3: Spherical coordinates.

EXERCISES 1.5

1.5.1. Let c{z,y, 2,1) dencte the concentration of a pollutant (the amount per unit
volume).

(a) What is an expression for the total amount of pollutant in the region R?

(b) Suppose that the flow J of the pollutant is proportional to the gradient
of the concentration. (Is this reasonable?) Express conservation of the
pollutant.

(c) Derive the partial differential equation governing the diffusion of the
pollutant.

‘/ #1.,5.2, For conduction of thermal energy, the heat flux vector is ¢p = — K Vu.

If in addition the molecules move at an average velocity V' a process called
convection, then briefly explain why ¢ = — KyVu + cpuV'. Derive the cor-
responding equation for heat flow, including both conduction and convection
of thermal energy (assuming constant thermal properties with no sources).
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A.S. Consider the polar coorditates
r=rcosf
Yy = rsind.
; e 2 2 2 . . dr dr _ . 28 _ cosf
(a) Since r? = x? 492, show that 5r = cosf. 5L o=sind. 5, = 2%, and
@8 __ —»sinf
dr [

(b) Show that # = cosfi 4+ sin#F and 6 = — sin# + cos 07.

(¢} Using the chain rule, show that Vu = Sug 1o 6.

{(d) If A= A, 7+ 4,0, showthat V- A = 1 “ —(rA)+1 (39(Ag),since OF /08 =
6 and 96/60 = —# follows from part b)

(¢} Show that VZu = 1.2 (r T8ty + T"W}'l'

\/1.5 4. Using Exercise 1.5.3{a) and the chain rule for partial derivatives. derive the
special casc of Exercise 1.5.3(e) if u(r) only.

1.5.5. Assume that the temperature is circularly symmetric. « = u(r,t), where

r? = 2% + y%. We will derive the heat equation for this problem. Consider

any circular annulus a < » < b,

{a} Show that the total heat energy is 27 fab epur dr.

(b) Show that the flow of heat encrgy per unit time out of the annulus at
r=bis —27bKyOu/0r |,—p. A similar result holds at » = a.

{c) Use parts (a) and (b} to derive the circularly symmetric heat equation

without sources:
Ju k g d i
9t ror 8 T

\/ 1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on 7.

1.5.7. Derive the heat equation in two dimensions by using Green’s theorem, {1.5.16)
the two - dimensional form of the divergence theorem.

y

\/{ 5.8. If Laplace’s equation is satisfied in three dimensions, show that,

#Vu'ﬁ, dS =10

for any closed surface. (Hint: Use the divergence theorem.) Give a physical
interpretation of this result (in the context of heat flow).

1.5.9. Determine the equilibrium temperature distribution inside a circular annulus
{r1 <r <)

*(a) if the outer radius is at temperature T, and the inner at 1.

(b} if the outer radius is insulated and the inner radius is at temperature T;.
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1.5.10. Determine the equilibrium temperature distribution inside a circle (r < ry)
if the boundary is fixed at temperature Tg.

*1.5.11. Consider

bu _k9 ra—u <r<b
gt ror\ or “
subject to 5
du U .
U,(T'ﬁO)—f(T'), E(a'lt)*ﬁ: and E(but) =1

Using physical reasoning, for what value(s) of # does an equilibrium temper-
ature distribution exist?

1.5.12. Assume that the temperature is spherically symmetric, u = u(r,t), where
r is the distance from a fixed point (7> = 2° +3° + 22). Consider the heat
flow (without sources) between any two concentric spheres of radii ¢ and b.

(a) Show that the total heat energy is dr [V cpur® dr.

(b) Show that the flow of heat energy per unit time out of the spherical shell
at v =bis —4nb?Kydu/dr |,—p. A similar result holds at r = a.

{¢) Use parts (a) and {b) to derive the spherically symmetric heat equation

Ou_ k9 [ a0u
gt »20r r ar /)’

*1.5.13. Determine the steady-state temperature distribution between two concen-
tric spheres with radii 1 and 4, respectively, if the temperature of the outer
sphere is maintained at 80° and the inner sphere at 0° (see Exercise 1.5.12).

1.5.14. Isobars are lines of constant temperature. Show that iscbars are perpen-
dicular to any part of the boundary that is insulated.

Orthogonal Curvilinear Coordinates. A coordinate system (u, v, w)
may be introduced and defined by & = z(u, v,w),y = ylw, v, w} aud z = 2{u, v, w).
The radial vector » = zi + yj + zk. Partial derivatives of r with respect to a
coordinate are in the direction of the coordinate. Thus, for example, a vector in the
u-direction 87 /8 u can be made a unit vector £, in the u-direction by dividing by
its length h, = |07r/0u| called the scale factor : €, = %Br/au .

1.5.15. Determine the scale factors for cylindrical coordinates.
1.5.16. Determine the scale factors for spherical coordinates.

1.5.17. The gradient. of a scalar can be expressed in terms of the new ccordinate
system Vg = adr/du + bdr/d v + cdr/d w, where you will determine the
scalars a. b, c. Using dg = Vg - dr, derive that the gradient in an orthogonal
curvilinear coordinate system is given by

1 9g, 1 dg . 1 8g .
Vg = e -(%eu + ho 5;&0 + E%ew- (1.5.23)
oo I
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An expression for the divergence is more difficult to derive, and we will just
state that if a vectar p is expressed in terms of this new coordinate system
P =€, + Pré. + puéy, then the divergence satisfies

1 a 7, a
V- = — | — . —_— - 2 — 7 .“4‘ 5.2
r h»uhv hm |:(.) u (hvhw.pu) + Bv (huhwp ) + Jwr (h”h’ p JJ (1 ) -1')

1.5.18, Using (1.5.23) and, (1.5.24) derive the Laplacian in an orthogonal curvi-
linear coordinate systen:

V2T 1 O Ik, _()_T N 8 [ hyhy 0T @ [ h,h, 8T
hyhohy [8u N h, On Ju e v + dw \ hy Ow/|’
{(1.5.25)

1.5.19. Using (1.5.25), derive the Laplacian for cylindrical coordinates.

1.5.20. Using (1.5.25), derive the Laplacian for spherical coordinates.

Appendix to 1.5: Review of Gradient and a
Derivation of Fourier’s Law of Heat Conduction

Experimentally, for isotropic® materials (i.e., without preferential directions) heat
flows from hot to cold in the direction in which temperature differences
are greatest. The heat flow is proportional (with proportionality constant Ky, the
thermal conductivity) to the rate of change of temperature in this direction.

The change in the temperature Au is

Ju du du
Au = ulx + Az, t) — m——Ar 4 — —Az,
u=u(x x,t) — u{x,t) o Ax ByAy + = Az

In the direction & = a i+crg§' —F—nzgfc, Az = Asdé, where As is the distance between
x and x + Az. Thus, the rate of change of the temperature in the direction é& is
the directional derivative:

Aun du ou du

im — = a;— — — =
Ay As - Moz T Ay tos 9z & v,

where it has been convenient to define the following vector:

u. Ou. Ou-
E_. _' — 3
Vi 6:1:t+ By‘? + 5 k, (1.5.26)

f:ajled the gradient of the temperature. From the property of dot products, if 8
is the angle between & and Vu, then the directional derivative is [Vu|cos@ since

8Examples of nonisotropic materials are certain crystal and grainy woods.
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|&i = 1. The largest ratc of change of u (the largest directional derivative) is
|Vu| > 0, and it occurs if # = 0 (Le., in the direction of the gradient). Since this
derivative is positive, the temperature increase is greatest in the direction of the
gradient. Since heat cnergy flows in the direction of decreasing temperatures. the
heat flow vector is in the opposite direction to the heat gradient. It follows
that

¢ = — RV, (1.5.27)

since |Vu| equals the magnitude of the rate of change of « {in the direction of the
gradient). This again is called Fourier's law of heat conduction. Thus, in three
dimensions, the gradient Vu replaces du/dz.
—_—— 400
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Figure 1.5.4: The gradient is perpendicular to level surfaces of the temperature.

Ancther fundarmental property of the gradient is that it is normal (perpendicu-
lar) to the level surfaces. It is easier to illustrate this in a two- dimensional problem
(see Fig. 1.5.3) in which the temperature is constant along level curves (rather than
level surfaces). To show that the gradient is perpendicular. consider the surface on
which the temperature is the constant Ty, u(x, y, 2. t) = ). We calculate the dif-
ferential of both sides (at a fixed time) atong the surface. Since Ty is constant,
dTy = 0. Therefore, using the chain rule of partial derivatives,

~Jdu du du

iy = —— —dz = 0. .
du amdLCJr 8ydy+ Bzdz {1.5.28)

Equation (1.5.28) can be written as

-  du. X A i

Dus 4 985 4 LUk (dai + dyj + dzk) = 0
dx dy bz

or o . R

Vu-{drt + dyy + dzk) = 0. {1.5.29)

dri + dyj + dzk represents any vector in the tangent plane of the level surface.
From {1.5.29), its dot produet with Vu is zero; that is, Vu is perpendicular to the
tangent plane. Thus, Vu is perpendicular to the surface u = constant.
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We have thus learned two properties of the gradient, Vi:

1.

Direction: Vu is perpendicular to the surface v = constant. Vu is also in the
direction of the largest directional derivative, u increases in the direction of
the gradient.

Magnitude: {Vu| is the largest value of the directional derivative.





