BASES

BRANKO CURGUS

Throughout this note V is a vector space over F and j, k,[,m, and n are
natural numbers.

Definition 1. Vectors vy,...,v, € V are said to be linearly dependent if
there exist ai,...,a, € Fand k € {1,...,n} such that ajv1+- -+ a,v, =0
and oy, # 0.

The formal negation of the statement in Definition 1 is:

For all a,...,a, € Fand all k € {1,...,n} we have aqvi+- - - +a,v, # 0
or ag = 0.

The last statement is equivalent to:

For all ay,...,a, € Fand all k € {1,...,n} we have aqvi+- - -+ a,v, =0
implies g = 0.

The last statement can be restated as:

If aq,...,p, € F and cqv1 + -+ - + apv, = 0, then o, = 0 for all k& €

{1,...,n}.

Definition 2. Vectors vy,...,v, € V are said to be linearly independent if
al,...,opn € Fand ayvi+- - -4apv, = 0implies oy, = 0 forallk € {1,...,n}.

Lemma 3. Let k < m and let v1,...,v, be vectors in V. If the vectors
V1,...,V are linearly dependent, then the wvectors vi,...,v, are linearly
dependent.

Proof. Let the vectors vy, ...,v; be linearly dependent. Then there exist
ai,...,ar in F, not all equal to 0, such that ajv; + - -+ 4+ agvr = 0. Take
Qg+l = -+ = qy = 0. Then, not all ay,...,ax,...,q, are equal to 0
and a1vy + - + agvr + - - - + QU = 0. Therefore, vy, ..., v, are linearly
dependent. O

The following corollary is the contrapositive of Lemma 3.

Corollary 4. Let k < m and let vy,...,vy be vectors in V. If the vectors
Vl,...,Uy are linearly independent, then the vectors vy, ...,vr are linearly
independent.

Lemma 5. Letm > 2, let vy, ..., vy be vectors in)V. The vectors vi,...,Um
are linearly dependent if and only if there exists k € {1,2,...,m} such that

(1) span{v; : 1€ {1,...,m}\ {k} } = span{vi,..., v}
1
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Proof. Assume that vq,...,v,, are linearly dependent. Then there exist
at,...,0, € F such that aqvy + -+ + amvy, = 0 and there exists k €
{1,...,m} such that ay # 0. Now, aqv; + -+ + vy, = 0 implies

V = —(1/ak)(a1v1 + -t op—1Vp—1 + Q1 V41 + -0 F amvm).
Thus vy, € span{v; : L € {1,...,m} \ {k} }. Consequently
span{vi,...,vm} Cspan{v; : L€ {1,...,m}\ {k} }.

Since the converse inclusion is trivial, the “if” part of the lemma is proved.
Assume that there exists k& € {1,2,...,m} such that (1) holds. Then
vp € span{v; : L € {1,...,m}\ {k} }. Therefore there exist

b1, Be—1,Bk+1,- -+ Bm €F
such that vy, = B1v1+- - -+ Br—1Vp—1+ Br+1Vk+1+ - - - + Bmum. Consequently,
Brvt + -+ + Br—1vg—1 + (=1)vg + Brr1vk1 + -+ - + Buvm = 0.
Since —1 # 0, vy, ..., vy, are linearly dependent. O

Lemma 6. IfV = span{vy,...,vn} and w € V\ {0}, then, after a suitable
renumbering of vi, ..., Uy, we have

V = span{w, va, ..., vm}.

Proof. Assume that vq,...,vy, span V and w € V \ {0}. Then there exist
Qi, ..., in F such that w = ayvi+- - - qpvm,. Since w # 0 not all aq, ... ay,
are equal to 0. Renumber vq, ..., v, in such a way that a; # 0. Then

v = (1/a1)(w — vy — -+ - — Q).
Thus v € span{w, vy, ..., v, }. Consequently,
YV = span{vy, ..., vy} C span{w, vy, ..., Um}.

Since the converse inclusion is obvious, V = span{w,vs, ..., v} is proved.
O

Lemma 7. Let 2 < j <m. Let wy,...,wj, and vj,vj41,...,Vm, be vectors
n V. If

(2) V:span{wl,...,wj,l,vj,vjﬂ,...,vm}

and w1, ...,w; are linearly independent, then, after a suitable renumbering
of the vectors vj, ..., vy, we have

(3) V = span{wi, ..., Wj—1,Wj, Vj41...,Um}.

Proof. Assume that (2) holds and that wi,...,wj_1,w; are linearly inde-
pendent. Then there exist (1,..., 0y, in F such that

(4) wj = Prwr + -+ Bj—1wj—1 + Bivj + -+ Brvm.
Since wy,...,wj_1,w; are linearly independent we have

wj — frwr — - — Bij—qwj—1 # 0.
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From (4) we have

0 # wj — frwy — -+ — Bj—1wj—1 = Bjvj + -+ + Bmm.
Therefore not all 3;,..., 3, are equal to 0. Renumber vj, ..., vy, in such a
way that 3; # 0. Then

vj = (1/B)(=frwr = -+ = Bjawj1 + wj = Bj+10j41 = -+ = BmVm)-
Thus v; € span{wy,...,w;j—1,wj,...,vy}. Consequently,

V =span{wi, ..., Wj—1,Vj,...,Um} C span{wi, ..., w;, Vjt1,--.,Um}-
Since the converse inclusion is obvious, (3) is proved. g
Theorem 8. Let k <m. Let vi,...,Vm, and w1, ..., w; be vectors in V. If
VY = span{vy,...,vn} and wy, ..., wg, are linearly independent, then, after
a suitable renumbering of v1,..., v, we have

V = span{wi, ..., Wk, Vk+1,- -, Um}-

Proof. Assume that V = span{vi,...,vy,} and that wi,...,wy are linearly
independent. Then wy # 0. By Lemma 6, after a suitable renumbering
of v1,...,0m, we have V = span{wy,va,...,v,}. If K = 1 the theorem is
proved. Let £ > 2 and let 2 < j < k. By Corollary 4 the vectors wq, ..., w;
are linearly independent. In particular w; and ws are linearly independent.

Lemma 7 with j = 2 yields that, after a suitable renumbering of va, ..., vy,
we have V = span{w;, we,vs,...,v,}. Repeated application of Lemma 7
(total of k — 1 times) yields that, after a suitable renumbering of vy, ..., vy,
we have V = span{wi, ..., Wk, Vkt1, ..., Um}- O

An important special case of the preceding theorem is when & = m. We
state it as a corollary.

Corollary 9. Let vi,...,vy and wi,...,w, be vectors in V. If wy, ..., wny
are linearly independent and V = span{vy,..., vy}, then

V = span{wi, ..., Wn}.
Theorem 10. Let vy, ...,V and wy,...,w be vectors in V. If wy,...,wg
are linearly independent and V = span{vy, ..., vy}, then k < m.

This theorem has the following logical structure: P A Q = R. It is
not difficult to show (using the truth tables) that the last implication is
equivalent to the implication P A =R = —(@ and also to "~ RAQ = —-P. We
state each of these equivalent implications separately. There is no need to
number them since these statements are equivalent to Theorem 10.

Statement. Let vy,...,v, and wy,...,wg be vectors in V. If wq,...,w
are linearly independent and k > m, then the vectors vy, ..., v, do not span
V.

Statement. Let vy,...,v, and wi,...,wg be vectors in V. If k > m and

V = span{vi,...,Un}, then wi, ..., wg are linearly dependent.
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Proof. We will prove the last statement. Assume that V = span{vy,..., v}
and k£ > m. We will consider the following two cases:

Case 1. The vectors wy, ..., w,, are linearly dependent.

Case 2. The vectors wy, ..., w,, are linearly independent.

In Case 1 by Lemma 3 the vectors wy, . .., Wy, Wm+1, - - - , Wi are also linearly
dependent.

Now consider Case 2. By Corollary 9 we have V = span{wi,...,wn}.
Since k > m, we have k > m + 1 and thus, wy,4+1 is a vector in V which
can be written as a linear combination of the vectors w1, ..., wy,. Thus the
vectors wi, . .., Wm, Wna1 are linearly dependent. Consequently

Wiye ooy Wmy Wm414-. ., Wk
are linearly dependent. ([

Definition 11. A vector space V over F is finite dimensional if there exists
m € N and vectors vy,...,v, € V such that

V = span{vi,...,Un}.

A vector space which is not finite dimensional is said to be infinite dimen-
sional.

Proposition 12. A wvector space V over F is infinite dimensional if and
only if for every n € N there exists linearly independent vectors vy, ..., vy

m V.

Proof. We first prove the “only if” part. Assume that V is an infinite di-
mensional vector space over F. For n € N, denote by P(n) the following
statement:

There exist n linearly independent vectors in V.

We will prove that P(n) holds for for every n € N. Mathematical induction
is a natural tool here. Since the space {0y} is finite dimensional, we have
V # {0yp}. Therefore there exists v € V such that v # 0y. Hence P(1)
holds. Let k¥ € N and assume that P(k) holds. That is assume that there
exists linearly independent vectors viy,...,v; in V. Since V is an infinite
dimensional, span{vy, ..., v} is a proper subset of V. Therefore there exists
v € V such that v & span{vy,...,vx}. Now it is not difficult to prove (prove
it as an exercise) that k + 1 vectors vy,..., v, v are linearly independent.
Hence P(k + 1) holds.

We prove the “if” part by proving its contrapositive. Assume that V is a
finite dimensional vector space. Then there exists m € N and v1,...,v,, € V
such that V = span{vy,..., v, }. Let wq, ..., wy, w1 be arbitrary vectors
in V. By Theorem 10 (more precisely, the second Statement after it) the
vectors wi, . .., Wm, Wy+1 are linearly dependent. Thus, for m 4+ 1 € N, any
vectors wi, ..., W, Wy11 € V are linearly dependent. This completes the
proof. O
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Proposition 13. If V is a finite dimensional vector space over F and U is
a subspace of V, then U is a finite dimensional vector space over F.

Proof. We proceed with a proof by contradiction. So, we make the following
three assumptions:

(i) V is a finite dimensional vector space over F.
(ii) U is a subspace of V.
(iii) U is an infinite dimensional vector space over F.

Since V is finite dimensional there exists m € N and vq,...,v,, € V such
that V = span{vi,...,v,}. By Proposition 12 there exists u1,...,u, € U
which are linearly independent. Since U/ C V, we have uq, ..., u, € V. Now,
Corollary 9 implies span{uy,...,un} = V. Since U is infinite dimensional
we have

spanf{ui,...,un} CU and span{ui,...,u,} #U.

Hence
VCUCY and V#U.

This is a contradiction. The proposition is proved. O

Definition 14. Let V be a finite dimensional vector space over F. A set
{v1,...,v,} is a basis of V if

V = span{vy,...,v,} and wi,...,v, are linearly independent.

The next theorem shows that each nonzero finite dimensional vector space
has a basis.

Theorem 15. Let V be a vector space over F. If V = span{vi,...,v,} and
V # {0}, then there exist n € N, n < p, and ji,...,jn € {1,...,p} such
that vj,,...,vj, is a basis of V.

Proof. Since V # {0} there exists [ € {1,...,p} such that v; # 0. Put

iy, ... i, € {1,...,p} such that }

— . < ] 1
K {k eN k<p, Viys ..., 0, are linearly independent

The vector v; is linearly independent. Therefore 1 € K; namely we can
choose i1 = I. Thus K # (). Since K is a subset of N and it is bounded above
by p, K has a maximum; denote it by n, n = maxK. Since n € K, there
exist ji,...,Jn € {1,...,p} such that v;,,...,v;, are linearly independent.
Since vj,, ..., vj, are linearly independent the indexes ji,. .., j, are distinct.
Therefore, if n = p, then {j1,...,jp} = {1,...,p}. Consequently, if n = p,
then the vectors vy,...,v, are linearly independent and span{vi,...,v,} =
V. That is vy, ..., v, is a basis of V.

If if n < p, then {ji,...,7p} is a proper subset of {1,...,p}. We shall
prove that span{v;,,...,v;,} = V. Let

ke{lv"‘7p}\{jla--'7jn}
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be arbitrary. Since n+1 ¢ K, the vectors (n+ 1 of them) vj,,...,v;,, vy are
linearly dependent. Thus there exist ay, ..., an,an+1 € F not all zero such
that

a1vj, + -+ apvj, + appivg = 0.
Since the vectors vj,,...,v;,, are linearly independent, ay41 = 0 is not
possible. Thus ay,+1 # 0. Therefore
(5) Vp = — (awh R anvjn) .

Ap+1
Hence

v € span{vj,,...,v;,} foreach ke {1,...,p}\ {j1,...,jn}
Consequently
span{vi,...,vp} C span{vj,,...,v;, }.
Since the converse inclusion is obvious, the theorem is proved. ([

Theorem 16. Let V be a nonzero finite dimensional vector space. Then
V has a basis. If {v1,...,vm} and {wy,...,w,} are two basis of V, then
m=n.

Proof. The fact that V has a basis is proved in the proof of Proposition 13.
Just set U =V in that proof.
Let {v1,...,v} and {w1,...,w,} be two bases of V. Since

V = span{vy,...,vn}

and wy,...,w, are linearly independent, Theorem 10 implies m > n. Since
V = span{wi,...,w,} and vy, ..., vy, are linearly independent Theorem 10
implies m < n. Thus m = n. U

Definition 17. Let V be a nonzero finite dimensional vector space over F
and let {v1,...,v,} be a basis of V. The number n is called the dimension
of V and it is denoted by dim V. By definition the dimension of the zero
vector space is 0.

Theorem 18. Let V be a finite dimensional vector space and let uqy, ..., ug
be linearly independent vectors in V. Then there exist vectors ugyqi,..., Uy
in'V such that {uy,...,u,} is a basis of V.

Proof. By Theorem 16 the vector space V has a basis. Let {v1,...,v,} be a
basis for V. By Theorem 10 we have £k < n. By Theorem 8, after a suitable
renumbering of vy, ..., v,, we have

V = span{ui, ..., Uk, Vk41,---,Un}-
Since vy, . .., v, are linearly independent, by Theorem 10 (see the first State-
ment) no proper subset of
{u17 sy Uk, V41, - - 7U7L}
spans V. By Lemma 5 this implies that the vectors wy,...,ug, Vgt+1,...,0n

are linearly independent. O
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Proposition 19. Let V be a finite dimensional vector space and let U be a
subspace of V. Then dimU < dim V. Also, U =V if and only if dimU =
dim V.

Proof. Let m = dimU and n = dim V. Let wq,...,u; be a basis of U and
let v1,...,v, be a basis of V. Since V = span{vy,...,v,} and uq, ..., u,, are
linearly independent Theorem 10 implies m < n.

If 4 =V, then clearly dimi = dim V. Now assume that U is a proper
subspace of V. Then there exists v € V such that v ¢ U. Let again uy, ..., up,

be a basis of U. Then uy,...,un,,v are linearly independent vectors in V.
By Theorem 10 we have m + 1 < n. Thus m < n. (]
Proposition 20. Let V be a finite dimensional vector space over F and let
Wi, ..., Wy be vectors in V. Then any two of the following three statements
imply the remaining one.

(a) n=dimV.

(b) span{wsi,...,wy,} = V.

(¢) wi,...,wy, are linearly independent.

Proof. Assume (b) and (c). Then (a) follows by the definition of dimension
of V.

Notice that (b) and Theorem 15 imply that n > dimV. Therefore,
the implication “(a) and (b) imply (c)” is equivalent to the implication:
If span{wy,...,w,} =V and wy,...,w, are linearly dependent, then n >
dim V. The last implication is an immediate consequence of Lemma 5. Thus
(a) and (b) imply (c).

Notice that (c¢) and Theorem 15 imply that n < dimV. Therefore,
the implication “(a) and (c) imply (b)” is equivalent to the implication:
If wy,...,w, are linearly independent and span{wi,...,w,} is a proper
subspace of V, then n < dim)V. The last implication is a consequence of
Proposition 19. O



