
Chapter 1

Vector Spaces

Linear algebra is the study of linear maps on finite-dimensional vec-
tor spaces. Eventually we will learn what all these terms mean. In this
chapter we will define vector spaces and discuss their elementary prop-
erties.

In some areas of mathematics, including linear algebra, better the-
orems and more insight emerge if complex numbers are investigated
along with real numbers. Thus we begin by introducing the complex
numbers and their basic properties.

✽
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Complex Numbers

You should already be familiar with the basic properties of the set R
of real numbers. Complex numbers were invented so that we can take
square roots of negative numbers. The key idea is to assume we have
a square root of −1, denoted i, and manipulate it using the usual rulesThe symbol i was first

used to denote
√−1 by

the Swiss

mathematician

Leonhard Euler in 1777.

of arithmetic. Formally, a complex number is an ordered pair (a, b),
where a,b ∈ R , but we will write this as a+ bi. The set of all complex
numbers is denoted by C:

C = {a+ bi : a,b ∈ R}.
If a ∈ R , we identify a+ 0i with the real number a. Thus we can think
of R as a subset of C.

Addition and multiplication on C are defined by

(a+ bi)+ (c + di) = (a+ c)+ (b + d)i,
(a+ bi)(c + di) = (ac − bd)+ (ad+ bc)i;

here a,b, c, d ∈ R . Using multiplication as defined above, you should
verify that i2 = −1. Do not memorize the formula for the product
of two complex numbers; you can always rederive it by recalling that
i2 = −1 and then using the usual rules of arithmetic.

You should verify, using the familiar properties of the real num-
bers, that addition and multiplication on C satisfy the following prop-
erties:

commutativity
w + z = z +w and wz = zw for all w,z ∈ C;

associativity
(z1 + z2) + z3 = z1 + (z2 + z3) and (z1z2)z3 = z1(z2z3) for all
z1, z2, z3 ∈ C;

identities
z + 0 = z and z1 = z for all z ∈ C;

additive inverse
for every z ∈ C, there exists a unique w ∈ C such that z+w = 0;

multiplicative inverse
for every z ∈ C with z �= 0, there exists a unique w ∈ C such that
zw = 1;
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distributive property
λ(w + z) = λw + λz for all λ,w, z ∈ C.

For z ∈ C, we let −z denote the additive inverse of z. Thus −z is
the unique complex number such that

z + (−z) = 0.

Subtraction on C is defined by

w − z = w + (−z)

for w,z ∈ C.
For z ∈ C with z �= 0, we let 1/z denote the multiplicative inverse

of z. Thus 1/z is the unique complex number such that

z(1/z) = 1.

Division on C is defined by

w/z = w(1/z)

for w,z ∈ C with z �= 0.
So that we can conveniently make definitions and prove theorems

that apply to both real and complex numbers, we adopt the following
notation:

The letter F is used

because R and C are

examples of what are

called fields. In this

book we will not need

to deal with fields other

than R or C. Many of

the definitions,

theorems, and proofs

in linear algebra that

work for both R and C

also work without

change if an arbitrary

field replaces R or C.

Throughout this book,
F stands for either R or C.

Thus if we prove a theorem involving F, we will know that it holds when
F is replaced with R and when F is replaced with C. Elements of F are
called scalars. The word “scalar”, which means number, is often used
when we want to emphasize that an object is a number, as opposed to
a vector (vectors will be defined soon).

For z ∈ F and m a positive integer, we define zm to denote the
product of z with itself m times:

zm = z · · · · · z︸ ︷︷ ︸
m times

.

Clearly (zm)n = zmn and (wz)m = wmzm for all w,z ∈ F and all
positive integers m,n.
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Definition of Vector Space

Before defining what a vector space is, let’s look at two important
examples. The vector space R2, which you can think of as a plane,
consists of all ordered pairs of real numbers:

R2 = {(x,y) : x,y ∈ R}.

The vector space R3, which you can think of as ordinary space, consists
of all ordered triples of real numbers:

R3 = {(x,y, z) : x,y, z ∈ R}.

To generalize R2 and R3 to higher dimensions, we first need to dis-
cuss the concept of lists. Suppose n is a nonnegative integer. A list of
length n is an ordered collection of n objects (which might be num-
bers, other lists, or more abstract entities) separated by commas and
surrounded by parentheses. A list of length n looks like this:Many mathematicians

call a list of length n an

n-tuple. (x1, . . . , xn).

Thus a list of length 2 is an ordered pair and a list of length 3 is an
ordered triple. For j ∈ {1, . . . , n}, we say that xj is the jth coordinate
of the list above. Thus x1 is called the first coordinate, x2 is called the
second coordinate, and so on.

Sometimes we will use the word list without specifying its length.
Remember, however, that by definition each list has a finite length that
is a nonnegative integer, so that an object that looks like

(x1, x2, . . . ),

which might be said to have infinite length, is not a list. A list of length
0 looks like this: (). We consider such an object to be a list so that
some of our theorems will not have trivial exceptions.

Two lists are equal if and only if they have the same length and
the same coordinates in the same order. In other words, (x1, . . . , xm)
equals (y1, . . . , yn) if and only if m = n and x1 = y1, . . . , xm = ym.

Lists differ from sets in two ways: in lists, order matters and repeti-
tions are allowed, whereas in sets, order and repetitions are irrelevant.
For example, the lists (3,5) and (5,3) are not equal, but the sets {3,5}
and {5,3} are equal. The lists (4,4) and (4,4,4) are not equal (they
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do not have the same length), though the sets {4,4} and {4,4,4} both
equal the set {4}.

To define the higher-dimensional analogues of R2 and R3, we will
simply replace R with F (which equals R or C) and replace the 2 or 3
with an arbitrary positive integer. Specifically, fix a positive integer n
for the rest of this section. We define Fn to be the set of all lists of
length n consisting of elements of F:

Fn = {(x1, . . . , xn) : xj ∈ F for j = 1, . . . , n}.

For example, if F = R and n equals 2 or 3, then this definition of Fn

agrees with our previous notions of R2 and R3. As another example,
C4 is the set of all lists of four complex numbers:

C4 = {(z1, z2, z3, z4) : z1, z2, z3, z4 ∈ C}.

Ifn ≥ 4, we cannot easily visualize Rn as a physical object. The same For an amusing

account of how R3

would be perceived by

a creature living in R2,

read Flatland: A

Romance of Many

Dimensions, by Edwin

A. Abbott. This novel,

published in 1884, can

help creatures living in

three-dimensional

space, such as

ourselves, imagine a

physical space of four

or more dimensions.

problem arises if we work with complex numbers: C1 can be thought
of as a plane, but for n ≥ 2, the human brain cannot provide geometric
models of Cn. However, even if n is large, we can perform algebraic
manipulations in Fn as easily as in R2 or R3. For example, addition is
defined on Fn by adding corresponding coordinates:

1.1 (x1, . . . , xn)+ (y1, . . . , yn) = (x1 +y1, . . . , xn +yn).

Often the mathematics of Fn becomes cleaner if we use a single
entity to denote an list of n numbers, without explicitly writing the
coordinates. Thus the commutative property of addition on Fn should
be expressed as

x +y = y + x
for all x,y ∈ Fn, rather than the more cumbersome

(x1, . . . , xn)+ (y1, . . . , yn) = (y1, . . . , yn)+ (x1, . . . , xn)

for all x1, . . . , xn,y1, . . . , yn ∈ F (even though the latter formulation
is needed to prove commutativity). If a single letter is used to denote
an element of Fn, then the same letter, with appropriate subscripts,
is often used when coordinates must be displayed. For example, if
x ∈ Fn, then letting x equal (x1, . . . , xn) is good notation. Even better,
work with just x and avoid explicit coordinates, if possible.
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We let 0 denote the list of length n all of whose coordinates are 0:

0 = (0, . . . ,0).

Note that we are using the symbol 0 in two different ways—on the
left side of the equation above, 0 denotes a list of length n, whereas
on the right side, each 0 denotes a number. This potentially confusing
practice actually causes no problems because the context always makes
clear what is intended. For example, consider the statement that 0 is
an additive identity for Fn:

x + 0 = x

for all x ∈ Fn. Here 0 must be a list because we have not defined the
sum of an element of Fn (namely, x) and the number 0.

A picture can often aid our intuition. We will draw pictures de-
picting R2 because we can easily sketch this space on two-dimensional
surfaces such as paper and blackboards. A typical element of R2 is a
point x = (x1, x2). Sometimes we think of x not as a point but as an
arrow starting at the origin and ending at (x1, x2), as in the picture
below. When we think of x as an arrow, we refer to it as a vector .

x -axis1

x -axis2

(x , x )
21

x

Elements of R2 can be thought of as points or as vectors.

The coordinate axes and the explicit coordinates unnecessarily clut-
ter the picture above, and often you will gain better understanding by
dispensing with them and just thinking of the vector, as in the next
picture.
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x

0
A vector

Whenever we use pictures in R2 or use the somewhat vague lan-
guage of points and vectors, remember that these are just aids to our
understanding, not substitutes for the actual mathematics that we will
develop. Though we cannot draw good pictures in high-dimensional
spaces, the elements of these spaces are as rigorously defined as ele-
ments of R2. For example, (2,−3,17, π,

√
2) is an element of R5, and we

may casually refer to it as a point in R5 or a vector in R5 without wor-
rying about whether the geometry of R5 has any physical meaning.

Recall that we defined the sum of two elements of Fn to be the ele- Mathematical models

of the economy often

have thousands of

variables, say

x1, . . . , x5000, which

means that we must

operate in R5000. Such

a space cannot be dealt

with geometrically, but

the algebraic approach

works well. That’s why

our subject is called

linear algebra.

ment of Fn obtained by adding corresponding coordinates; see 1.1. In
the special case of R2, addition has a simple geometric interpretation.
Suppose we have two vectors x and y in R2 that we want to add, as in
the left side of the picture below. Move the vector y parallel to itself so
that its initial point coincides with the end point of the vector x. The
sum x + y then equals the vector whose initial point equals the ini-
tial point of x and whose end point equals the end point of the moved
vector y , as in the right side of the picture below.

y

x + y

y

x

0

x

0

The sum of two vectors

Our treatment of the vectory in the picture above illustrates a standard
philosophy when we think of vectors in R2 as arrows: we can move an
arrow parallel to itself (not changing its length or direction) and still
think of it as the same vector.
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Having dealt with addition in Fn, we now turn to multiplication. We
could define a multiplication on Fn in a similar fashion, starting with
two elements of Fn and getting another element of Fn by multiplying
corresponding coordinates. Experience shows that this definition is not
useful for our purposes. Another type of multiplication, called scalar
multiplication, will be central to our subject. Specifically, we need to
define what it means to multiply an element of Fn by an element of F.
We make the obvious definition, performing the multiplication in each
coordinate:

a(x1, . . . , xn) = (ax1, . . . , axn);

here a ∈ F and (x1, . . . , xn) ∈ Fn.
Scalar multiplication has a nice geometric interpretation in R2. IfIn scalar multiplication,

we multiply together a

scalar and a vector,

getting a vector. You

may be familiar with

the dot product in R2

or R3, in which we

multiply together two

vectors and obtain a

scalar. Generalizations

of the dot product will

become important

when we study inner

products in Chapter 6.

You may also be

familiar with the cross

product in R3, in which

we multiply together

two vectors and obtain

another vector. No

useful generalization of

this type of

multiplication exists in

higher dimensions.

a is a positive number and x is a vector in R2, then ax is the vector
that points in the same direction as x and whose length is a times the
length of x. In other words, to get ax, we shrink or stretch x by a
factor of a, depending upon whether a < 1 or a > 1. The next picture
illustrates this point.

x
(1/2)x

(3/2)x

Multiplication by positive scalars

If a is a negative number and x is a vector in R2, then ax is the vector
that points in the opposite direction as x and whose length is |a| times
the length of x, as illustrated in the next picture.

x

(−1/2)x

(−3/2)x

Multiplication by negative scalars
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The motivation for the definition of a vector space comes from the
important properties possessed by addition and scalar multiplication
on Fn. Specifically, addition on Fn is commutative and associative and
has an identity, namely, 0. Every element has an additive inverse. Scalar
multiplication on Fn is associative, and scalar multiplication by 1 acts
as a multiplicative identity should. Finally, addition and scalar multi-
plication on Fn are connected by distributive properties.

We will define a vector space to be a set V along with an addition
and a scalar multiplication on V that satisfy the properties discussed
in the previous paragraph. By an addition on V we mean a function
that assigns an element u + v ∈ V to each pair of elements u,v ∈ V .
By a scalar multiplication on V we mean a function that assigns an
element av ∈ V to each a ∈ F and each v ∈ V .

Now we are ready to give the formal definition of a vector space.
A vector space is a set V along with an addition on V and a scalar
multiplication on V such that the following properties hold:

commutativity
u+ v = v +u for all u,v ∈ V ;

associativity
(u+v)+w = u+ (v+w) and (ab)v = a(bv) for all u,v,w ∈ V
and all a,b ∈ F;

additive identity
there exists an element 0 ∈ V such that v + 0 = v for all v ∈ V ;

additive inverse
for every v ∈ V , there exists w ∈ V such that v +w = 0;

multiplicative identity
1v = v for all v ∈ V ;

distributive properties
a(u+v) = au+av and (a+ b)u = au+ bu for all a,b ∈ F and
all u,v ∈ V .

The scalar multiplication in a vector space depends upon F. Thus
when we need to be precise, we will say that V is a vector space over F
instead of saying simply that V is a vector space. For example, Rn is
a vector space over R , and Cn is a vector space over C. Frequently, a
vector space over R is called a real vector space and a vector space over
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C is called a complex vector space. Usually the choice of F is either
obvious from the context or irrelevant, and thus we often assume that
F is lurking in the background without specifically mentioning it.

Elements of a vector space are called vectors or points. This geo-
metric language sometimes aids our intuition.

Not surprisingly, Fn is a vector space over F, as you should verify.
Of course, this example motivated our definition of vector space.

For another example, consider F∞, which is defined to be the set ofThe simplest vector

space contains only

one point. In other

words, {0} is a vector

space, though not a

very interesting one.

all sequences of elements of F:

F∞ = {(x1, x2, . . . ) : xj ∈ F for j = 1,2, . . . }.
Addition and scalar multiplication on F∞ are defined as expected:

(x1, x2, . . . )+ (y1, y2, . . . ) = (x1 +y1, x2 +y2, . . . ),

a(x1, x2, . . . ) = (ax1, ax2, . . . ).

With these definitions, F∞ becomes a vector space over F, as you should
verify. The additive identity in this vector space is the sequence con-
sisting of all 0’s.

Our next example of a vector space involves polynomials. A function
p : F → F is called a polynomial with coefficients in F if there exist
a0, . . . , am ∈ F such that

p(z) = a0 + a1z + a2z2 + · · · + amzm

for all z ∈ F. We define P(F) to be the set of all polynomials withThough Fn is our

crucial example of a

vector space, not all

vector spaces consist

of lists. For example,

the elements of P(F)
consist of functions on

F, not lists. In general,

a vector space is an

abstract entity whose

elements might be lists,

functions, or weird

objects.

coefficients in F. Addition on P(F) is defined as you would expect: if
p,q ∈ P(F), then p + q is the polynomial defined by

(p + q)(z) = p(z)+ q(z)
for z ∈ F. For example, if p is the polynomial defined by p(z) = 2z+z3

and q is the polynomial defined by q(z) = 7 + 4z, then p + q is the
polynomial defined by (p + q)(z) = 7+ 6z + z3. Scalar multiplication
on P(F) also has the obvious definition: if a ∈ F and p ∈ P(F), then
ap is the polynomial defined by

(ap)(z) = ap(z)
for z ∈ F. With these definitions of addition and scalar multiplication,
P(F) is a vector space, as you should verify. The additive identity in
this vector space is the polynomial all of whose coefficients equal 0.

Soon we will see further examples of vector spaces, but first we need
to develop some of the elementary properties of vector spaces.
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Properties of Vector Spaces

The definition of a vector space requires that it have an additive
identity. The proposition below states that this identity is unique.

1.2 Proposition: A vector space has a unique additive identity.

Proof: Suppose 0 and 0′ are both additive identities for some vec-
tor space V . Then

0′ = 0′ + 0 = 0,

where the first equality holds because 0 is an additive identity and the
second equality holds because 0′ is an additive identity. Thus 0′ = 0,
proving that V has only one additive identity. The symbol means

“end of the proof”.

Each element v in a vector space has an additive inverse, an element
w in the vector space such that v+w = 0. The next proposition shows
that each element in a vector space has only one additive inverse.

1.3 Proposition: Every element in a vector space has a unique
additive inverse.

Proof: Suppose V is a vector space. Let v ∈ V . Suppose that w
and w′ are additive inverses of v . Then

w = w + 0 = w + (v +w′) = (w + v)+w′ = 0+w′ = w′.

Thus w = w′, as desired.

Because additive inverses are unique, we can let −v denote the ad-
ditive inverse of a vector v . We define w − v to mean w + (−v).

Almost all the results in this book will involve some vector space.
To avoid being distracted by having to restate frequently something
such as “Assume that V is a vector space”, we now make the necessary
declaration once and for all:

Let’s agree that for the rest of the book
V will denote a vector space over F.
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Because of associativity, we can dispense with parentheses when
dealing with additions involving more than two elements in a vector
space. For example, we can writeu+v+w without parentheses because
the two possible interpretations of that expression, namely, (u+v)+w
and u+ (v +w), are equal. We first use this familiar convention of not
using parentheses in the next proof. In the next proposition, 0 denotes
a scalar (the number 0 ∈ F) on the left side of the equation and a vector
(the additive identity of V ) on the right side of the equation.

1.4 Proposition: 0v = 0 for every v ∈ V .Note that 1.4 and 1.5

assert something about

scalar multiplication

and the additive

identity of V . The only

part of the definition of

a vector space that

connects scalar

multiplication and

vector addition is the

distributive property.

Thus the distributive

property must be used

in the proofs.

Proof: For v ∈ V , we have

0v = (0+ 0)v = 0v + 0v.

Adding the additive inverse of 0v to both sides of the equation above
gives 0 = 0v , as desired.

In the next proposition, 0 denotes the additive identity of V . Though
their proofs are similar, 1.4 and 1.5 are not identical. More precisely,
1.4 states that the product of the scalar 0 and any vector equals the
vector 0, whereas 1.5 states that the product of any scalar and the
vector 0 equals the vector 0.

1.5 Proposition: a0 = 0 for every a ∈ F.

Proof: For a ∈ F, we have

a0 = a(0+ 0) = a0+ a0.

Adding the additive inverse of a0 to both sides of the equation above
gives 0 = a0, as desired.

Now we show that if an element of V is multiplied by the scalar −1,
then the result is the additive inverse of the element of V .

1.6 Proposition: (−1)v = −v for every v ∈ V .

Proof: For v ∈ V , we have

v + (−1)v = 1v + (−1)v = (1+ (−1)
)
v = 0v = 0.

This equation says that (−1)v , when added to v , gives 0. Thus (−1)v
must be the additive inverse of v , as desired.
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Subspaces

A subset U of V is called a subspace of V if U is also a vector space Some mathematicians

use the term linear

subspace, which means

the same as subspace.

(using the same addition and scalar multiplication as on V ). For exam-
ple,

{(x1, x2,0) : x1, x2 ∈ F}
is a subspace of F3.

If U is a subset of V , then to check that U is a subspace of V we
need only check that U satisfies the following:

additive identity
0 ∈ U

closed under addition
u,v ∈ U implies u+ v ∈ U ;

closed under scalar multiplication
a ∈ F and u ∈ U implies au ∈ U .

The first condition insures that the additive identity of V is in U . The Clearly {0} is the

smallest subspace of V
and V itself is the

largest subspace of V .

The empty set is not a

subspace of V because

a subspace must be a

vector space and a

vector space must

contain at least one

element, namely, an

additive identity.

second condition insures that addition makes sense on U . The third
condition insures that scalar multiplication makes sense onU . To show
that U is a vector space, the other parts of the definition of a vector
space do not need to be checked because they are automatically satis-
fied. For example, the associative and commutative properties of addi-
tion automatically hold on U because they hold on the larger space V .
As another example, if the third condition above holds and u ∈ U , then
−u (which equals (−1)u by 1.6) is also in U , and hence every element
of U has an additive inverse in U .

The three conditions above usually enable us to determine quickly
whether a given subset of V is a subspace of V . For example, if b ∈ F,
then

{(x1, x2, x3, x4) ∈ F4 : x3 = 5x4 + b}
is a subspace of F4 if and only if b = 0, as you should verify. As another
example, you should verify that

{p ∈ P(F) : p(3) = 0}
is a subspace of P(F).

The subspaces of R2 are precisely {0}, R2, and all lines in R2 through
the origin. The subspaces of R3 are precisely {0}, R3, all lines in R3
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through the origin, and all planes in R3 through the origin. To prove
that all these objects are indeed subspaces is easy—the hard part is to
show that they are the only subspaces of R2 or R3. That task will be
easier after we introduce some additional tools in the next chapter.

Sums and Direct Sums

In later chapters, we will find that the notions of vector space sums
and direct sums are useful. We define these concepts here.

Suppose U1, . . . , Um are subspaces of V . The sum of U1, . . . , Um,When dealing with

vector spaces, we are

usually interested only

in subspaces, as

opposed to arbitrary

subsets. The union of

subspaces is rarely a

subspace (see

Exercise 9 in this

chapter), which is why

we usually work with

sums rather than

unions.

denoted U1 + · · · +Um, is defined to be the set of all possible sums of
elements of U1, . . . , Um. More precisely,

U1 + · · · +Um = {u1 + · · · +um : u1 ∈ U1, . . . , um ∈ Um}.

You should verify that if U1, . . . , Um are subspaces of V , then the sum
U1 + · · · +Um is a subspace of V .

Let’s look at some examples of sums of subspaces. Suppose U is the
set of all elements of F3 whose second and third coordinates equal 0,
and W is the set of all elements of F3 whose first and third coordinates
equal 0:

U = {(x,0,0) ∈ F3 : x ∈ F} and W = {(0, y,0) ∈ F3 : y ∈ F}.

Then

Sums of subspaces in

the theory of vector

spaces are analogous to

unions of subsets in set

theory. Given two

subspaces of a vector

space, the smallest

subspace containing

them is their sum.

Analogously, given two

subsets of a set, the

smallest subset

containing them is

their union.

1.7 U +W = {(x,y,0) : x,y ∈ F},

as you should verify.
As another example, suppose U is as above and W is the set of all

elements of F3 whose first and second coordinates equal each other
and whose third coordinate equals 0:

W = {(y,y,0) ∈ F3 : y ∈ F}.

Then U +W is also given by 1.7, as you should verify.
Suppose U1, . . . , Um are subspaces of V . Clearly U1, . . . , Um are all

contained in U1 + · · · + Um (to see this, consider sums u1 + · · · +um
where all except one of the u’s are 0). Conversely, any subspace of V
containing U1, . . . , Um must contain U1 + · · ·+Um (because subspaces
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must contain all finite sums of their elements). Thus U1 + · · · + Um is
the smallest subspace of V containing U1, . . . , Um.

Suppose U1, . . . , Um are subspaces of V such that V = U1+· · ·+Um.
Thus every element of V can be written in the form

u1 + · · · +um,

where each uj ∈ Uj . We will be especially interested in cases where
each vector in V can be uniquely represented in the form above. This
situation is so important that we give it a special name: direct sum.
Specifically, we say that V is the direct sum of subspaces U1, . . . , Um,
written V = U1⊕· · ·⊕Um, if each element of V can be written uniquely The symbol ⊕,

consisting of a plus

sign inside a circle, is

used to denote direct

sums as a reminder

that we are dealing with

a special type of sum of

subspaces—each

element in the direct

sum can be represented

only one way as a sum

of elements from the

specified subspaces.

as a sum u1 + · · · +um, where each uj ∈ Uj .
Let’s look at some examples of direct sums. Suppose U is the sub-

space of F3 consisting of those vectors whose last coordinate equals 0,
andW is the subspace of F3 consisting of those vectors whose first two
coordinates equal 0:

U = {(x,y,0) ∈ F3 : x,y ∈ F} and W = {(0,0, z) ∈ F3 : z ∈ F}.

Then F3 = U ⊕W , as you should verify.
As another example, suppose Uj is the subspace of Fn consisting

of those vectors whose coordinates are all 0, except possibly in the jth

slot (for example, U2 = {(0, x,0, . . . ,0) ∈ Fn : x ∈ F}). Then

Fn = U1 ⊕ · · · ⊕Un,

as you should verify.
As a final example, consider the vector spaceP(F) of all polynomials

with coefficients in F. Let Ue denote the subspace of P(F) consisting
of all polynomials p of the form

p(z) = a0 + a2z2 + · · · + a2mz2m,

and let Uo denote the subspace of P(F) consisting of all polynomials p
of the form

p(z) = a1z + a3z3 + · · · + a2m+1z2m+1;

here m is a nonnegative integer and a0, . . . , a2m+1 ∈ F (the notations
Ue andUo should remind you of even and odd powers of z). You should
verify that
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P(F) = Ue ⊕Uo.
Sometimes nonexamples add to our understanding as much as ex-

amples. Consider the following three subspaces of F3:

U1 = {(x,y,0) ∈ F3 : x,y ∈ F};
U2 = {(0,0, z) ∈ F3 : z ∈ F};
U3 = {(0, y,y) ∈ F3 : y ∈ F}.

Clearly F3 = U1+U2+U3 because an arbitrary vector (x,y, z) ∈ F3 can
be written as

(x,y, z) = (x,y,0)+ (0,0, z)+ (0,0,0),

where the first vector on the right side is in U1, the second vector is
in U2, and the third vector is in U3. However, F3 does not equal the
direct sum of U1, U2, U3 because the vector (0,0,0) can be written in
two different ways as a sumu1+u2+u3, with eachuj ∈ Uj . Specifically,
we have

(0,0,0) = (0,1,0)+ (0,0,1)+ (0,−1,−1)

and, of course,

(0,0,0) = (0,0,0)+ (0,0,0)+ (0,0,0),

where the first vector on the right side of each equation above is in U1,
the second vector is in U2, and the third vector is in U3.

In the example above, we showed that something is not a direct sum
by showing that 0 does not have a unique representation as a sum of
appropriate vectors. The definition of direct sum requires that every
vector in the space have a unique representation as an appropriate sum.
Suppose we have a collection of subspaces whose sum equals the whole
space. The next proposition shows that when deciding whether this
collection of subspaces is a direct sum, we need only consider whether
0 can be uniquely written as an appropriate sum.

1.8 Proposition: Suppose that U1, . . . , Un are subspaces of V . Then
V = U1 ⊕ · · · ⊕Un if and only if both the following conditions hold:

(a) V = U1 + · · · +Un;

(b) the only way to write 0 as a sum u1 + · · · + un, where each
uj ∈ Uj , is by taking all the uj ’s equal to 0.
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Proof: First suppose that V = U1 ⊕ · · · ⊕ Un. Clearly (a) holds
(because of how sum and direct sum are defined). To prove (b), suppose
that u1 ∈ U1, . . . , un ∈ Un and

0 = u1 + · · · +un.

Then each uj must be 0 (this follows from the uniqueness part of the
definition of direct sum because 0 = 0+· · ·+0 and 0 ∈ U1, . . . ,0 ∈ Un),
proving (b).

Now suppose that (a) and (b) hold. Let v ∈ V . By (a), we can write

v = u1 + · · · +un
for some u1 ∈ U1, . . . , un ∈ Un. To show that this representation is
unique, suppose that we also have

v = v1 + · · · + vn,

where v1 ∈ U1, . . . , vn ∈ Un. Subtracting these two equations, we have

0 = (u1 − v1)+ · · · + (un − vn).

Clearly u1 − v1 ∈ U1, . . . , un − vn ∈ Un, so the equation above and (b)
imply that each uj − vj = 0. Thus u1 = v1, . . . , un = vn, as desired.

The next proposition gives a simple condition for testing which pairs Sums of subspaces are

analogous to unions of

subsets. Similarly,

direct sums of

subspaces are

analogous to disjoint

unions of subsets. No

two subspaces of a

vector space can be

disjoint because both

must contain 0. So

disjointness is

replaced, at least in the

case of two subspaces,

with the requirement

that the intersection

equals {0}.

of subspaces give a direct sum. Note that this proposition deals only
with the case of two subspaces. When asking about a possible direct
sum with more than two subspaces, it is not enough to test that any
two of the subspaces intersect only at 0. To see this, consider the
nonexample presented just before 1.8. In that nonexample, we had
F3 = U1 + U2 + U3, but F3 did not equal the direct sum of U1, U2, U3.
However, in that nonexample, we haveU1∩U2 = U1∩U3 = U2∩U3 = {0}
(as you should verify). The next proposition shows that with just two
subspaces we get a nice necessary and sufficient condition for a direct
sum.

1.9 Proposition: Suppose that U and W are subspaces of V . Then
V = U ⊕W if and only if V = U +W and U ∩W = {0}.

Proof: First suppose that V = U ⊕ W . Then V = U + W (by the
definition of direct sum). Also, if v ∈ U ∩W , then 0 = v + (−v), where
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v ∈ U and −v ∈ W . By the unique representation of 0 as the sum of a
vector in U and a vector in W , we must have v = 0. Thus U ∩W = {0},
completing the proof in one direction.

To prove the other direction, now suppose that V = U + W and
U ∩W = {0}. To prove that V = U ⊕W , suppose that

0 = u+w,

where u ∈ U and w ∈ W . To complete the proof, we need only show
that u = w = 0 (by 1.8). The equation above implies that u = −w ∈ W .
Thus u ∈ U ∩W , and hence u = 0. This, along with equation above,
implies that w = 0, completing the proof.
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Exercises

1. Suppose a and b are real numbers, not both 0. Find real numbers
c and d such that

1/(a+ bi) = c + di.

2. Show that
−1+√3i

2

is a cube root of 1 (meaning that its cube equals 1).

3. Prove that −(−v) = v for every v ∈ V .

4. Prove that if a ∈ F, v ∈ V , and av = 0, then a = 0 or v = 0.

5. For each of the following subsets of F3, determine whether it is
a subspace of F3:

(a) {(x1, x2, x3) ∈ F3 : x1 + 2x2 + 3x3 = 0};
(b) {(x1, x2, x3) ∈ F3 : x1 + 2x2 + 3x3 = 4};
(c) {(x1, x2, x3) ∈ F3 : x1x2x3 = 0};
(d) {(x1, x2, x3) ∈ F3 : x1 = 5x3}.

6. Give an example of a nonempty subset U of R2 such that U is
closed under addition and under taking additive inverses (mean-
ing −u ∈ U whenever u ∈ U ), but U is not a subspace of R2.

7. Give an example of a nonempty subset U of R2 such that U is
closed under scalar multiplication, but U is not a subspace of R2.

8. Prove that the intersection of any collection of subspaces of V is
a subspace of V .

9. Prove that the union of two subspaces of V is a subspace of V if
and only if one of the subspaces is contained in the other.

10. Suppose that U is a subspace of V . What is U +U?

11. Is the operation of addition on the subspaces of V commutative?
Associative? (In other words, if U1, U2, U3 are subspaces of V , is
U1 +U2 = U2 +U1? Is (U1 +U2)+U3 = U1 + (U2 +U3)?)
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12. Does the operation of addition on the subspaces of V have an
additive identity? Which subspaces have additive inverses?

13. Prove or give a counterexample: if U1, U2,W are subspaces of V
such that

U1 +W = U2 +W,
then U1 = U2.

14. Suppose U is the subspace of P(F) consisting of all polynomials
p of the form

p(z) = az2 + bz5,

where a,b ∈ F. Find a subspace W of P(F) such that P(F) =
U ⊕W .

15. Prove or give a counterexample: if U1, U2,W are subspaces of V
such that

V = U1 ⊕W and V = U2 ⊕W,
then U1 = U2.


