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Throughout this note V is a finite dimensional vector space over C. The symbol N denotes the
set of positive integers and i, j, k, l,m, n, p, q, r ∈ N.

1 Nilpotent operators

Theorem 1.1. Let V be a nontrivial finite dimensional vector space over C with n = dimV. Let

N ∈ L(V) be a nilpotent operator such that m = dimN (N). Then there exist vectors v1, . . . , vm ∈ V
and positive integers q1, . . . , qm such that

vk 6∈ R(N) for all k ∈ {1, . . . ,m},

the vectors

N q1−1v1, . . . , N
qm−1vm

form a basis of ∈ N (N) and the vectors

vk, Nvk, . . . , N
qk−1vk, k ∈ {1, . . . ,m},

form a basis of V.

Proof. First notice that if N = 0, then N (N) = V and the theorem is trivially true. In this
case m = n and any basis v1, . . . , vn of V with positive integers q1 = · · · = qn = 1 satisfies the
requirement of the theorem. From now on we assume that N 6= 0.

The proof is by induction on the dimension n. The statement is trivially true for n = 1. Let
n ∈ N and assume that the statement is true for any vector space of dimension less or equal to n.
It is always good to be specific and state what is being assumed. The following implication is our
inductive hypothesis:

If W is a vector space over C such that dimW ≤ n and if M ∈ L(W) is a nilpotent operator
such that l = dimN (M), then there exist w1, . . . , wl ∈ W and positive integers p1, . . . , pl such that

wj 6∈ R(M) for all j ∈ {1, . . . , l},

the vectors
Mp1−1w1, . . . ,M

pl−1wl

form a basis of N (M) and the vectors

wj,Mwj , . . . ,M
pj−1wj , j ∈ {1, . . . , l},

form a basis of W.
Next we present a proof of the inductive step.
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Let V be a nontrivial finite dimensional vector space over C with dimV = n+1. Let N ∈ L(V)
be a nilpotent operator such that m = dimN (N). Set W = R(N). Since N is nilpotent it is
not invertible. Thus m = dimN (N) ≥ 1. By the famous “rank-nullity” theorem dimW < n + 1.
Since N 6= 0, dimW > 0. Clearly NW ⊆ W. Denote by M the restriction N |W of N to W.
Then M ∈ L(W). Since N is nilpotent, M is nilpotent as well. Clearly, N (M) = N (N) ∩ R(N).
Set l = dimN (M). The vector space W and the operator M satisfy all the assumptions of the
inductive hypothesis. This allows us to deduce that there exist w1, . . . , wl ∈ W and positive integers
p1, . . . , pl such that

wj 6∈ R(M) for all j ∈ {1, . . . , l}, (1)

the vectors
Mp1−1w1, . . . ,M

pl−1wl (2)

form a basis of N (M) the vectors

wj,Mwj , . . . ,M
pj−1wj , j ∈ {1, . . . , l}, (3)

form a basis of W = R(N). Since wj ∈ R(N), there exist vj ∈ V such that wj = Nvj for all
j ∈ {1, . . . , l}. Since by (1), wj 6∈ R(M), we have vj 6∈ R(N) for all j ∈ {1, . . . , l}. We know that
vectors in (2), that is,

Mp1−1w1 = Np1v1, . . . ,M
pl−1wl = Nplvl,

form a basis of N (M) = N (N) ∩ R(N). Recall that m = dimN (N), l ≤ m, and let vl+1, . . . , vm
be such that

Np1v1, . . . , N
plvl, vl+1, . . . , vm, (4)

form a basis of N (N). (It is possible that l = m. In this case we already have a basis of N (N) and
the last step can be skipped.)

Now let us review the stage: We started with the basis

wj = Nvj, Mwj = N2vj , . . . ,M
pj−1wj = Npjvj , j ∈ {1, . . . , l},

of W = R(N) which has exactly dimR(N) vectors. Then we added the vectors v1, . . . , vm. Now
we have m+ dimR(N) = dimN (N) + dimR(N) = dimV vectors:

vj , Nvj , N2vj , . . . , N
pjvj, j ∈ {1, . . . , l}, vl+1, . . . , vm. (5)

For easier record keeping set

qk =







pk + 1 if k ∈ {1, . . . , l}

1 if k ∈ {l + 1, . . . ,m}.

Then (5) can be rewritten as

vk, Nvk, N2vk, . . . , N
qk−1vk, k ∈ {1, . . . ,m}. (6)

Next we will prove that the vectors in (6) are linearly independent. Let

αk,j ∈ C, j ∈ {0, . . . , qk − 1}, k ∈ {1, . . . ,m}

be such that
m
∑

k=1

qk−1
∑

j=0

αk,jN
jvk = 0. (7)
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Applying N to the last equality yields

l
∑

k=1

qk−1
∑

j=0

αk,jN
j+1vk =

l
∑

k=1

qk−2
∑

j=0

αk,jN
j+1vk =

l
∑

k=1

pk−1
∑

j=0

αk,jM
jwk = 0.

Since the vectors in the last double sum are linearly independent (they are the vectors from (3))
we have

αk,0 = · · · = αk,qk−2 = 0, k ∈ {1, . . . , l}.

Substituting these values in (7) we get

m
∑

k=1

αk,qk−1N
qk−1vk = 0.

But, beautifully, the vectors in the last sum are exactly the vectors in (4) which are linearly
independent. Thus

αk,qk−1 = 0, k ∈ {1, . . . ,m}.

This completes the proof that all the coefficients in (7) must be zero. Thus, the vectors in (6) are
linearly independent. Since there are exactly n + 1 vectors in (6) they form a basis of V. This
completes the proof.

Remark 1.2. In this remark we will establish a connection between the lengths q1, . . . , qm and the
numbers

mj = dimN (N j), j ∈ {1, . . . , d}.

Here d ∈ {1, . . . , n} is the degree of nilpotency of N , that is the smallest positive integer such that
T d = 0. Then

0 = m0 < m1 = m < m2 < · · · < md = n = md+1,

where, for convenience, we define m0 = 0 and md+1 = n. It follows from the previous theorem that

0 < mi+1 −mi ≤ mi −mi−1, i ∈ {1, . . . , d− 1}.

We can always assume that the lengths q1, . . . , qm ∈ {1, . . . , d} from the previous theorem are
in nonincreasing order. That is,

d = q1 ≥ · · · ≥ qm ≥ 1.

Then the formula for qk is

qk = max
{

j ∈ {1, . . . , d} : mj −mj−1 ≥ k
}

, k ∈ {1, . . . ,m}.

Conversely, the numbers m1 − m0 ≥ m2 − m1 ≥ · · · ≥ md − md−1 ≥ 1 can be determined from
q1, . . . , qm by

mj −mj−1 = max
{

k ∈ {1, . . . ,m} : qk ≥ j
}

, j ∈ {1, . . . , d}.
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2 More about the upper triangular matrix representations

In class we proved the following theorem.

Theorem 2.1. Let V be a finite dimensional vector space over C. For T ∈ L(V) there exists a

basis B for V such that the matrix MB(T ) is upper triangular.

Our next goal is to understand which complex numbers are on the diagonal of a triangular
matrix MB(T ).

Theorem 2.2. Let V be a finite dimensional vector space over C and n = dimV. Let T ∈ L(V),
let B = {v, . . . , vn} be a basis for V such that the matrix MB(T ) is upper triangular, that is

MB(T ) =















a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann















. (8)

Then each eigenvalue λ of T appears among
{

a11, a22, . . . , ann
}

at least

dimN
(

(T − λI)n
)

times.

Proof. We shall prove the theorem for λ = 0. The general case follows by considering the operator
T−λI. Let B = {v1, . . . , vn}. Assume that the set

{

i ∈ {1, . . . , n} : aii 6= 0
}

has exactly r elements.
Let

{

i ∈ {1, . . . , n} : aii 6= 0
}

=
{

k1, . . . , kr
}

, where k1 < · · · < kr.

In other words, the diagonal entries ak1k1 , . . . , akrkr are nonzero and all other diagonal entries are
0. Since the matrix MB(T ) is upper triangular, the vectors

CB

(

Tvkj
)

=























a1kj
...

akjkj

0
...
0























, j ∈ {1, . . . , r},

are linearly independent. As the mapping CB : V → C
n is an isomorphism, the vectors Tvkj , j ∈

{1, . . . , r}, are linearly independent. Consequently, dimR(T ) ≥ r. Hence dimN (T ) = n −
dimR(T ) ≤ n − r. Since there are exactly d − r zero entries on the diagonal of MB(T ), we see
that there are at least dimN (T ) zero entries on the diagonal of MB(T ). Applying this result to the
operator T n we conclude that there are at least dimN (T n) zero entries on the diagonal of MB(T

n).
But, the diagonal entries of MB(T

n) are an11, . . . , a
n
nn and the number of zeros among an11, . . . , a

n
nn

is identical to the number of zeros among a11, . . . , ann. Hence, there are at least dimN (T n) zero
entries on the diagonal of MB(T ).
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Theorem 2.3. Let V be a finite dimensional vector space over C and n = dimV. Let T ∈ L(V)
and let B = {v, . . . , vn} be a basis for V such that the matrix MB(T ) is upper triangular with the

elements on the main diagonal being a11, . . . , ann, see (8). Let

p(z) =
(

z − a11
)(

z − a22
)

· · ·
(

z − ann
)

. (9)

Then p(T ) = 0.

Proof. For k ∈ {1, 2, . . . , n}, the matrix MB(T − akkI) is upper triangular and its entry in the k-th
column and the k-th row is 0. Therefore,

(T − a11I)
(

span{v1}
)

= {0V} (10)

and, for k ∈ {2, . . . , n},

(T − akkI)
(

span{v1, . . . , vk}
)

⊆ span{v1, . . . , vk−1}. (11)

The inclusions (11) and (10) imply

p(T )(V) = (T − a11I)(T − a22I) · · · (T − annI)(V)

= (T − a11I) · · · (T − annI)
(

span{v1, . . . , vn}
)

⊆ (T − a11I) · · · (T − a(n−1)(n−1)I)
(

span{v1, . . . , vn−1}
)

...

⊆ (T − a11I)(T − a22I)
(

span{v1, v2}
)

⊆ (T − a11I)
(

span{v1}
)

= {0V}.

Thus p(T ) = 0. The theorem is proved.

3 A decomposition of a vector space

Lemma 3.1. Let V be a vector space over a field F. Let A and B be linear mappings on V. If A
and B commute, then N (B) is an invariant subspace for A.

Proof. Let v be in N (B). Then 0V = Bv = ABv = BAv. Therefore Av belongs to N (B).

Lemma 3.2. Let V be a finite dimensional vector space over a field F. Let A and B be linear

operators on V. Assume that A and B commute and that N (A) ∩ N (B) = {0V}. Then N (AB) =
N (A)⊕N (B).

Proof. By Lemma 3.1 N (B) is an invariant subspace of A. Denote by C the restriction of A to
N (B), that is Cw = Aw for all w in N (B). Then

N (C) = {w ∈ N (B) : Cw = 0V} = N (A) ∩N (B) = {0V}.

It follows that C is a bijection of N (B) onto itself. Since N (B) is finite dimensional, C is onto.
Therefore, for every v in N (B) there exists u in N (B) such that v = Cu = Au. Let w be
arbitrary element of N (AB). Since N (AB) = N (BA) we have Aw ∈ N (B). Hence, there exists
u in N (B) such that Aw = Au. Consequently, w − u ∈ N (A). Thus w = (w − u) + u, where
u ∈ N (B) and w − u ∈ N (A). This proves that N (AB) ⊆ N (A) ⊕N (B). The converse inclusion
is straightforward.
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Proposition 3.3. Let V be a finite dimensional vector space over a field F. Let q ∈ N, q > 1, and
let A1, A2, . . . , Aq, be linear operators on V. Assume that

AjAk = AkAj and N (Aj) ∩ N (Ak) = {0V}, j 6= k, j, k ∈ {1, . . . , q}. (12)

Then

N
(

A1A2 · · ·Aq

)

=

q
⊕

j=1

N (Aj).

Proof. The proof is by mathematical induction. We already proved the proposition for two oper-
ators. The inductive hypothesis is that the proposition is true for q − 1 operators. To prove the
inductive step assume (12). By the inductive hypothesis

N
(

A1A2 · · ·Aq−1

)

=

q−1
⊕

j=1

N (Aj). (13)

Set A = A1A2 · · ·Aq−1 and B = Aq. By repeated application of the first equality in (12) it follows
that AB = BA. To apply Lemma 3.2 we need to verify N (A) ∩ N (B) = {0V}. By the inductive
hypothesis the null space of A is given by (13). Thus we need to prove

(

q−1
⊕

j=1

N (Aj)

)

⋂

N (Aq) = {0V}.

Let v be in the above intersection. Then there exist vj ∈ N (Aj), j ∈ {1, . . . , q − 1} such that

v = v1 + · · · + vq−1 and Aqv = 0V .

The last two equalities imply
0V = Aqv1 + · · ·+Aqvq−1.

Since by (12) Aj and Aq commute, Lemma 3.1 implies that N (Ak) is invariant under Aq. That
is, Aqvj ∈ N (Aj) for all j ∈ {1, . . . , q − 1}. This and the fact that the sum in (13) is direct yield
Aqvj = 0V for all j ∈ {1, . . . , q − 1}. By the second relation in (12) we get

vj ∈ N (Aj) ∩ N (Ak) = {0V} for all j ∈ {1, . . . , q − 1}.

This proves that v = 0V . Now Lemma 3.2 yields N (AB) = N (A) ⊕ N (B). Together with (13),
this implies the claim of the proposition.

Proposition 3.4. Let V be a finite dimensional vector space over a field F. Let T ∈ L(V). If λ
and µ are distinct eigenvalues of T and j and k are natural numbers, then

N
(

(T − λI)j
)

⋂

N
(

(T − µI)k
)

= {0V}.

Proof. The set equality in the proposition is equivalent to the implication

v ∈ N
(

(T − µI)k
)

\ {0V} ⇒ v 6∈ N
(

(T − λI)j
)

.

We will prove the last implication. Let v ∈ V be such that (T − µI)kv = 0V and v 6= 0V . Let
i ∈ {1, . . . , k} be such that (T − µI)iv = 0V and (T − µI)i−1v 6= 0V . Set w := (T − µI)i−1v. Then
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w is an eigenvector of T corresponding to µ: Tw = µw. Then (as we must have proven before),
for an arbitrary polynomial p ∈ C[z] we have p(T )w = p(µ)w. In particular

(T − λI)lw = (µ− λ)lw for all l ∈ N.

Since µ− λ 6= 0 and w 6= 0V we have that

(T − λI)lw 6= 0V for all l ∈ N.

Consequently,
(T − λI)l(T − µI)i−1v 6= 0V for all l ∈ N.

Since the operators (T − λI)l and (T − µI)i−1 commute we have

(T − µI)i−1(T − λI)lv 6= 0V for all l ∈ N.

Therefore (T −λI)lv 6= 0V for all l ∈ N. Hence v 6∈ N
(

(T −λI)j
)

. This proves the proposition.

Theorem 3.5. Let V be a finite dimensional vector space over C and T ∈ L(V). We make the

following assumptions:

(i) B is a basis of V for which MB(T ) is upper triangular.

(ii) λ1, . . . , λq, are all the distinct eigenvalues of T .

(iii) For k ∈ {1, . . . , q} denote by mk ∈ {1, . . . , n} the number of times the eigenvalue λk appears

on the diagonal of MB(T ).

(iv) For k ∈ {1, . . . , q} set Wk := N
(

(T − λkI)
mk
)

.

Then

(a) Each of the subspaces W1, . . . ,Wq, is invariant subspace of T .

(b) V = W1 ⊕ · · · ⊕Wq.

(c) dimWk = mk and Wk = N
(

(T − λk)
n
)

for all k ∈ {1, . . . , q}.

(d) For k ∈ {1, . . . , q} set Tk = T |Wk
and Nk = Tk−λkI. Then Nmk

k = 0, that is, Nk is a nilpotent

mapping on Wk.

Proof. (a) Since the mapping T commutes with each of the mappings (T − λkI)
n, Lemma 3.1

implies that each subspace W1, . . . ,Wq, is an invariant subspace of T .

(b) By Theorem 2.3 we have

p(T ) = (T − λ1I)
m1 · · · (T − λqI)

mq = 0.

Notice that the mappings (T −λ1I)
m1 , . . . , (T −λqI)

mq satisfy the assumptions of Proposition 3.3.
Consequently, V = N (p(T )) is the direct sum of the subspaces W1, . . .Wq. This proves (b).

(c) Since clearly mk ≤ n, we have that

Wk ⊆ N
(

(T − λk)
n
)

. (14)
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By Theorem 2.2, dimN
(

(T − λk)
n
)

≤ mk, and hence

dimWk ≤ dimN
(

(T − λk)
n
)

≤ mk. (15)

Since

n =

q
∑

k=1

dimWk ≤

q
∑

k=1

mk = n,

the inequalities in (15) are in fact equalities. That is

dimWk = dimN
(

(T − λk)
n
)

= mk. (16)

This and (14) imply Wk = N
(

(T − λk)
n
)

.

(d) Clearly, Wk is also an invariant subspace of T − λkI. Denote by Nk the restriction of T − λkI
to its invariant subspace Wk and by Tk the restriction of T to Wk. Then, Tk = λkI +Nk and the
mapping Nk is nilpotent.

Definition 3.6. Let V be a finite dimensional vector space over C and T ∈ L(V). Let 1 ≤ q ≤ n
and let λ1, . . . , λq be all the distinct eigenvalues of T . Set

nk = dimN
(

(T − λk)
n
)

, k ∈ {1, . . . , q}.

The number nk is called the algebraic multiplicity of the eigenvalue λk. The polynomial

p(z) =
(

z − λ1

)n1 · · ·
(

z − λq

)nq (17)

is called the characteristic polynomial of T .

Theorem 3.7 (Hamilton-Cayley). Let V be a finite dimensional vector space over C and T ∈ L(V).
Let p be a characteristic polynomial of T . Then p(T ) = 0.

Proof. We use the notation of Theorem 3.5 and Definition 3.6. By Theorem 3.5 (c) we have
nk = mk for all k = 1, . . . , q. Therefore the polynomials defined in (9) and (17) are identical. Now
the theorem follows from Theorem 2.3.

4 The Jordan Normal Form

Let T be a linear operator on a vector space V over C. Let λ be an eigenvalue of T and l ∈ N. A
sequence of nonzero vectors

v1, . . . , vl (18)

such that
Tv1 = λv1, and vl /∈ R(T − λI), (19)

and, if l > 1,
Tvj = λvj + vj−1, j ∈ {2, . . . , l} (20)

is called a Jordan chain of T corresponding to the eigenvalue λ. The number l is the length of the

Jordan chain. The vector vl is called the lead vector of the Jordan chain.
The lead vector of a Jordan chain satisfies

vl /∈ R(T − λI)
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and all the other vectors of the corresponding Jordan chain can be expressed in terms of the lead
vector:

vl−j = (T − λI)jvl, j ∈ {0, 1, . . . , l − 1}.

Notice that (T − λI)lvl = 0V since v1 is an eigenvector of T .
A sequence

(T − λI)l−1v, (T − λI)l−2v, (T − λI)v, . . . , v, (21)

is a Jordan chain, provided that (T − λI)l−1v 6= 0V , (T − λI)lv = 0V and v /∈ R(T − λI).
Let W be a subspace of V spanned by a Jordan chain (18) of T. The first equality in (19) and

(20) imply that W is an invariant subspace of T . If we denote by S the restriction of T to W, then
the matrix representation of S with respect to the basis {v1, . . . , vl} is

MB(S) =



















λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 · · · 1 0
0 0 0 · · · λ 1
0 0 0 · · · 0 λ



















. (22)

A matrix of this form is called a Jordan block corresponding to the eigenvalue λ. In words: a Jordan
block corresponding to the eigenvalue λ is a square matrix with all elements on the main diagonal
equal to λ and all elements on the superdiagonal equal to 1.

A basis for V which consists of Jordan chains of T is called a Jordan basis for V with respect
to T .

If a basis B for V is a Jordan basis with respect to T then the matrix MB(T ) has Jordan blocks
of different sizes on the diagonal and all other elements of MB(T ) are zeros. Each eigenvalue of T
is represented in MB(T ) by one or more Jordan blocks:



























































λ1 1 · · · 0
0 λ1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1
0 0 · · · λ1

0 0 · · · 0
0 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0
0 0 · · · 0

0 0 · · · 0
0 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0
0 0 · · · 0

λ2 1 · · · 0
0 λ2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1
0 0 · · · λ2

. . .

. . .

. . .



























































. (23)

In the above matrix λ1 and λ2 are not necessarily distinct eigenvalues. A matrix of the form (23)
is called the Jordan normal form for T . More precisely, a square matrix M =

[

aj,k
]

is a Jordan

normal form for T if:

(i) all elements of M outside of the main diagonal and the superdiagonal are 0,
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(ii) all elements on the main diagonal of M are eigenvalues of T ,

(iii) all elements on the superdiagonal of M are either 1 or 0, and,

(iv) if aj−1,j−1 6= aj,j, with j ∈ {2, . . . , n}, then aj−1,j = 0.

Theorem 4.1. Let V be a finite dimensional vector space over C and let T ∈ L(V). Then V has a

Jordan basis with respect to T .

Proof. We use the notation and the results of Theorem 3.5. Let k ∈ {1, . . . , q}. It is important to
notice that each Jordan chain of the nilpotent operator Nk is a Jordan chain of T which corresponds
to the eigenvalue λk. Since Nk is a nilpotent mapping in L(Wk), by Theorem 1.1 there exists a basis
Bk = {vk,1, . . . , vk,mk

} for Wk which consists of Jordan chains of Nk. Consequently, Bk consists of
Jordan chains of T . Since V is a direct sum of W1, . . . ,Wq, the union B = B1 ∪ · · · ∪ Bq, that is,

B =
{

v1,1, . . . , v1,m1
, v2,1, . . . , v2,m2

, . . . , vq,1, . . . , vq,mq

}

is a basis for V. This basis consists of Jordan chains of T .
The matrix MB(T ) is a block diagonal with the blocks MBk

(Tk), k = 1, . . . , q, on the diagonal
and with zeros every where else:

MB(T ) =

















MB1
(T1) 0 · · · 0

0 MB2
(T2) · · · 0

...
...

...
...
...

...

0 0 · · · MBq(Tq)

















.

Since Tk = λkI +Nk, we have
MBk

(Tk) = λkI+MBk
(Nk).

Thus all the elements on the main diagonal of MBk
(Tk) equal λk and all the elements of super-

diagonal of MBk
(Tk) are either 1 or 0. If there are exactly hk Jordan chains in the basis Bk, then

0 appears exactly hk − 1 times on the superdiagonal of MBk
(Tk). Therefore MB(T ) is a Jordan

normal form for T .
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