1 Eigenvalues and eigenvectors of a linear operator

In this section we consider a vector space V over a scalar field F. By L£(V) we denote the vector space
L(V,V) of all linear operators on V. The vector space L£(V) with the composition of operators as an
additional binary operation is an algebra in the sense of the following definition.

Definition 1.1. A vector space A over a field F is an algebra over F if the following conditions are satisfied:
(a) there exist a binary operation - : A x A — A.
(b) (associativity) for all z,y,z € A we have (x-y)-z=x-(y-2).
(¢) (right-distributivity) for all z,y,z € A we have (z+vy)-z=x-z2+y- 2.
(d) (left-distributivity) for all x,y,z € A we have z- (z+y) =z -x+ 2z -y.
(e) (respect for scaling) for all z,y € A and all & € F we have a(x -y) = (ax) -y = = - (ay).

The binary operation in an algebra is often referred to as multiplication.

The multiplicative identity in the algebra £(V) is the identity operator Iy .
For T € L(V) we recursively define nonnegative integer powers of T by 7° = I, and for all n € N
" =ToTm
For T € L(V), set
Ar = span{T" : k € NU{0}}.

Clearly Ar is a subspace of L(V). Moreover, we will see below that Ar is a commutative subalgebra of
LV).

Recall that by definition of a span a nonzero S € £(V) belongs to Ar if and only if 3m € NU {0} and
Qo, 1, ...,y € F such that a,, # 0 and

S = Z aT". (1)
k=0

The last expression reminds us of a polynomial over F. Recall that by F[z] we denote the algebra of all
polynomials over F. That is

Flz] = {Zajzj :n e NU{0}, (ag,...,ap) € IE‘"+1}.

5=0
Next we recall the definition of the multiplication in the algebra F[z]. Let m,n € NU {0} and

p(z) = Z ;7' € F[z] and q(z) = Z 8,2 € Flz]. (2)
i=0 Jj=0

Then by definition

m+n
(pg)(z) = Y < > ai/Bj)Zk-

k=0 \ itj=k
1€{0,...,m}
]E{Ovvn}

Since the multiplication in F is commutative, it follows that pg = gp. That is F[z] is a commutative algebra.

The obvious alikeness of the expression (1) and the expression for the polynomial p in (2) is the
motivation for the following definition. For a fixed T' € £(V) we define

=r: Flz] = L(V)
by setting
Er(p) = Z o T where  p(z) = Z ;2" € F[z]. (3)
0 i=0

1=

It is common to write p(7') for =7 (p).



Theorem 1.2. Let T € L(V). The function =g : F[z] — L(V) defined in (3) is an algebra homomorphism.
The range of =1 is Arp.

Proof. Tt is not difficult to prove that =7 : Fz] — £(V) is linear. We will prove that Z¢ : F[z] — L(V) is
multiplicative, that is, for all p,q € F[z] we have Ep(pq) = Z7r(p)Zr(q). To prove this let p,q € F[z] be
arbitrary and given in (2). Then

Er(p)Er(q) = <Z oziTi> <Z ﬁjTj> (by definition in (3))
i=0 J=0

= Z Z ;BT (since L(V) is an algebra)
i=0 j=0
m+n

- Z Z By | TF (since L(V) is a vector space)
k=0 \itj=k

= Z7(pq) (by definition in (3)).

This proves the multiplicative property of =r.
The fact that A7 is the range of Z¢ is obvious. O

Corollary 1.3. Let T' € L(V). The subspace Ar of L(V) is a commutative subalgebra of L(V).

Proof. Let Q,S € Ap. Since Arp is the range of Zp there exist p,q € F[z] such that Q = Zp(p) and
S = Z7(q). Then, since Zp is an algebra homomorphism we have

QS =EZr(p)Er(p) = Er(pq) = Er(ep) = Er(¢9)27(p) = SQ.

This sequence of equalities shows that QS € ran(ZE7) = Ap and QS = SQ. That is Ap is closed with
respect to the operator composition and the operator composition on A7 is commutative. O

Corollary 1.4. Let V be a complex vector space and let T € L(V) be a nonzero operator. Then for every
p € Cl[z] such that degp > 1 there exist a nonzero o € C and z1, ..., zy € C such that

Z1(p) = p(T) = (T = 211) - (T — 2.

Proof. Let p € C[z] such that m = degp > 1. Then there exist ay, ..., a, € C such that a,, # 0 such that

m
p(z) = Z a;z’.

k=0

By the Fundamental Theorem of Algebra there exist nonzero o € C and 21, ..., z, € C such that
p(z) =z —21) - (2 = 2m).
Here @ = v, and zq, ..., z,, are the roots of p. Since Z¢ is an algebra homomorphism we have
p(T)=ZEr(p)=aZp(z—2z1) - Ep(z — z2m) = (T — 211) -+ (T — zp,1).

This completes the proof. O

Lemma 1.5. Let n € N and Sy,...,S, € L(V). If S1,...,Sy are all injective, then Sy --- S, is injective.



Proof. We proceed by Mathematical Induction. The base step is trivial. It is useful to prove the implication
for n = 2. Assume that S,T € L(V) are injective and let u,v € V be such that v # v. Then, since T is
injective, Tu # Tw. Since S is injective, S(Tu) # S(Tv). Thus, ST is injective.

Next we prove the inductive step. Let m € N and assume that Sy --- .S, is injective whenever
S1,. .., Sm € L(V) are all injective. (This is the inductive hypothesis.) Now assume that S,..., S, Spmi1 €
L(V) are all injective. By the inductive hypothesis the operator S = S; --- S, is injective. Since by as-
sumption 7" = S,, 11 is injective, the already proved claim for n = 2 yields that

ST =251 SmSma1
is injective. This completes the proof. O

Theorem 1.6. Let V be a nontrivial finite dimensional vector space over C. Let T € L(V). Then there
exists a A € C and v € V such that v # 0, and Tv = \v.

Proof. The claim of the theorem is trivial if T" is a scalar multiple of the identity operator. So, assume
that T' € L(V) is not a scalar multiple of the identity operator.

Since L£(V) is finite dimensional and C[z] is infinite dimensional, by the Rank-nullity theorem the
operator Zr is not injective. Thus nul(Zr) # {0, }. Hence, there exists a p € C[z] such that p # O[] and
Er(p) = p(T) = Og(y). Since p # Ocp,) then degp > 0. Note that if degp = 0 then p(z) = c for some
c € Cforall z € C. Thus Zp(p) = p(T) = cly. This is not possible since we assume that 7" is not a scalar
multiple of the identity. Hence degp > 0. By Corollary 1.4 there exists o # 0 and z1,..., 2, € C such
that

Ocvy =Er(p) =p(T) = T — 211) -+ (T — 2 1).

Since Oz(y) is not injective, Lemma 1.5 implies that there exists j € {1,...,m} such that T'— z;I is not
injective. That is, there exists v € V, v # 0y such that

(T — ziI)v =0.
Setting A = z; completes the proof. O

Remark 1.7. Note that the proof in the textbook is different. The proof in the textbook is somewhat
more elementary since it does not use the Rank-nullity theorem.

Definition 1.8. Let V be a vector space over F, T € L(V). A scalar A\ € F is an eigenvalue of T if there
exists v € V such that v # 0 and Tv = Av. The subspace nul(T' — A\I) of V is called the eigenspace of T
corresponding to A

Definition 1.9. Let V be a finite dimensional vector space over F. Let T' € £(V). The set of all eigenvalues
of T is denoted by o(T). It is called the spectrum of T

The next theorem can be stated in English simply as: Eigenvectors corresponding to distinct eigenvalues
are linearly independent.

Theorem 1.10. Let V be a vector space over F, T € L(V) and n € N. If the following two conditions are
satisfied:

(@) Aiy..., Ay € F are such that \j # A; for alli,j € {1,...,n} such that i # j,

(b) v1,...,v, €V are such that Tvy = Ao and vy, # 0 for all k € {1,... ,n},

then {v1,...,v,} is linearly independent.



Proof. We will prove this by using the mathematical induction on n. For the base case, we will prove the
claim for n = 1. Let A\ € F and let v; € V be such that v; # 0 and Tv; = Ajv1. Since v; # 0, we conclude
that {v;} is linearly independent.

Next we prove the inductive step. Let m € N be arbitrary. The inductive hypothesis is the assumption
that the following implication holds.

If the following two conditions are satisfied:
(i) p1,..., pm € IF are such that p; # p; for all 4,5 € {1,...,m} such that i # j,
(il) wi,...,wy, €V are such that Twy = ppwy and wy # 0 for all k € {1,...,m},

then {wy,...,w,} is linearly independent.

We need to prove the following implication

If the following two conditions are satisfied:
(I) A1,..., Am41 € F are such that A\; # \j for all 4,5 € {1,...,m + 1} such that i # j,
(I1) v1,...,Vmy1 € V are such that Tvp = A\yvg and v, # 0 for all k € {1,...,m + 1},

then {vy,...,vm41} is linearly independent.

Assume (I) and (IT) in the red box. We need to prove that {vy,...,vy,41} is linearly independent.
Let ag,...,am4+1 € F be such that

a1v1 + -+ U + Qpp1Vme1 = 0. (4)
Applying T' € L(V) to both sides of (4), using the linearity of 7" and assumption (II) we get
a1 A1 + - F A A Um + A1 A 1Vma1 = 0. (5)
Multiplying both sides of (4) by A\,+1 we get
1 Ama1U1 + - F A At 1Um + a1 Ama1Ume1 = 0. (6)
Subtracting (6) from (5) we get
a1( A — Apg1)v1 + - 4 @ (A — A1) v = 0.
Since by assumption (I) we have A\; — A\, # 0 for all j € {1,...,m}, setting
wj = (A = Amy1)vj,  JE{L...,m},

and taking into account (II) we have

w; #0 and Tw; = A\jw; forall  je{l,...,m}. (7)
Thus, by (I) and (7), the scalars A1,...,\,, and vectors wi,...,w,, satisfy assumptions (i) and (ii) of
the inductive hypothesis (the green box). Consequently, the vectors wy,...,w,, are linearly independent.

Since by (7) we have
awy + -+ Ay, =0,

it follows that oy = -++ = au,, = 0. Substituting these values in (4) we get qu119m+1 = 0. Since by
(I1), vm+1 # 0 we conclude that a,,+1 = 0. This completes the proof of the linear independence of
Viyeor s Unt1- Ol

Corollary 3: Let V be a finite dimensional vector space over F and let T' € £(V). Then T has at most
n = dim V distinct eigenvalues.



Proof. Let B be a basis of V where B = {uy, ..., up }. Then |B| = n and span B = V. Let C = {v1, ..., v, } be
eigenvectors corresponding to m distinct eigenvalues. Then C is a linearly independent set with |C| = m.
By the Steinitz Exchange Lemma, m < n. Consequently, T" has at most n distinct eigenvalues. O

Definition 1.11. Let V be a vector space over F and T' € L(V'). A subspace U of V is called an invariant
subspace under T if T(U) C U.

The following proposition is straightforward.

Proposition 1.12. Let S,T € L(V) be such that ST =TS. Then nulT is invariant under S and nul S is
invariant under T'. In particular, all eigenspaces of T are invariant under T'.

Definition 1.13. A matrix A € F"*" with entries a;j, i,j € {1,...,n} is called upper triangularif a; ; = 0
for all 4,5 € {1,...,n} such that i > j.

Definition 1.14. Let V be a finite dimensional vector space over F with n = dimV > 0. Let T' € L(V).
A sequence of nontrivial subspaces U, ... ,U, of V such that

Uy CUs S - C Uy (8)

and
TU C Uy, for all ke{l,...,n}

is called a fan for T in V. A basis {v1,...,v,} of Vis called a fan basis corresponding to T if the subspaces
Vi = span{vy, ..., v}, ke{l,...,n},
form a fan for 7.

Notice that (8) implies
1 <dimlf; < dimly < --- < dimU,, < n.
Consequently, if Uy, ...,U, is a fan for T' we have dimUy = k for all k € {1,...,n}. In particular U,, = V.

Theorem 1.15 (Theorem 5.12). Let V be a finite dimensional vector space over F with dimV = n and let
T e L(V). Let B={v1,...,v,} be a basis of V and set

Vi = span{vy, ..., vk}, ke{l,...,n}.

The following statements are equivalent.
(a) ME(T) is upper-triangular.
(b) Twv, € Vi for all k € {1,...,n}.
(¢) TV, CVy for all k € {1 ,n}.
)

(d) B is a fan basis correspondmg to T.

Proof. (a) = (b). Assume that M§(T) is upper triangular. That is

[a11 a2 -+ a0 am
0 (1/22 o« e a2k “ o . a2n
B o N N . N .
MB(T)_ 0 0 e ak‘k) “ e 0
(0 0 - 0 e ap




Let k € {1,...,n} be arbitrary. Then, by the definition of M5 (T),

a1k

Cp(Twy) = | %

0
- 0 -
Consequently, by the definition of C, we have
Tok = aypvr + -+ - + appvg € span{vy, ..., vk} = Vi.

Thus, (b) is proved.

(b) = (a). Assume that Tv, € Vj, for all k € {1,...,n}. Let a;;, i, € {1,...,n}, be the entries of
ME(T). Let j € {1,...,n} be arbitrary. Since Tv; € V; there exist ay,...,a; € F such that

Tvj = oqvy + -+ + ajv;.

By the definition of Cz we have

aq
Cs(Ty) = |0
L 0 -
On the other side, by the definition of M§(T), we have

Cy(Tv;) = | 99

The last two equalities, and the fact that Cp is a function, imply a;; = 0 for all i € {j + 1,...,n}. This
proves (a).

(b) = (c). Suppose Tv, € Vi = span{vy,...,vx} for all k € {1,...,n}. Let v € V;. Then v =
a1v1 + -+ + agvg. Applying T, we get Tv = a1 Tvy + - - - + agTvg. Thus,

Tv € span{Tv1,...,Tv}. 9)
Since
Tv; € Vj C Vg for all jed{l,... k},

we have
span{Tvy,...,Tv;} C V.
Together with (9), this proves (c).
(c) = (b). Suppose TVy C Vy for all k € {1,...,n}. Then since v € Vi, we have Tv;, € Vj, for each
ke{l,...,n}.
(¢) & (d) follows from the definition of a fan basis corresponding to 7. O



Theorem 1.16. Let V be a finite dimensional vector space over F with dimV = n, and let T € L(V).
Let B = {vy,...,v,} be a basis of V such that Mg(T) is upper triangular with diagonal entries ajj,
j€{l,...,n}. Then T is not injective if and only if there exists j € {1,...,n} such that aj; = 0.
Proof. In this proof we set
Vi = span{vy, ..., vu; }, ke{l,..,n}
Then
VICWVC...CV, (10)

and by Theorem 1.15, TV), C Vy..
We first prove the “only if” part. Assume that T is not injective. Consider the set

K={ke{l,..,n}: TV CVi}

Since T is not injective, nulT # {0y}. Thus by the Rank-Nullity Theorem, ranT C V = V,. Since
TV, =ranT, it follows that TV,, C V,,. Therefore n € K. Hence the set K is a nonempty set of positive
integers. Hence, by the Well-Ordering principle min K exists. Set j = min K.

If j = 1, then dimV; = 1, but since TV; C Vi it must be that dim7V; = 0. Thus TV; = {0y}, so

Twvy = 0,. Hence C5(T) =[0---0]" and so aj; = 0. If j > 1, then j — 1 € {1,...,n} but j — 1 ¢ K. By
Theorem 1.15, TV;_1 € V;_1 and, since j — 1 € K, TV;_1 C V;_1 is not true. Hence TV;_1 = V;_;. Since
Jj € K, we have T'V; C V;. Now we have

Viaa=TV,_1 CTV; C V.

Consequently,
j—1=dimV;; <dim(TV;) < dimV; = j,

which implies dim(T Vj) = j — 1 and therefore T'V; = V;_1. This implies that there exist aq,...,a;_1 € F
such that
Tvj = aivy + -+ + a;j-1vj1.

By the definition of M g this implies that a;; = 0.
Next we prove the “if” part. Assume that there exists j € {1,...,n} such that aj; = 0. Then

T’Uj =ayvr+ -+ aj-1,vj-1+ O’Uj € Vj_l. (11)
By Theorem 1.15 and (10) we have
Tv, € Vi CVj1 for all ie{l,...,5— 1} (12)

Now (11) and (12) imply Tv; € V1 for all i € {1,...,j} and consequently T'V; C V;. To complete the
proof, we apply the Rank-Nullity theorem to the restriction T]Vj of T' to the subspace V;:

dimnul(T\yj) + dimran(T\Vj) = j.
Since T'V; C V; implies dimran (T |Vj) < j —1, we conclude
dimnul(7]y,) > 1.

Thus nul(T|y,) # {0y}, that is, there exists v € V; such that v # 0 and Tv = T'|y,v = 0. This proves that
T is not invertible. O

Corollary 1.17 (Theorem 5.16). Let V be a finite dimensional vector space over F with dim)V = n,
and let T € L(V). Let B be a basis of V such that Mg(T) is upper triangular with diagonal entries a;j,
j€{1,...,n}. The following statements are equivalent.
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(a) T is not injective.
(b

)
) T is not invertible.
c¢) 0 is an eigenvalue of T'.
)
)

(
(d) Ty ai = 0.

(e) There exists j € {1,...,n} such that a;j; = 0.

Proof. The equivalence (a) < (b) follows from the Rank-nullity theorem and it has been proved earlier.
The equivalence (a) < (c) is almost trivial. The equivalence (a) < (e) was proved in Theorem 1.16 and
The equivalence (d) < (e) is should have been proved in high school. O

Theorem 1.18. Let V be a finite dimensional vector space over F with dimV = n, and let T € L(V). Let
B be a basis of V such that ME(T) is upper triangular with diagonal entries aj;, j € {1,...,n}. Then

o(T)={aj; :je{1,...,n}}.
Proof. Notice that M§ : £L(V) — F"*" is a linear operator. Therefore
ME(T — \I) = ME(T) — AME(I) = ME(T) — M.

Here I,, denotes the identity matrix in F**". As M (T) and M5 (I) = I,, are upper triangular, Mg (T —\I)
is upper triangular as well with diagonal entries a;j; — A, j € {1,...,n}.

To prove a set equality we need to prove two inclusions.

First we prove C. Let A € o(T). Because A is an eigenvalue, T'— AI is not injective. Because T — A
is not injective, by Theorem 1.16 one of its diagonal entries is zero. So there exists i € {1,...,n} such that
aii — A =0. Thus A = a;;. So o(T) C {aj;:j € {1,....n}}.

Next we prove D. Let a;; € {ajj RS {1,...,n}} be arbitrary. Then a; — a; = 0. By Theorem 1.16
and the note at the beginning of this proof 7" — a;; I is not injective. This implies that a;; is an eigenvalue
of T. Thus a;; € o(T). This completes the proof. O

Remark 1.19. Theorem 1.18 is identical to Theorem 5.18 in the textbook.

Theorem 1.20 (Theorem 5.13). Let V be a nonzero finite dimensional complex vector space. If dimV =n
and T € L(V), then there exists a basis B of V such that ME(T) is upper-triangular.

Proof. We proceed by the complete induction on n = dim(V).

The base case is trivial. Assume dimV = 1and T' € L(V). Set B = {v}, where u € V\{0,} is arbitrary.
Then there exists A € C such that Tu = Au. Then, M§(T) = [A].

Now we prove the inductive step. Let m € N be arbitrary. The inductive hypothesis is

For every k € {1,...,m} the following implication holds: If dim¥f = k and S € L(U), then
there exists a basis A of U such that M j‘(S ) is upper-triangular.

We complete the inductive step, we need to prove the implication:

If dimV = m + 1 and T € L(V), then there exists a basis B of V such that M§(T) is
upper-triangular.

To prove the red implication assume that dimV =m+1 and T' € £(V). By Theorem 1.6 the operator
T has an eigenvalue. Let A be an eigenvalue of T. Set U = ran(T — \I). Because (T'— \I) is not injective,
it is not surjective, and thus k = dim(U) < dim(V) = m + 1. That is k € {1,...,m}.

Moreover, TU = U. To show this, let u € Y. Then Tu = (T — A\ )u + Au. Since (T — A)u € U and
A €U, Tu € U. Hence, S = Ty is an operator on U.



By the inductive hypothesis (the green box), there exists a basis A = {uq,...,ur} of U such that
M+(S) is upper-triangular. That is,

Tuj = Suj € span{uy,...,u;} for all je{l,... k}.
Extend A to a basis B = {uq,...,ug,v1,...,0,_} of V. Since
Tvj = (T — M)v; + Avj, jed{l,...,n—k}
where (T'— A )v; € U, we have
Tvj € span{uy, ..., Uy, v;} Cspan{uy, ..., Up,V1,...,0;} for all jed{l,....,n—k}.

By Theorem 1.15, ME(T) is upper-triangular. O

2 Inner Product Spaces
We will first introduce several “dot-product-like” objects. We start with the most general.
Definition 2.1. Let V be a vector space over a scalar field F. A function
[+,-]: VxV—>TF
is a sesquilinear form on V if the following two conditions are satisfied.

(a) (linearity in the first variable) Va,5€F Vu,v,w €V [au+ fv,w] = alu,w] + Blv, w].
(b) (anti-linearity in the second variable) Voa,3 €F VYu,v,w €V [u,av + Bw] = alu,v] + Blu, w].

Example 2.2. Let M € C™*" be arbitrary. Then
[X7Y] = (MX)Y7 X)YG(Cna

is a sesquilinear form on the complex vector space C"™. Here - denotes the usual dot product in C.

Theorem 2.3. Let V be a vector space over a scalar field F and let [-,-]:V xV — F be a sesquilinear
form on V. Ifi € F, then
3
1 g
[u,v] = 121 u+1vu+1fu} (13)
k=0

for all u,v € V.
Corollary 2.4. Let V be a vector space over a scalar field F and let [-,-]:V xV — F be a sesquilinear

form on V. Ifi € F and [v,v] =0 for all v € V, then [u,v] =0 for all u,v € V.

Definition 2.5. Let V be a vector space over a scalar field F. A sesquilinear form [-,-] : V xV — F is
hermitian if

(c¢) (hermiticity) Vu,v €V [u,v] = [v,u].
A hermitian sesquilinear form is also called an inner product.
Let [-,-] be an inner product on V. The hermiticity of [-,-] implies that [v,v] = [v,v] for all v € V.

Thus [v,v] € R for all v € V. The natural trichotomy that arises is the motivation for the following
definition.



Definition 2.6. An inner product [-,-] on V is called nonnegative if ~ [v,v] > 0 for all v € V, it is called
nonpositive if  [v,v] <0 for all v € V, and it is called indefinite if there exist u € V and v € V such that
[u,u] <0 and [v,v] > 0.

The following implication that you might have learned in high school will be useful below.

Theorem 2.7 (High School Theorem). Let a,b,c be real numbers. Assume a > 0. Then the following
implication holds:
VeeQ ar’?+br+c¢>0 = b2 — 4ac < 0. (14)

Theorem 2.8 (Cauchy-Bunyakovsky-Schwartz Inequality). Let V be a vector space over F and let (-,-)
be a nonnegative inner product on V. Then

Vu,o €V [{u,v)* < (u,u)(v,v). (15)
The equality occurs in (15) if and only if there exists a, B € F not both 0 such that (au+ Bv, au+ fv) = 0.
Proof. Let u,v € V be arbitrary. Since (-,-) is nonnegative we have
VteQ (u+ t{u, v)v,u + t{u,v)v) > 0. (16)
Since (-,-) is a sesquilinear hermitian form on V, (16) is equivalent to
VteQ (u, ) + 2t|(u, v)|? + 3| (u, v)|* (v, v) > 0. (17)
As (v,v) > 0, the High School Theorem applies and (17) implies
A, v)|* = 4w, ) *{u, w) (v, 0) < 0. (18)
Again, since (u,u) > 0 and (v,v) > 0, (18) is equivalent to
[{u, 0)* < (u, u) (v, v).
Since u,v € V were arbitrary, (15) is proved. O

Corollary 2.9. Let V be a vector space over F and let (-,-) be a nonnegative inner product on V. Then
the following two implications are equivalent.

(i) IfveV and (u,v) =0 for allu € V, then v = 0.
(ii) IfveV and (v,v) =0, then v = 0.
Proof. Assume that the implication (i) holds and let v € V be such that (v,v) = 0. Let u € V be arbitrary.

By the the CBS inequality
[(w, 0)[* < (u, u)(v,0) = 0.

Thus, (u,v) =0 for all w € V. By (i) we conclude v = 0. This proves (ii).

The converse is trivial. However, here is a proof. Assume that the implication (ii) holds. To prove (i),
let v € V and assume (u,v) =0 for all u € V. Setting u = v we get (v,v) = 0. Now (ii) yields v =0. O

Definition 2.10. Let V be a vector space over a scalar field F. An inner product [-, -] on V is nondegenerate
if the following implication holds

(d) (nondegenerecy) wu €V and [u,v] =0 for all v €V implies u = 0.

10



It follows from Corollary 2.9 that a nonnegative inner product (-,-) on V is nondegenerate if and only
if (v,v) = 0 implies v = 0. A nonnegative nondegenerate inner product is also called positive definite inner
product. Since this is the most often encountered inner product we give its definition as it commonly given
in textbooks.

Definition 2.11. Let V be a vector space over a scalar field F. A function (-,-) : V x V — F is called a
positive definite inner product on V if the following conditions are satisfied;

(a) Yu,v,weV Vo, €F (au+ fv,v) = alu,w) + B{v,w),
(b) Yu,v eV (u,v) = (v,u),

(c) YveV (v,v) >0,

(d) If v e V and (v,v) =0, then v = 0.

B B DBranko Curgus revised up to here. W ... .. ... oL |

Theorem 2.12. Pythagorean Theorem
Let u,v € V. Then (u,v) =0 = (u+v,u+v) = (u,u) + (v,v)
Furthermore, if vi,- -+ ,v, € V and (vj, jx) = 0 whenever j # k then (3°7_ vy, > Jk_y vk) = 37— (v, v5)

Proof. For two vectors.

November 8 (The Gram-Schmidt orthogonalization was proven the previous day)

Theorem 2.13 (Gram-Schmidt). If V is a finite dimensional vector space with positive definite inner
product (- ,-), then V has an orthonormal basis.

Corollary 2.14. If V is a complex vector space with positive definite inner product and T € L(V) then
there exists an orthonormal basis B such that MB(T) is upper-triangular.

Definition 2.15. Let (V,(-,-)) be a finite dimensional positive definite inner product space and A C V.
We define At ={v €V : (v,a) =0V ac A}.

1

Claim (Not proven in class): A~ is a subspace of V.

Theorem 2.16. IfU is a subspace of V, then ¥V =U & U*.
Proof. Let v € U and v € Y+. Then (v,v) = 0. Since the (-,-) is positive definite, this implies v = Oy.

Note that since U/ is a subspace of V, U inherits the positive definite inner product space. Thus U is
a finite dimensional positive definite inner product space. Thus there exists an orthonormal basis of U,

B= {ul,uQ, e uk}
Let v € V be arbitrary. By the Gram-Schmidt process,

k k
Z”“J Z”“J
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where the first summand is in &/ and the second summand is in *. More succinctly, we write this as

v=w+ (v—w) where w = Z?le,uj)uj. We prove w is unique: u € Ut if and only if (w,u;) = 0 for all

j €{1,...k}. The forward direction is trivial (from the definition of &*). To prove the reverse direction,
let u € U be arbitrary. Then there exist o; € F such that u = Z?Zl ajuj. Now calculate

k k
(w,u) = <w,2ajuj> = Zég(w,uﬁ = 0.
j=1 j=1

The last equality follows from the assumption. Thus v € U .
Now for every i € {1,...k},

k k
(v —w,u;) = <U — Z(v,uj>uj,ui> = (v, u;) — Z(U,uj>(uj,ui> = (v,u;) — (v,u;) = 0.
Ol

Definition 2.17. By the previous theorem, if I/ is a subspace of V, then V = U ® U implies for all v € V,
there exists a unique u € U such that (v —u) € U+ and v = u+ (v — u). This defines a function which we
call the orthogonal projection of v onto U as Py : V — U such that Py(v) = u.

Since U is a subspace of V, Py € L(V). Furthermore, ran Py = U, nul Py = U+, and (Py)? = Py
(idempotent).

Proposition 2.18. Let U be a subspace of V, v € V be arbitrary. Let ug € U. Then ||[v — ug|| < ||jv — ul|
for every w € U if and only if Py(v) = ug and v — ug € U™,

Proof. (<=): Assume v € V, u,ug € U, v—ug € U*. Then ||jv—ul|® = ||v—ug+uo+ul?, where v—ug € U+
and ug + u € U. By the pythagorean theorem,

[v = g + uo + ul* = [ = uo|l* + [luo — ul* > |lv—uo|*.
(=) Assume ||v —ug|| < ||[v — ul| for all u € U. We show v — ug € U+. This direction of the proof was

given on November 9. U

B B Stuff from November 19, 2013 B ......... .. ... ..., |

Lemma 2.19. Let V be a vector space over F and let (-,-) be a positive definite inner product on V. Let
U be a subspace of V and let T € L(V). The subspace U is invariant under T' if and only if the subspace
Ut is invariant under T*.

Proof. By the definition of adjoint we have
(T'u,v) = (u, T*v) (19)
for all u,v € V. Assume TU C U. From (19) we get
0= (Tu,v) = (u,T*v) Yuel and VYovelUst.
Therefore, T*v € U~ for all v € U+. This proves “only if” part.

The proof of the “if” part is similar. O
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In the proof of the next theorem we use d;; to represent the Kronecker delta function, that is 6;; = 1 if
i =7 and J;; = 0 otherwise.

Theorem 2.20 (Spectral theorem for normal operators). Let V be a finite dimensional complex vector
space with a positive definite inner product (-,-). Let T € L(V). Then T is normal if and only if there
exists an orthonormal basis of V which consists of eigenvectors of T'.

Proof. Set n = dim). We first prove “only if” part. Assume that 7" is normal. Set

Jwy,...,wg €V and JA,..., A €C
= {k‘ € {1,...,n} : such that (w;, w;) = 6;; and Tw; = \jw; }
for all 4,5 €{1,...,k}
Clearly 1 € K. Since K is finite, m = max K exists. Clearly, m < n.

Next we will prove that £ € K and k < n implies that £+ 1 € K. Assume k € K and k£ < n. Let
wi,...,wy € Vand Aq,...,\; € C besuch that (w;, w;) = 6;; and Tw; = A\jw; for all 4,5 € {1,...,k}. Set

W = span{ws, ..., wg}.

Since wy,...,wy are eigenvectors of T" we have TW C W. By Lemma 2.19, T* (WL) C Wt. Thus,
T*|yy1 € E(WL). Since dim W = k < n we have dim(Wl) =n—k>1. Since Wt is a complex vector
space the operator T%|,y 1 has an eigenvalue p with the corresponding unit eigenvector u. Clearly, u € 4%
and T*u = pu. Since T* is normal, we have Tw = fiu. Since u € W+ and Tu = Jiu, setting wy41 = u and
Ak+1 = @ we have

(wi,w;) =0;; and Tw; = N\jw; forall i,je{l,....kk+1}
Thus k£ 4+ 1 € K. Consequently, k < m. Thus, for k € K, we have proved the implication
k<n = k< m.
The contrapositive of this implication is: For k € K, we have
k>m = k> n.

In particular, for m € K we have m = m implies m > n. Since m < n is also true, this proves that m = n.
That is, n € K. This implies that there exist uy,...,u, € V and Ai,..., A, € C such that (u;,u;) = 0;;
and Tuj = Aju; for all i,j € {1,...,n}.

Since uq,...,u, are orthonormal, they are linearly independent. Since n = dimV, it turns out that
ui,...,u, form a basis of V. This completes the proof.

To prove the converse assume that there exist an orthonormal basis of ¥V which consist of eigenvectors
of T. That is, assume that there exists uy,...,u, € V and Ay,..., A, € C such that (u;,u;) = d;; and
Tuj = Ajuj for all i,j € {1,...,n}.

Let j € {1,...,n} be arbitrary. Since uq,...,u, form an orthonormal basis we have

—~

= (T"uj,u1) uy + (T 'LLJ,U2>U2+ + (T uj, un) un

= (uj, Tur) ur + (uj, Tug) ug + - + <uj7Tun> Uy,

= (u; A1U1> uy + (uj, Aotg) ug 4 - 4 (U, Aptin) Un,

= A1 (uj, ur) ug + Ao{ug, ug) ug + - -+ + Ay (g, Un) up
= /\_J Uj-

Thus, T*u; = A\ju; for all j € {1,...,n}. Consequently,
TT u; =T (Muj) = N\jTu; = AjAju; = |\ P,
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and also o
T*Tuj = T* (/\jUj) = )\jT*’LLj = )\j)\ju]' = |)\j|2’LLj.

Thus, TT*u; = T*Tu; for all j € {1,...,n}. Since uy, ..., u, form a basis of V this implies TT*v = T*Tv
for all v € V, that is, T is normal. O
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