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Throughout this note V is a nontrivial finite dimensional vector space over C. We set
n = dim Y. The symbol N denotes the set of positive integers and 1, j, k,l,m,n,p,q,r € N.
For T' € L(V) by N(T') we denote the null-space and by R(T') the range of T

1 Nilpotent operators

An operator N € L(V) is nilpotent if there exists ¢ € N such that N7 = 0. If N7 = 0 and
N9=1 £ 0, then q is called the degree of nilpotency of N.

It is not difficult to show that in a finite dimensional space V the degree of nilpotency
q satisfies ¢ < dim V.

Theorem 1.1. LetV be a nontrivial finite dimensional vector space over C with n = dim V.
Let N € L(V) be a nilpotent operator such that m = dim N (N). Then there exist vectors
V1,..., U, €V and positive integers qi, . . ., qm such that the vectors

N1y, ke{l,...,m},
form a basis of N(N) and the vectors
vk, Nog, ..., N% Ly, kEe{l,...,m},
form a basis of V.

Proof. The proof is by induction on the dimension n. For n = 1, N%m(V) = N! = 0, so
the statement is trivially true for n = 1. Let n € N and assume that the statement is true
for any vector space of dimension less or equal to n. It is always a good idea to be specific
and state what is being assumed. Let n € N be such that n > 1. The following implication
is our inductive hypothesis:

If W is a vector space over C such that dimW < n and if M € L£(W) is a nilpotent
operator such that [ = dim N (M), then there exist wy,...,w; € W and positive integers
P1,---,p; such that the vectors

MPi~ by, je{l,...,1},
form a basis of N'(M) and the vectors

wj,ij,...,ij_le, je{l,... 1},



form a basis of W.

Next we present a proof of the inductive step.

Let V be a nontrivial finite dimensional vector space over C with dim) = n. Let
N € L(V) be a nilpotent operator.

First notice that if N =0, then N (N) =V and the claim is trivially true. In this case
m = n and any basis v1,...,v, of ¥V with positive integers ¢ = --- = g, = 1 satisfies the
requirement of the theorem. From now on we assume that N # 0.

Set m = dimN(N) and W = R(N). Since all powers of an invertible operator are
invertible and a power of N is 0, N it is not invertible. Thus m = dimN(N) > 1. By
the famous “rank-nullity” theorem dimW < n. Since N # 0, dimW > 0. It is clear
that W is invariant under N. Set M € L()V) to be the restriction of N onto W. Then
€L(W). Since N is nilpotent, M is nilpotent as well. Clearly, N' (M) = N(N)NR(N). Set
| = dim N (M). The vector space W and the operator M satisfy all the assumptions of the

inductive hypothesis. This allows us to deduce that there exist wq,...,w; € VW and positive
integers p1, ..., p; such that the vectors
MPi~t; e d{l,... 1}, (1)

form a basis of N(M) = N(N)NR(N) and the vectors
wj,ij,...,ij_le, jE{l,...,l}, (2)

form a basis of W = R(NN). Since w; € R(N), there exist v; € V such that w; = Nv; for
all j € {1,...,1}. We know from (1) that the vectors

MPr~ = NPy, .., MP 7wy = NPy,

form a basis of N (M) = N(N)NR(N). Recall that m = dimN(N) and | < m. Let
V41, -- ., Um be such that
Nplvla---valvb Vl+1s -+ 5 Umys (3)

form a basis of N(N). (It is possible that [ = m. In this case we already have a basis of
N(N) and the last step can be skipped.)
Now let us review the stage: We started with the basis

wj :N'Uj, ij :Nz'Uj,...,ij_l’wj :ij’l)j, j € {1,...,1},

of W = R(N), with dimR(N) vectors to which we add the vectors vy, ...,v,. Now we
have m + dimR(N) = dim N (N) + dimR(N) = dim V = n vectors:

vj, Nvj, N2Uj,...,ijUj, Jjed{l,... 1}, Vltts -y Ume (4)
For easier writing set

b1l i kel 0}
1 if ke{l+1,...,m}.

k. =



Then (4) can be rewritten as
vk, Nug, N2vg, ..., N¥ Ly, ke{l,...,m}. (5)

Next we will prove that the vectors in (5) are linearly independent. Let oy ; € C,j €
{0,...,qx— 1}, k€ {1,...,m} be such that

m qr—1

Z Z Osz'Nj’Uk = 0. (6)

k=1 j=0

Applying N to the last equality yields

I qr—2 I pr—1
E E OékJN]—i_l’Uk = E E amMka = 0.
k=1 j=0 k=1 j=

Since the vectors in the last double sum are the vectors from (2) they are linearly indepen-
dent. Therefore
Qo = = Qfg—2 =0, ke{l,...,1}.

Substituting these values in (6) we get

m

—1
Zak,qk—quk v = 0.
k=1

But, beautifully, the vectors in the last sum are exactly the vectors in (3) which are linearly
independent. Thus
Qg g—1 = 0, ke{l,...,m}.

This completes the proof that all the coefficients in (6) must be zero. Thus, the vectors in
(5) are linearly independent. Since there are exactly n vectors in (5) they form a basis of
V. This completes the proof. O

2 A Decomposition of a Vector Space

Lemma 2.1. Let V be a vector space over F. Let A and B be commuting linear operators
onV. Then N(B) and R(B) are invariant subspaces for A.

Proof. This is a very simple exercise. O

Proposition 2.2. Let V be a vector space over F. Let T € L(V). If X and u are distinct
eigenvalues of T and j and k are natural numbers, then

N((T = A17) (YN (T = uD)*) = {0y }.
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Proof. The set equality in the proposition is equivalent to the implication
veEN((T —pD)")\{0v} = v&N(T-AI)).

We will prove this implication. Let v € V be such that (T — uI)*v = 0y and v # 0y. Let
i€{l,...,k} besuch that (T'— puI)'v = 0y and (T — pI)""'v # 0y. Set w = (T — pl ) to.
Then w is an eigenvector of 1" corresponding to p, that is Tw = pw and w # 0. Then (as
we must have proven before), for an arbitrary polynomial p € C[z] we have p(T)w = p(u)w.
In particular

(T —AD'w = (u—N'w forall [eN.

Since p — A # 0 and w # 0y we have that
(T — AD'w # 0y forall [eN.

Consequently, ‘
(T — A\DNT — pI) v #0y forall [eN.

Since the operators (T'— AI)! and (T — pI)*~! commute we have
(T — uI)" YT — X)'v # 0y forall [eN.

Therefore (T — M)'v # Oy for all I € N. Hence v ¢ N((T — AI)7). This proves the
proposition. O

Corollary 2.3. Let V be a finite dimensional vector space over F. Let T € L(V). If X and
w are distinct eigenvalues of T and j and k are natural numbers, then

N((T = MY) € R(T = D).

Proof. Since the operators (T'— AI)7 and (T — pI)* commute, by Lemma 2.1, N'((T — AI)7)
is invariant under (T — pI)*. Denote by S the restriction of (T' — uI)* onto N({(T = AI)P).
Since clearly,

N(S)=N((T = A))) NN (T — uD)*).
Proposition 2.2 implies that S is an injection, and thus bijection. Hence,
S(N((T = A1Y) ) = N ((T = ATY)

and consequently

N((T = \IY) = (T — uI)’f(N((T - )\I)j)) CR((T — pI)¥).

O
Lemma 2.4. Let V be a vector space over F. Let U and VW be subspaces of V such that
V=UDW.

Let S € L(V) be such that SU CU and SW CW. If N(S)NW = {0}, then

N((Slu)y)=N(S7)  forall jeN. (7)
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Proof. Assume N'(S) N W = {0}. We first prove the equality for j = 1. Since N'(S|y) =
N(S) NU, the inclusion N (Sfy) € N(S) is clear. Let v € N(S) be arbitrary. Then
v=u+w with u € Y and w € W. Applying S to this identity we get 0 = Sv = Su + Sw.
Since Su € U and Sw € W, the assumption that the sum of &/ and W is direct yields
Sw = 0. Since N'(S) N W = {0}, we have w = 0. Thus, v € U, and hence v € N'(S|y).

To prove (7) for arbitrary j € N we will first prove that

NSy nw={0} forall jeN. (8)

A simple proof proceeds by mathematical induction. The statement in (8) is true for j = 1.
Let j € N and assume that the statement in (8) is true for j. Now assume that w € W
and S9*lw = 0. Then Sw € W and S7(Sw) = 0. By the inductive hypothesis, that is
N (57) N W = {0} we conclude Sw = 0. Since N'(S) "W = {0}, we deduce that w = 0.
Having (8), we can apply the equality proved in the first part of the proof to the operator
S7. O

Corollary 2.5. LetV be a finite dimensional vector space over F. Let U and VW be subspaces
of V such that

V=UoW.
Let T € L(V) be such that TU CU and TW C W. Then
o(Tlu) Vo (T|w) = a(T). 9)

IfAx€a(T) and A€ o(T|w), then X € o(T|y) and
N((Tly = M)) =N((T - X)) forall jeN. (10)

Proof. The inclusion C in (9) is clear. To prove D, let A € o(T") and let v # 0 be such that
Tv = Xv. Let v =u+ w, with v € U and w € W. Since v # 0 we have u # 0 or w # 0.
Applying T to both sides of v = u4w and using the fact that v is an eigenvalue corresponding
to A we get Tu + Tw = Tv = v = Au+ Aw. Consequently, (Tu — Au) + (Tw — Aw) = 0.
Since the sum V = U & W is direct and Tu — Au € U and Tw — Aw € W we conclude
Tw— A w =0 and Tu — Au = 0. Since u # 0 or w # 0, we have A € 0(T|u) or A EJ(T|W).

Assume X € o(T) and A € o(T|y). Then N (T — XI) N W = {0}. Lemma 2.4 applies
to the operator T — AI and yields (10). Since A € o(T), N(T — XI) # {0}. Now (10) with
j=1yields A € o(T|u). O

Theorem 2.6. Let V be a finite dimensional vector space over C, n = dimV and let T €
L(V). Let Ai,..., A, be all the distinct eigenvalues of T. Set

Wj:N((T—)\jI)n) and dimW; =n;, je{l,... ,k}.
Then

(a) Each of the subspaces Wh, ..., W, is invariant under T.

(b) V=W & - &Wg.

(c) Set Tj = Tlw, and N; = T; — NI, j € {1,...,k}. Then N]m = 0, that is, Nj is a
nilpotent operator on W;.



Proof. (a) Since T' commutes with each of the operators (T — \;I)?,, j € {1,..., k} Lemma 2.1
implies that each subspace Wy,..., Wy, is an invariant subspace of T

To prove (b) we proceed by mathematical induction on the number & of distinct eigen-
values of T'. We first prove the base step. Assume that X is the only eigenvalue of 1. Let
B = {vy,...,v,} be a basis of V such that the matrix I\/Ig(T) is upper triangular. Then,
as we proved earlier all the diagonal entries of ME(T) equal to A. From the definition of
MB(T) it follows that

(T — M) (span{vy,...,v;}) C (spanfur,...,v; —1}) forall je{2,...,n}.
Therefore

(T = AI)™(V) = (T = AX)" (T — X ) (span{vy,..., v, })
(T — )\I)"_l (span{vl, . ,vn_l})

N

(T — \I)(T — \I) (span{vl, 1)2})
(T — \I) (span{vl})
= {0y}

Thus ¥V = N ((T'— M)™). This completes the proof of the base case.

Now we prove the inductive step. Let k € N and assume that the statement is true for
an operator with k distinct eigenvalues. Let T be an operator with £+ 1 distinct eigenvalues
ALy -3 Ay Ag1. For convenience we set A1 = A. Then, by assumption A # A; for all
jed{l,... k}. We set

U=R((T-AI)") and W=N((T~-A)").

Since T" and (7' — AI)" commute, Lemma 2.1 implies that both ¢/ and W are invariant under
T.
Next we prove that

R(T = X)")NN({(T = AXD)") =uUnW = {0}. (11)

(Prove this as an exercise.)
By the Rank-Nullity theorem
V=UasW. (12)

(Provide details as an exercise.)
By Corollary 2.3

N{(T—-NI)")CU forall je{l,...,k}. (13)

Let m = dimU. Denote by S the restriction of 7" onto U. The inclusion in (13) implies
that Aj,..., Ax are eigenvalues of S. Similarly, (11) implies that A is not an eigenvalue of
S. Now Corollary 2.5 yields

a(S)={A,..., A}

eq-triv

eq-ds

eq-incl



The second claim of Corollary 2.5 implies
N((T =X1)") = N((S = \D)").
Since n > m = dimU we have
N((S=MND™) = N((S = XD)™ ) = = N((S = AD)").

Therefore,
N(T =17 = N (S = 1)), (19

The inductive hypothesis applies to S. Therefore

k
U=R((T-A)")=EPN(S—NDm). (15)
j=1
Now (15), (14), and (12) yield
k+1
V=EPN(T-NI)").
7j=1

Now we prove (c). Lemma 2.1 implies that W; is an invariant subspace of T — \;I.
Denote by NN; the restriction of T'—\;1 to its invariant subspace W; and by T the restriction
of T'to W;. Then, T; = A\;I + N; and the operator N; is nilpotent. O

Definition 2.7. Let k € {1,...,n} be such that Ay,..., Ay are all the distinct eigenvalues
of T'. Set
n; = dim N ((T — Aj)"), je{l,... .k}

The number n; is called the algebraic multiplicity of the eigenvalue A;. The polynomial

pe) = (=)™ (2= )™ (16)

is called the characteristic polynomial of T.

3 The Jordan Normal Form

Let T" be an operator on a vector space V over C. Let A be an eigenvalue of 1" and let v be
such that (T — A)'v = 0y and (T — AI)'~'v # 0y. Then the system of vectors

(T — X)L, (T = XI)'2v,... (T — X)v, v, (17)

is called a Jordan chain of T corresponding to the eigenvalue A. The vectors in (17) are
called generalized eigenvectors (or root vectors) corresponding to the eigenvalue A.
Let W be a subspace of V generated by a Jordan chain

vj= (T - )", je{l,...,1},



of T. Note that the vector v; = (T — AI)!~'v is an eigenvector of T' corresponding to the
eigenvalue A. Therefore Tv; = Avi. We also have

T’L)J:(T—)\I)’L)J—I—AU]:U]_l‘i‘)\U], ]G{Lvl}

It follows that W is an invariant subspace of T. If we denote by A the restriction of T to

W, then the matrix representation of A with respect to the basis {vq,..., v} is
A 1 0 -+ 0 0]
o x1 -+ 00
Coonon Tl 18
0O 0o o0 - 1 0 (18)
o oo - X1
000 - 0 X

A matrix of this form is called a Jordan block corresponding to the eigenvalue A. In words:
a Jordan block corresponding to the eigenvalue A is a square matrix with all elements on
the main diagonal equal to A and all elements on the superdiagonal equal to 1.

A basis for V which consists of Jordan chains of T is called a Jordan basis for V with
respect to T'.

If a basis B for V is a Jordan basis with respect to T' then the matrix Mg(T") has Jordan
blocks of different sizes on the diagonal and all other elements of Mg(T") are zeros. Each
eigenvalue of 7T is represented in Mg(7T') by one or more Jordan blocks;

i A1 0 o 0 - 0 i
0 A - 0 o 0 - 0
0 O 1 0 0 0
0 0 A1 0 0 0
0 0 0 A2 1 0
0 0 0 0 O 1
0 0 0 0 0 A2

In the above matrix A; and Ay are not necessarily distinct eigenvalues. A matrix of the form
(19) is called the Jordan normal form for T. More precisely, a square matrix M = [aj,k] is
a Jordan normal form for T if:

(i) all elements of M outside of the main diagonal and the superdiagonal are 0,

jnf



(ii) all elements on the main diagonal of M are eigenvalues of T
(iii) all elements on the superdiagonal of M are either 1 or 0, and,
(iv) if Aj—1,j—1 =+ aj;, with j € {2, e ,n}, then a;_1 ; = 0.

Theorem 3.1. Let V be a vector space over C and let T be a linear operator on V. Then
V has a Jordan basis with respect to T'.

Proof. We use the notation and the results of Theorem 2.6. Let j € {1,...,k}. It is
important to notice that each Jordan chain of the nilpotent operator NN; is a Jordan chain
of T which corresponds to the eigenvalue \;. Since N; is a nilpotent operator in £L(W;),
by Theorem 1.1 there exists a basis B; = {vj1,...,vjn,;} for W; which consists of Jordan
chains of N;. Consequently, B; consists of Jordan chains of 7T". Since V is a direct sum of
Wh, ..., W,, the union B = By U --- U B, that is,

B = {’Ul,ly"' yULng V215502095« Uk 1y -- 7’Uk,nk}

is a basis for V. This basis consists of Jordan chains of T'.
The matrix Mg(T') is a block diagonal with the blocks Mg, (7}), j € {1,...,k}, on the
diagonal and with zeros every where else:

Mg (T1) Bo 0
gy = | 0 MR 0
0 0 . Mg’;.(Tk)
Since T; = A\jI + N;, we have
Mg, (T}) = Ajl + Mg, (N;).

Thus all the elements on the main diagonal of I\/Ig; (Tj) equal A; and all the elements of
superdiagonal of ng (T;) are either 1 or 0. If there are exactly m; Jordan chains in the

basis Bj, then 0 appears exactly m; — 1 times on the superdiagonal of Mg; (Tj). Therefore
MB(T) is a Jordan normal form for 7. O



