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1 Algebra of linear operators

In this section we consider a vector space ¥ over a scalar field F. By Z(7")
we denote the vector space Z(¥#,7) of all linear operators on ¥. The
vector space .Z (') with the composition of operators as an additional binary
operation is an algebra in the sense of the following definition.

Definition 1.1. A vector space & over a field F is an algebra over F if the
following conditions are satisfied:

(a) there exist a binary operation - : & X & — <.
) (associativity) for all x,y,z € o/ we have (x-y)-z=x-(y - 2).
) (right-distributivity) for all z,y, z € &/ we have (x+vy)-z=xz-24y- 2.
(d) (left-distributivity) for all z,y,z € of we have z- (x+y) =z -z+z-y.
) (respect for scaling) for all z,y € o/ and all o € F we have a(z - y) =
(ax) -y =z (ay).
The binary operation in an algebra is often referred to as multiplication.

The multiplicative identity in the algebra £ (%) is the identity operator
1.

For T' € Z(¥) we recursively define nonnegative integer powers of T' by
T9 =171y andforalln e NT? =T o TP 1,

For T € Z(V), set

o = span{Tk :keNU{0}}.

Clearly 71 is a subspace of .Z (7). Moreover, we will see below that o7 is
a commutative subalgebra of .Z(¥).



Recall that by definition of a span a nonzero S € £ (') belongs to </
if and only if 3m € NU {0} and ag, a1, ..., a,, € F such that a,, # 0 and

S=> apT" (1)
k=0

The last expression reminds us of a polynomial over F. Recall that by
[F[z] we denote the algebra of all polynomials over F. That is

Flz] = {Zn:ajzj :neNU{0}, (ag,...,an) € F"+1}.

Jj=0

Next we recall the definition of the multiplication in the algebra F[z]. Let
m,n € NU{0} and
p(z) = Z ;2" € Fz] and q(z) = Z Bjz) € F[2]. (2)
i=0 =0

Then by definition

m+n
(pg)(z) = Y ( > ai/Bj)Zk-

k=0 \ i+j=k
ie{or"vm}
je{ov"'vn}

Since the multiplication in F is commutative, it follows that pq = ¢p. That
is F[z] is a commutative algebra.

The obvious alikeness of the expression (1) and the expression for the
polynomial p in (2) is the motivation for the following definition. For a fixed
T € Z(7) we define

Er:Flz] = Z2(7)

by setting
Er(p) = Z o T where  p(z) = Z ;7' € Flz). (3)
=0 =0

It is common to write p(T) for =7 (p).

Theorem 1.2. Let T € ZL(¥). The function Zp : Flz] — ZL(¥) defined in
(3) is an algebra homomorphism. The range of Ep is “p.



Proof. Tt is not difficult to prove that Z¢ : F[z] — Z(¥) is linear. We will
prove that Zp : F[z] — Z(7) is multiplicative, that is, for all p, ¢ € F[z] we
have Zr(pq) = Er(p)E7r(q). To prove this let p,q € F[z] be arbitrary and
given in (2). Then

Er(p)Zr(q) = <Z a,-T’) (Z ﬂjTj> (by definition in (3))
i=0 =0

= Z Z o 3T (since Z(7) is an algebra)
i=0 j=0
m+n
= Z < Z a,ﬂj>Tk (since Z(7) is a vector space)
k=0 \ i+j=k
1€{0,...,m}
j€{0,...,n}
= Z7(pq) (by definition in (3)).

This proves the multiplicative property of Z.
The fact that o7 is the range of Zp is obvious. O

Corollary 1.3. Let T € £(V). The subspace </p of L(V) is a commuta-
tive subalgebra of L (V).

Proof. Let Q,S € /. Since o/ is the range of Zp there exist p,q €
F[z] such that @ = Zr(p) and S = Er(q). Then, since Zp is an algebra
homomorphism we have

QS =Er(p)Er(p) = Er(pg) = Er(gp) = Er(¢)Er(p) = SQ.

This sequence of equalities shows that QS € ran(Zp) = & and QS =
SQ. That is @7 is closed with respect to the operator composition and the
operator composition on @y is commutative. O

Corollary 1.4. Let ¥ be a complex vector space and let T € L(V) be a
nonzero operator. Then for every p € C[z] such that m = degp > 1 there
exist a nonzero o € C and z1,. .., 2z, € C such that

Er(p) =p(T) =T — 1) -+ (T — zpn1).

Proof. Let p € C[z] such that m = degp > 1. Then there exist ag,...,q, €
C such that «a,, # 0 such that

m
p(z) = Z a;2.
k=0
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By the Fundamental Theorem of Algebra there exist nonzero @ € C and
21, ...,2m € C such that

p(2) = alz = z1) - (2 = zm).

Here a = «,, and z1,..., 2, are the roots of p. Since Zr is an algebra
homomorphism we have

p(T) =Er(p) = aBp(z — 21) -+ Er(z — 2m) = (T — 211) -+ (T — 2 1).

This completes the proof. O

2 Existence of an eigenvalue

Lemma 2.1. Let n € N and Sy,...,S, € Z(¥). If S1,...,S, are all
injective, then S1 --- S, is injective.

Proof. We proceed by Mathematical Induction. The base step is trivial. It
is useful to prove the implication for n = 2. Assume that S,7 € Z(¥') are
injective and let u,v € ¥ be such that u # v. Then, since T is injective,
Tu # Tv. Since S is injective, S(Tw) # S(Tv). Thus, ST is injective.

Next we prove the inductive step. Let m € N and assume that S7 --- 5,
is injective whenever Si,..., Sy, € Z(¥) are all injective. (This is the in-
ductive hypothesis.) Now assume that Si,...,Sn, Spme1 € Z(¥) are all
injective. By the inductive hypothesis the operator S = Sy --- S}, is injec-
tive. Since by assumption T = S, 11 is injective, the already proved claim
for n = 2 yields that

ST =851 -+ SmSm+1

is injective. This completes the proof. O

Theorem 2.2. Let ¥ be a nontrivial finite dimensional vector space over
C. Let T € L(V). Then there exists a A € C and v € ¥ such that v # Oy
and Tv = \v.

Proof. The claim of the theorem is trivial if 7' = 04 (y). So, assume that
T € Z(7) is a nonzero operator.
Let n =dim ¥ and let uw € ¥ \ {0y }. Now consider the vectors

w, Tu, T?u, ..., T . (4)

If two of these vectors coincide, say k,l € {0,...,n}, k <[ are such that
T*u = Tlu, setting o; = 0 for j € {0,...,n}\{k,l} and oy, = 1 and a; = —1
we obtain a nontrivial linear combination of the vectors in (4).



If the vectors in (4) are distinct, since n = dim ¥/, it follows from the
Steinitz Exchange Lemma that the vectors in (4) are linearly dependent.
Hence, in either case, there exist ag,...,a, € C and k € {0,...,n} such
that
aou 4+ a1Tu + aoT?u + -+ a,T"u = 0y (5)
and oy, # 0. Since u # 0y it is not possible that o; = 0 for all j € {1,...,n}.
Therefore, there exists k € {1,...,n} such that ay # 0.

Set
p(2) = a4+ a1z + a2’ + - + a2

Since there exists k € {1,...,n} such that ap # 0, we have that m =
degp > 0. By the Fundamental Theorem of Algebra there exists a # 0 and
21, ..+, 2m € C such that

p(z) =alz —21) (2 — zm).

Here o« = vy, and 21, ..., z,, are the roots of p.
Since =7 is an algebra homomorphism we have

p(T) =Er(p) =aZr(z—21) -+ Ep(z — z2m) = (T — 211) -+ (T — 2, 1).

Equality (5) yields that the operator p(7') is not an injection. Lemma 2.1
now implies that there exists j € {1,...,m} such that T'—z;[ is not injective.
That is, there exists v € ¥, v # 04 such that

(T — zjI)v = 0.
Setting A = z; completes the proof. O

Definition 2.3. Let ¥ be a vector space over F, T' € £ (7). A scalar A € F
is an eigenvalue of T if there exists v € ¥ such that v # 0 and Tv = \v.
The subspace nul(T' — A\I) of ¥ is called the eigenspace of T corresponding
to A

Definition 2.4. Let ¥ be a finite dimensional vector space over F. Let
T € Z(V). The set of all eigenvalues of T is denoted by o(T"). It is called
the spectrum of T.

The next theorem can be stated in English simply as: Eigenvectors cor-
responding to distinct eigenvalues are linearly independent.

Theorem 2.5. Let ¥ be a vector space over F, T € Z(7¥) and n € N.
Assume



(@) Ai,..., A, € F are such that \; # \; for alli,j € {1,...,n} such that
i #7,

(b) vi,...,v, € ¥ are such that Tvy = Ngvg and vy # 0 for all k €
{1,...,n}.

Then {v1,...,v,} is linearly independent.

Proof. We will prove this by using the mathematical induction on n. For
the base case, we will prove the claim for n = 1. Let Ay € F and let v; € ¥
be such that v; # 0 and Tv; = Ajv;. Since v; # 0, we conclude that {v;} is

linearly independent.
Next we prove the inductive step. Let m € N be arbitrary. The inductive

hypothesis is the assumption that the following implication holds.

If the following two conditions are satisfied:
(i) p1,---,pm € F are such that p; # p; for all 4,5 €
{1,...,m} such that i # j,

(ii) wq,...,wy € ¥ are such that Twy = prwy and wy, #
0 for all k € {1,...,m},
then {w1,...,wy,} is linearly independent.

We need to prove the following implication

If the following two conditions are satisfied:
(I) A1,...,Amq1 € I are such that \; # A; for all 4,5 €
{1,...,m + 1} such that ¢ # j,
(IT) vy,...,vm+1 € ¥ are such that Tv, = Agvg and vy # 0
forall k € {1,...,m+ 1},

then {v1,...,vm41} is linearly independent.

Assume (I) and (IT) in the red box. We need to prove that {vy,...,vp,41}

is linearly independent.
Let a1,...,ams1 € F be such that

o1v1 + - U + 1V = 0. (6)

Applying T € Z(¥) to both sides of (6), using the linearity of 7" and
assumption (II) we get

a1 AU + -+ O AmUm + A1 Am1Um+1 = 0. (7)



Multiplying both sides of (6) by Ap,4+1 we get
A 4101 + 0 F W A 1Vm + @1 Ama1Vmy1 = 0. (8)
Subtracting (8) from (7) we get
a1( A — Ag1)vr + - 4+ (A — Amt1)vm = 0.
Since by assumption (I) we have A\j — A, 41 # 0 forall j € {1,...,m}, setting
= O~ Amstvy, G € {L...,m),

and taking into account (II) we have

w; # 0 and Tw; = Ajw; forall jed{l,....m}. (9)

Thus, by (I) and (9), the scalars Aq,...,\,;, and vectors wy,...,w,, satisfy
assumptions (i) and (ii) of the inductive hypothesis (the green box). Con-
sequently, the vectors wq, ..., w,, are linearly independent. Since by (9) we
have

ajwy + -+ apwy, =0,

it follows that ay = --- = a,;, = 0. Substituting these values in (6) we get
Qmt1Um+1 = 0. Since by (IT), v4+1 # 0 we conclude that a;,+1 = 0. This
completes the proof of the linear independence of vy, ..., V1. O

A different proof follows.

Proof. Consider operators T — ;I for j € {1,...,n}. Then
(T—)\j[)vk: ()\k—)\j)?}k, 1.k € {1,...,77,}.

Or, more precisely,

(T—)\j[)vk:{(()Ak_)\j)vk ]fk g ke{l,...,n}.  (10)
¥ j=k

Let i,k € {1,...,n}. Repeated application of (10) yields

(T1 )= ( 1T e



or, more precisely,

Oy k #£ 1,
I (@-x1) >vk = n (11)
<J:1,J¢Z ( H ()\k — )\J)>vk k=1
i=1,j#k
Let a1,...,a, € F be such that
oa1v1 + -+ apv, = 0y (12)

Let k € {1,...,n} be arbitrary and apply the operator

to both sides of (12). Then by (11) we get

ak< 1 ()\k—)\)>vk_01/ (13)

=1, j#k
Since Aq,..., A, are distinct we have
n
IT w=x) #0,
J=1,37#k
and since also vy # Oy, from (13) we deduce oy = 0. Since k € {1,...,n}

was arbitrary, the theorem is proved.

Corollary 2.6. Let ¥V be a finite dimensional vector space over F and let
T e L(Y). Then T has at most n = dim ¥ distinct eigenvalues.

Proof. Let % be a basis of ¥ where # = {uq,...,u,}. Then |%| = n and
span B = V. Let € = {v1,...,u} be eigenvectors corresponding to m
distinct eigenvalues. Then ¥ is a linearly independent set with || = m.
By the Steinitz Exchange Lemma, m < n. Consequently, T" has at most n
distinct eigenvalues. O



3 Existence of an upper-triangular matrix repre-
sentation

Definition 3.1. A matrix A € F"*" with entries a;j, 4,5 € {1,...,n} is
called upper triangular if a; j = 0 for all 4,5 € {1,...,n} such that ¢ > j.

Theorem 3.2 (Theorem 5.13). Let ¥ be a nonzero finite dimensional com-
plex vector space. If dim ¥ =n and T € L (V), then there exists a basis B
of ¥ such that M%(T) is upper-triangular.

Proof. We proceed by the complete induction on n = dim(%).

The base case is trivial. Assume dim? = 1 and T € Z(¥). Set
#B = {u}, where u € ¥\{0y} is arbitrary. Then there exists A\ € C such
that Tu = Au. Thus, M7 (T) = [A].

Now we prove the inductive step. Let m € N be arbitrary. The inductive
hypothesis is

For every k € {1,...,m} the following implication holds: If
dim%Z = k and S € ZL(%), then there exists a basis &/ of
% such that M (S) is upper-triangular.

To complete the inductive step, we need to prove the implication:

If dim? =m+1and T € Z(¥), then there exists a basis % of
¥ such that M7 (T) is upper-triangular.

To prove the red implication assume that dim ¥ = m+1and T' € Z(7).
By Theorem 2.2 the operator T" has an eigenvalue. Let A be an eigenvalue
of T. Set % = ran(T — AI). Because (T' — AI) is not injective, it is not
surjective, and thus k = dim(%) < dim(?") = m+1. Thatisk € {1,...,m}.

Moreover, T% C 7% . To show this, let w € . Then Tu = (T — A\ )u +
Au. Since (T'— MN)u € % and \u € %, Tu € % . Hence, S = Ty is an
operator on % .

By the inductive hypothesis (the green box), there exists a basis &/ =
{u1,...,ux} of  such that ij(S) is upper-triangular. That is,

Tuj = Suj € span{uy,...,u;} for all jed{l,... k}.
Extend ¢ to a basis = {uy,...,ug,v1,...,0,_r} of ¥. Since

Tvj = (T — X)vj + Xvj,  je{l,....n—k},



where (T'— X )v; € %, for all j € {1,...,n — k} we have

Tvj € span{uy, ..., Un,v;} Cspan{ui, ..., Un,V1,...,0;}.
By Theorem 3.6, M g (T') is upper-triangular. O

Definition 3.3. Let 7 be a vector space over F and T € .Z (7). A subspace
U of ¥V is called an invariant subspace under T if T(%) C U .

The following proposition is straightforward.

Proposition 3.4. Let S,T € £ (V) be such that ST = T'S. Then nulT
is invariant under S and nulS is invariant under T. In particular, all
etgenspaces of T are invariant under T'.

Definition 3.5. Let ¥ be a finite dimensional vector space over F with
n =dm?¥? > 0. Let T € Z(7). A sequence of nontrivial subspaces
U, ..., %, of ¥ such that

NG UG G Un (14)

and
T, C U, for all Ee{l,...,n}

is called a fan for T in ¥. A basis {v,...,v,} of ¥ is called a fan basis
corresponding to 7' if the subspaces

Vi = span{vy, ..., v}, ke{l,...,n},
form a fan for 7T'.
Notice that (14) implies
1 <dim?% <dim% < --- < dim %, <n.

Consequently, if 24, ...,%, is a fan for T" we have dim %}, = k for all k €
{1,...,n}. In particular %, = 7.

Theorem 3.6 (Theorem 5.12). Let ¥ be a finite dimensional vector space
over F with dim ¥ =n and let T € L (V). Let B = {v1,...,v,} be a basis
of V' and set

Vi = span{vy, ..., v}, Ee{l,...,n}.
The following statements are equivalent.
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a) MZ(T) is upper-triangular.

b) Tv, € ¥, for all k € {1,...,n}.

(c) T, C ¥ forallk € {1,...,n}.

(d) A is a fan basis corresponding to T

(
(

Proof. (a) = (b). Assume that M%(T) is upper triangular. That is

[a11 a1z -+ a0 an|
0 a22 o« e a2k .« .. a2n
@ _ . N . N .
Mz (T) 0 0 - ag -~ O
(0 0 - 0 e ap

Let k € {1,...,n} be arbitrary. Then, by the definition of MZ(T),

a1k

a
Cyp(Tvp) = | F

Consequently, by the definition of C'%, we have
Tok = a1pvr + -+ - + aggvy € span{vy, ..., v} = %.

Thus, (b) is proved.

(b) = (a). Assume that Tv;, € ¥ for all & € {1,...,n}. Let a;j,
i,7 € {1,...,n}, be the entries of M;ﬁ(T) Let j € {1,...,n} be arbitrary.
Since T'vj € ¥} there exist a,...,a; € F such that

Tvj = aqvy + -+ + ajvj.
By the definition of C's we have

aq

Cp(Tvj) =

11



On the other side, by the definition of M7 (T), we have

aik

Cop(Twj) = | 9

The last two equalities, and the fact that Cg is a function, imply a;; = 0
for alli € {j +1,...,n}. This proves (a).

(b) = (c). Suppose Tvy, € ¥, = span{vi,...,v;} for all k € {1,...,n}.
Let v € ;. Then v = ajv; + -+ + agvg. Applying T, we get Tv =
arTvy + -+ + apTv,. Thus,

Tv € span{Tv1,...,Tv}. (15)
Since
Tv; € V; C Y for all jed{l,... k},
we have
span{Tvy,...,Tvc} C .

Together with (15), this proves (c).

(c) = (b). Suppose T, C ¥, for all k € {1,...,n}. Then since v, € ¥4,
we have Tvy, € ¥, for each k € {1,...,n}.

(c) < (d) follows from the definition of a fan basis corresponding to
T. O

Theorem 3.7. Let ¥ be a finite dimensional vector space over F with
dim¥ =n, and let T € L(V). Let B = {v1,...,v,} be a basis of ¥ such
that Mg(T) is upper triangular with diagonal entries ajj, j € {1,...,n}.
Then T is not injective if and only if there exists j € {1,...,n} such that
Qg5 = 0.

Proof. In this proof we set
V. = spanf{vy, ..., v }, ke{l,..,n}

Then
NCIC...C W (16)

and by Theorem 3.6, T¥;, C 7.
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We first prove the “only if” part. Assume that 7' is not injective. Con-
sider the set
K={ke{l,..,n} : T% C %%}

Since T is not injective, nulT" # {0y }. Thus by the Rank-Nullity Theorem,
ranT C ¥ = ¥,. Since T, = ranT, it follows that 7%, C ¥;,,. Therefore
n € K. Hence the set K is a nonempty set of positive integers. Hence, by
the Well-Ordering principle min K exists. Set 7 = min K.

If 7 = 1, then dim 7] = 1, but since T%] € 7] it must be that dim 7% =
0. Thus 7% = {0y}, so Tv; = 0,. Hence C»(T) = [0---0]" and so
ajj =0. If j > 1, then j—1¢€ {1,...,n} but j —1 ¢ K. By Theorem 3.6,
TY;—1 C ¥j—1 and, since j —1 ¢ K, T/;_1 C ¥j_1 is not true. Hence

=

TY;_1 = ¥j_1. Since j € K, we have T'/; C #;. Now we have
Vi =171 CTY; & ;.
Consequently,
j—1=dim%_; <dim(T%) < dim¥; = j,

which implies dim(T“//j) = j — 1 and therefore T; = ¥;_1. This implies
that there exist a,...,a;j_1 € F such that

Tvj = aivy + -+ aj_1vj_1.

By the definition of M g this implies that a;; = 0.
Next we prove the “if” part. Assume that there exists j € {1,...,n} such
that a;; = 0. Then

T’Uj =aivy + -+ aj-1,;v-1+ 0?)]' € "f/j_l. (17)
By Theorem 3.6 and (16) we have
Tv; € ¥ C Vi for all ie{l,...,j—1} (18)

Now (17) and (18) imply T'v; € ¥;_; for all i € {1,...,j} and consequently
TY; C ¥;—1. To complete the proof, we apply the Rank-Nullity theorem to
the restriction 7'y, of T' to the subspace 7;:

dimnul(T|7/j) + dimran(TWj) = .
Since T¥; C ¥;_1 implies dim ran (T |4yj) < j—1, we conclude
dimnul (T, ) > 1.
Thus nul(Ty,) # {0y}, that is, there exists v € ¥; such that v # 0 and
Tv = T|y;v = 0. This proves that 7" is not invertible. O
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Corollary 3.8 (Theorem 5.16). Let ¥ be a finite dimensional vector space
over F with dim ¥ =n, and let T € L(V). Let B be a basis of ¥ such that
Mg(T) is upper triangular with diagonal entries aj;, j € {1,...,n}. The
following statements are equivalent.

(a) T is not injective.
(b) T is not invertible.
(¢) 0 is an eigenvalue of T
(d) Tz @i = 0.

) There exists j € {1,...,n} such that aj; = 0.

d
(e

Proof. The equivalence (a) < (b) follows from the Rank-nullity theorem
and it has been proved earlier. The equivalence (a) < (c) is almost trivial.
The equivalence (a) < (e) was proved in Theorem 3.7 and The equivalence
(d) < (e) is should have been proved in high school. O

Theorem 3.9. Let ¥ be a finite dimensional vector space over F with
dim ¥ =n, and let T € L(¥). Let B be a basis of ¥ such that MJ(T) is
upper triangular with diagonal entries a;j, j € {1,...,n}. Then

o(T) ={aj;:j€{1,...,n}}.
Proof. Notice that M% : £ (V) — F™*" is a linear operator. Therefore
MZ(T = \I) = MZ(T) = AMZ(I) = MZ(T) = M.

Here I,, denotes the identity matrix in F**". As MZ(T) and MZ(I) = I,
are upper triangular, M g (T — AI) is upper triangular as well with diagonal
entries a;; — A, j € {1,...,n}.

To prove a set equality we need to prove two inclusions.

First we prove C. Let A € o(T). Because A is an eigenvalue, T — AT
is not injective. Because T'— Al is not injective, by Theorem 3.7 one of its
diagonal entries is zero. So there exists i € {1,...,n} such that a; — A = 0.
Thus A = a;;. So o(T) C {aj; : j € {1,...,n}}.

Next we prove D. Let a;; € {a;; : j € {1,...,n}} be arbitrary. Then
a;; — a;; = 0. By Theorem 3.7 and the note at the beginning of this proof
T — a1 is not injective. This implies that a;; is an eigenvalue of T'. Thus
a;; € o(T'). This completes the proof. O

Remark 3.10. Theorem 3.9 is identical to Theorem 5.18 in the textbook.
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