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Throughout this note V is a nontrivial finite dimensional vector space over C. We set
n = dimV . The symbol N denotes the set of positive integers and i, j, k, l,m, n, p, q, r ∈ N.
For T ∈ L (V ) by N (T ) we denote the null-space and by R(T ) the range of T .

1 Nilpotent operators

An operator N ∈ L (V ) is nilpotent if there exists q ∈ N such that N q = 0. If N q = 0 and
N q−1 6= 0, then q is called the degree of nilpotency of N .

Theorem 1.1. Let V be a nontrivial finite dimensional vector space over C with n = dimV .

Let N ∈ L (V ) be a nilpotent operator such that m = dimN (N). Then there exist vectors

v1, . . . , vm ∈ V and positive integers q1, . . . , qm such that the vectors

N qk−1vk, k ∈ {1, . . . ,m},

form a basis of N (N) and the vectors

N q
k
−1vk, N

q
k
−2vk, . . . , N

2vk, Nvk, vk, k ∈ {1, . . . ,m},

form a basis of V .

Proof. The proof is by induction on the dimension n. Since in one-dimensional vector space
each linear operator is a multiplication by a fixed scalar, the only nilpotent operator for
n = 1 is the zero operator. So the statement is trivially true for n = 1.

Let n ∈ N and assume that the statement is true for any vector space of dimension less
or equal to n. It is always a good idea to be specific and state what is being assumed. Let
n ∈ N be such that n > 1. The following implication is our inductive hypothesis:

If W is a vector space over C such that dimW < n and if M ∈ L (W ) is a nilpotent
operator such that l = dimN (M), then there exist w1, . . . , wl ∈ W and positive integers
p1, . . . , pl such that the vectors

Mpj−1wj , j ∈ {1, . . . , l},

form a basis of N (M) and the vectors

Mpj−1wj , . . . ,Mwj , wj , j ∈ {1, . . . , l},

form a basis of W .
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Next we present a proof of the inductive step.
Let V be a nontrivial finite dimensional vector space over C with dimV = n. Let

N ∈ L (V ) be a nilpotent operator.
First notice that if N = 0, then N (N) = V and the claim is trivially true. In this case

m = n and any basis v1, . . . , vn of V with positive integers q1 = · · · = qn = 1 satisfies the
requirement of the theorem. From now on we assume that N 6= 0.

Set m = dimN (N) and W = R(N). Since all powers of an invertible operator are
invertible and a power of N is 0, N it is not invertible. Thus m = dimN (N) ≥ 1. By
the famous “rank-nullity” theorem dimW < n. Since N 6= 0, dimW > 0. It is clear that
W is invariant under N . Set M to be the restriction of N onto W . Then M ∈ L (W ).
Since N is nilpotent, M is nilpotent as well. Clearly, N (M) = N (N) ∩ R(N). Set
l = dimN (M). The vector space W and the operator M satisfy all the assumptions of the
inductive hypothesis. This allows us to deduce that there exist w1, . . . , wl ∈ W and positive
integers p1, . . . , pl such that the vectors

Mpj−1wj , j ∈ {1, . . . , l}, (1)

form a basis of N (M) = N (N) ∩ R(N) and the vectors

Mpj−1wj , . . . ,Mwj , wj , j ∈ {1, . . . , l}, (2)

form a basis of W = R(N). Since wj ∈ R(N), there exist vj ∈ V such that wj = Nvj for
all j ∈ {1, . . . , l}. We know from (1) that the vectors

Mp1−1wj = Npjvj , j ∈ {1. . . . , l}

form a basis of N (M) = N (N) ∩ R(N). Recall that m = dimN (N) and l ≤ m. Let
vl+1, . . . , vm be such that

Np1v1, . . . , N
plvl, vl+1, . . . , vm, (3)

form a basis of N (N). (It is possible that l = m. In this case we already have a basis of
N (N) and the last step can be skipped.)

Now let us review the stage: We started with the basis

Mpj−1wj = Npjvj , . . . ,Mwj = N2vj , wj = Nvj , j ∈ {1, . . . , l},

of W = R(N) with dimR(N) vectors. To this basis we added the vectors v1, . . . , vm where
m = dimN (N). Now we have

m+ dimR(N) = dimN (N) + dimR(N) = dimV = n (4)

vectors:
Npjvj , Nvj , . . . , N

2vj , vj, j ∈ {1, . . . , l}, vl+1, . . . , vm. (5)

For easier writing set

qk =







pk + 1 if k ∈ {1, . . . , l}

1 if k ∈ {l + 1, . . . ,m}.
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Then (5) can be rewritten as

N qk−1vk, Nvk, . . . , N
2vk, vk, k ∈ {1, . . . ,m}. (6)

Next we will prove that the vectors in (6) are linearly independent. Let αk,j ∈ C, j ∈
{0, . . . , qk − 1}, k ∈ {1, . . . ,m} be such that

m
∑

k=1

qk−1
∑

j=0

αk,jN
jvk = 0. (7)

Applying N to the last equality yields

l
∑

k=1

qk−2
∑

j=0

αk,jN
j+1vk =

l
∑

k=1

pk−1
∑

j=0

αk,jM
jwk = 0.

Since the vectors in the last double sum are exactly the vectors from (2) which are linearly
independent, we conclude that

αk,0 = · · · = αk,qk−2 = 0 for all k ∈ {1, . . . , l}.

Substituting these values in (7) we get

m
∑

k=1

αk,qk−1N
qk−1vk = 0.

But, beautifully, the vectors in the last sum are exactly the vectors in (3) which are linearly
independent. Thus

αk,qk−1 = 0 for all k ∈ {1, . . . ,m}.

This completes the proof that all the coefficients in (7) must be zero. Thus, the vectors in
(6) are linearly independent. Since by (4) there are exactly n vectors in (6) these vectors
do form a basis of V . This completes the proof.

2 A Decomposition of a Vector Space

Lemma 2.1. Let V be a vector space over F. Let A and B be commuting linear operators

on V . Then N (B) and R(B) are invariant subspaces for A.

Proof. This is a very simple exercise.

Proposition 2.2. Let V be a vector space over F. Let T ∈ L (V ). If λ and µ are distinct

eigenvalues of T and j and k are natural numbers, then

N
(

(T − λI)j
)

⋂

N
(

(T − µI)k
)

= {0V }.
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Proof. The set equality in the proposition is equivalent to the implication

v ∈ N
(

(T − µI)k
)

\ {0V } ⇒ v 6∈ N
(

(T − λI)j
)

.

We will prove this implication. Let v ∈ V be such that (T − µI)kv = 0V and v 6= 0V . Let
i ∈ {1, . . . , k} be such that (T −µI)iv = 0V and (T −µI)i−1v 6= 0V . Set w = (T −µI)i−1v.
Then w is an eigenvector of T corresponding to µ, that is Tw = µw and w 6= 0. Then (as
we must have proven before), for an arbitrary polynomial p ∈ C[z] we have p(T )w = p(µ)w.
In particular

(T − λI)lw = (µ− λ)lw for all l ∈ N.

Since µ− λ 6= 0 and w 6= 0V we have that

(T − λI)lw 6= 0V for all l ∈ N.

Consequently,
(T − λI)l(T − µI)i−1v 6= 0V for all l ∈ N.

Since the operators (T − λI)l and (T − µI)i−1 commute we have

(T − µI)i−1(T − λI)lv 6= 0V for all l ∈ N.

Therefore (T − λI)lv 6= 0V for all l ∈ N. Hence v 6∈ N
(

(T − λI)j
)

. This proves the
proposition.

Corollary 2.3. Let V be a finite dimensional vector space over F. Let T ∈ L (V ). If λ

and µ are distinct eigenvalues of T and j and k are natural numbers, then

N
(

(T − λI)j
)

⊆ R
(

(T − µI)k
)

.

Proof. Since the operators (T −λI)j and (T −µI)k commute, by Lemma 2.1, N
(

(T −λI)j
)

is invariant under (T −µI)k. Denote by S the restriction of (T −µI)k onto N
(

(T − λI)j
)

.
Since clearly,

N (S) = N
(

(T − λI)j
)

∩ N
(

(T − µI)k
)

.

Proposition 2.2 implies that S is an injection, and thus bijection. Hence,

S
(

N
(

(T − λI)j
)

)

= N
(

(T − λI)j
)

and consequently

N
(

(T − λI)j
)

= (T − µI)k
(

N
(

(T − λI)j
)

)

⊆ R
(

(T − µI)k
)

.

Lemma 2.4. Let V be a vector space over F. Let U and W be subspaces of V such that

V = U ⊕ W .

Let S ∈ L (V ) be such that SU ⊆ U and SW ⊆ W . If N (S) ∩ W = {0}, then

N
(

(S|U )j
)

= N
(

Sj
)

for all j ∈ N. (8)
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Proof. Assume N (S) ∩ W = {0}. We first prove the equality for j = 1. Since N
(

S|U
)

=
N

(

S
)

∩ U , the inclusion N
(

S|U
)

⊆ N
(

S
)

is clear. Let v ∈ N (S) be arbitrary. Then
v = u+w with u ∈ U and w ∈ W . Applying S to this identity we get 0 = Sv = Su+ Sw.
Since Su ∈ U and Sw ∈ W , the assumption that the sum of U and W is direct yields
Sw = 0. Since N (S) ∩ W = {0}, we have w = 0. Thus, v ∈ U , and hence v ∈ N

(

S|U
)

.
To prove (8) for arbitrary j ∈ N we will first prove that

N
(

Sj
)

∩ W = {0} for all j ∈ N. (9)

A simple proof proceeds by mathematical induction. The statement in (9) is true for j = 1.
Let j ∈ N and assume that the statement in (9) is true for j. Now assume that w ∈ W

and Sj+1w = 0. Then Sw ∈ W and Sj(Sw) = 0. By the inductive hypothesis, that is
N

(

Sj
)

∩ W = {0} we conclude Sw = 0. Since N (S) ∩ W = {0}, we deduce that w = 0.
Having (9), we can apply the equality proved in the first part of the proof to the operator

Sj .

Corollary 2.5. Let V be a finite dimensional vector space over F. Let U and W be

subspaces of V such that

V = U ⊕ W .

Let T ∈ L (V ) be such that TU ⊆ U and TW ⊆ W . Then

σ
(

T |U
)

∪ σ
(

T |W
)

= σ(T ). (10)

If λ ∈ σ
(

T
)

and λ 6∈ σ
(

T |W
)

, then λ ∈ σ
(

T |U
)

and

N
(

(T |U − λI)j
)

= N
(

(T − λI)j
)

for all j ∈ N. (11)

Proof. The inclusion ⊆ in (10) is clear. To prove ⊇, let λ ∈ σ(T ) and let v 6= 0 be such that
Tv = λv. Let v = u + w, with u ∈ U and w ∈ W . Since v 6= 0 we have u 6= 0 or w 6= 0.
Applying T to both sides of v = u+w and using the fact that v is an eigenvalue corresponding
to λ we get Tu + Tw = Tv = λv = λu + λw. Consequently, (Tu− λu) + (Tw − λw) = 0.
Since the sum V = U ⊕ W is direct and Tu − λu ∈ U and Tw − λw ∈ W we conclude
Tw−λw = 0 and Tu−λu = 0. Since u 6= 0 or w 6= 0, we have λ ∈ σ

(

T |U
)

or λ ∈ σ
(

T |W
)

.
Assume λ ∈ σ

(

T
)

and λ 6∈ σ
(

T |W
)

. Then N (T − λI) ∩ W = {0}. Lemma 2.4 applies
to the operator T − λI and yields (11). Since λ ∈ σ

(

T
)

, N (T − λI) 6= {0}. Now (11) with
j = 1 yields λ ∈ σ

(

T |U
)

.

Theorem 2.6. Let V be a finite dimensional vector space over C, n = dimV and let

T ∈ L (V ). Let λ1, . . . , λk, be all the distinct eigenvalues of T . Set

Wj = N
(

(T − λjI)
n
)

and dimWj = nj, j ∈ {1, . . . , k}.

Then

(a) Each of the subspaces W1, . . . ,Wk, is invariant under T .

(b) V = W1 ⊕ · · · ⊕ Wk.

(c) Set Tj = T |Wj
and Nj = Tj − λjI, j ∈ {1, . . . , k}. Then N

nj

j = 0, that is, Nj is a

nilpotent operator on Wj.
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Proof. (a) Since T commutes with each of the operators (T − λjI)
d,, j ∈ {1, . . . , k} Lemma 2.1

implies that each subspace W1, . . . ,Wk, is an invariant subspace of T .
To prove (b) we proceed by mathematical induction on the number k of distinct eigen-

values of T . We first prove the base step. Assume that λ is the only eigenvalue of T . Let
B = {v1, . . . , vn} be a basis of V such that the matrix M

B
B
(T ) is upper triangular. Then,

as we proved earlier all the diagonal entries of MB
B
(T ) equal to λ. From the definition of

M
B
B
(T ) it follows that

(T − λI)
(

span{v1, . . . , vj}
)

⊆
(

span{v1, . . . , vj − 1}
)

for all j ∈ {2, . . . , n}.

Therefore

(T − λI)n(V ) = (T − λI)n−1(T − λI)
(

span{v1, . . . , vn}
)

⊆ (T − λI)n−1
(

span{v1, . . . , vn−1}
)

...

⊆ (T − λI)(T − λI)
(

span{v1, v2}
)

⊆ (T − λI)
(

span{v1}
)

= {0V }.

Thus V = N
(

(T − λI)n
)

. This completes the proof of the base case.
Now we prove the inductive step. Let k ∈ N and assume that the statement is true for

an operator with k distinct eigenvalues. Let T be an operator with k+1 distinct eigenvalues
λ1, . . . , λk, λk+1. For convenience we set λk+1 = λ. Then, by assumption λ 6= λj for all
j ∈ {1, . . . , k}. We set

U = R
(

(T − λI)n
)

and W = N
(

(T − λI)n
)

.

Since T and (T − λI)n commute, Lemma 2.1 implies that both U and W are invariant
under T .

Next we prove that

R
(

(T − λI)n
)

∩ N
(

(T − λI)n
)

= U ∩ W = {0}. (12)

(Prove this as an exercise.)
By the Rank-Nullity theorem

V = U ⊕ W . (13)

(Provide details as an exercise.)
By Corollary 2.3

N
(

(T − λjI)
n
)

⊆ U for all j ∈ {1, . . . , k}. (14)

Let m = dimU . Denote by S the restriction of T onto U . The inclusion in (14) implies
that λ1, . . . , λk are eigenvalues of S. Similarly, (12) implies that λ is not an eigenvalue of
S. Now Corollary 2.5 yields

σ(S) = {λ1, . . . , λk}.
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The second claim of Corollary 2.5 implies

N
(

(T − λjI)
n
)

= N
(

(S − λjI)
n
)

.

Since n > m = dimU we have

N
(

(S − λjI)
m
)

= N
(

(S − λjI)
m+1

)

= · · · = N
(

(S − λjI)
n
)

.

Therefore,
N

(

(T − λjI)
n
)

= N
(

(S − λjI)
m
)

. (15)

The inductive hypothesis applies to S. Therefore

U = R
(

(T − λI)n
)

=
k

⊕

j=1

N
(

(S − λjI)
m
)

. (16)

Now (16), (15), and (13) yield

V =
k+1
⊕

j=1

N
(

(T − λjI)
n
)

.

Now we prove (c). Lemma 2.1 implies that Wj is an invariant subspace of T − λjI.
Denote by Nj the restriction of T−λjI to its invariant subspace Wj and by Tj the restriction
of T to Wj . Then, Tj = λjI +Nj and the operator Nj is nilpotent.

Definition 2.7. Let k ∈ {1, . . . , n} be such that λ1, . . . , λk are all the distinct eigenvalues
of T . Set

nj = dimN
(

(T − λj)
n
)

, j ∈ {1, . . . , k}.

The number nj is called the algebraic multiplicity of the eigenvalue λj . The polynomial

p(z) =
(

z − λ1

)n1 · · ·
(

z − λk

)nk (17)

is called the characteristic polynomial of T .

3 The Jordan Normal Form

Let T be an operator on a vector space V over C. Let λ be an eigenvalue of T and let v be
such that (T − λI)lv = 0V and (T − λI)l−1v 6= 0V . Then the system of vectors

(T − λI)l−1v, (T − λI)l−2v, . . . , (T − λI)v, v, (18)

is called a Jordan chain of T corresponding to the eigenvalue λ. The vectors in (18) are
called generalized eigenvectors (or root vectors) corresponding to the eigenvalue λ.

Let W be a subspace of V generated by a Jordan chain

vj = (T − λI)l−jv, j ∈ {1, . . . , l},
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of T. Note that the vector v1 = (T − λI)l−1v is an eigenvector of T corresponding to the
eigenvalue λ. Therefore Tv1 = λv1. We also have

Tvj = (T − λI)vj + λvj = vj−1 + λ vj , j ∈ {1, . . . , l}.

It follows that W is an invariant subspace of T . If we denote by A the restriction of T to
W , then the matrix representation of A with respect to the basis {v1, . . . , vl} is



















λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 · · · 1 0
0 0 0 · · · λ 1
0 0 0 · · · 0 λ



















. (19)

A matrix of this form is called a Jordan block corresponding to the eigenvalue λ. In words:
a Jordan block corresponding to the eigenvalue λ is a square matrix with all elements on
the main diagonal equal to λ and all elements on the superdiagonal equal to 1.

A basis for V which consists of Jordan chains of T is called a Jordan basis for V with
respect to T .

If a basis B for V is a Jordan basis with respect to T then the matrix MB(T ) has
Jordan blocks of different sizes on the diagonal and all other elements of MB(T ) are zeros.
Each eigenvalue of T is represented in MB(T ) by one or more Jordan blocks;



























































λ1 1 · · · 0
0 λ1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1
0 0 · · · λ1

0 0 · · · 0
0 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0
0 0 · · · 0

0 0 · · · 0
0 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0
0 0 · · · 0

λ2 1 · · · 0
0 λ2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1
0 0 · · · λ2

. . .
. . .

. . .



























































. (20)

In the above matrix λ1 and λ2 are not necessarily distinct eigenvalues. A matrix of the form
(20) is called the Jordan normal form for T . More precisely, a square matrix M =

[

aj,k
]

is
a Jordan normal form for T if:

(i) all elements of M outside of the main diagonal and the superdiagonal are 0,
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(ii) all elements on the main diagonal of M are eigenvalues of T ,

(iii) all elements on the superdiagonal of M are either 1 or 0, and,

(iv) if aj−1,j−1 6= aj,j, with j ∈ {2, . . . , n}, then aj−1,j = 0.

Theorem 3.1. Let V be a vector space over C and let T be a linear operator on V . Then

V has a Jordan basis with respect to T .

Proof. We use the notation and the results of Theorem 2.6. Let j ∈ {1, . . . , k}. It is
important to notice that each Jordan chain of the nilpotent operator Nj is a Jordan chain
of T which corresponds to the eigenvalue λj. Since Nj is a nilpotent operator in L (Wj),
by Theorem 1.1 there exists a basis Bj = {vj,1, . . . , vj,nj

} for Wj which consists of Jordan
chains of Nj . Consequently, Bj consists of Jordan chains of T . Since V is a direct sum of
W1, . . . ,Wk, the union B = B1 ∪ · · · ∪ Bk, that is,

B =
{

v1,1, . . . , v1,n1
, v2,1, . . . , v2,n2

, . . . , vk,1, . . . , vk,nk

}

is a basis for V . This basis consists of Jordan chains of T .
The matrix MB(T ) is a block diagonal with the blocks MBj

(Tj), j ∈ {1, . . . , k}, on the
diagonal and with zeros every where else:

M
B
B(T ) =













M
B1

B1
(T1) 0 · · · 0

0 M
B2

B2
(T2) · · · 0

...
...

. . .
...

0 0 · · · M
Bk

Bk
(Tk)













.

Since Tj = λjI +Nj , we have

MBj
(Tj) = λj I+MBj

(Nj).

Thus all the elements on the main diagonal of M
Bj

Bj
(Tj) equal λj and all the elements of

superdiagonal of M
Bj

Bj
(Tj) are either 1 or 0. If there are exactly mj Jordan chains in the

basis Bj, then 0 appears exactly mj − 1 times on the superdiagonal of M
Bj

Bj
(Tj). Therefore

M
B
B
(T ) is a Jordan normal form for T .
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