
LINEAR OPERATORS

BRANKO ĆURGUS

Throughout this note V is a vector space over a scalar field F. N denotes
the set of positive integers and i, j, k, l,m, n, p ∈ N.

1. Functions

First we review formal definitions related to functions. In this section A

and B are nonempty sets.
The formal definition of function identifies a function and its graph. A

justification for this is the fact that if you know the graph of a function, then
you know the function, and conversely, if you know a function you know its
graph. Simply stated the definition below says that a function from a set A
to a set B is a subset f of the Cartesian product A×B such that for each
x ∈ A there exists unique y ∈ B such that (x, y) ∈ F .

A function from A into B is a subset f of the Cartesian product A×B

such that

(a) ∀x ∈ A ∃ y ∈ B (x, y) ∈ f ,
(b) ∀x ∈ A ∀ y ∈ B ∀ z ∈ B (x, y) ∈ f ∧ (x, z) ∈ f ⇒ y = z.

The relationship (x, y) ∈ f is commonly written as y = f(x). The symbol
f : A → B denotes a function from A to B.

The set A is the domain of f : A → B. The set B is the codomain of
f : A → B. The set

{

y ∈ B : ∃x ∈ A y = f(x)
}

is called the range of f : A → B. It is denoted by ran f .
A function f : A → B is a surjection if for every y ∈ B there exists x ∈ A

such that y = f(x).
A function f : A → B is an injection if for every x1, x2 ∈ A the following

implication holds: x1 6= x2 implies f(x1) 6= f(x2).
A function f : A → B is a bijection if it is both: a surjection and an

injection.
Next we give a formal definition of a composition of two functions. How-

ever, before giving a definition we need to prove a proposition.

Proposition 1.1. Let f : A → B and g : C → D be functions. If ran f ⊆ C,

then
{

(x, z) ∈ A×D : ∃ y ∈ B (x, y) ∈ f ∧ (y, z) ∈ g
}

(1.1)

is a function from A to D.
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Proof. A proof is a nice exercise. �

The function defined by (1.1) is called the composition of functions f and
g. It is denoted by f ◦ g.

The function
{

(x, x) ∈ A×A : x ∈ A
}

is called the identity function on A. It is denoted by idA. In the standard
notation idA is the function idA : A → A such that idA(x) = x for all x ∈ A.

A function f : A → B is invertible if there exist functions g : B → A and
h : B → A such that f ◦ g = idB and h ◦ f = idA.

Theorem 1.2. Let f : A → B be a function. The following statements are

equivalent.

(a) The function f is invertible.

(b) The function f is a bijection.

(c) There exists a unique function g : B → A such that f ◦ g = idB and

g ◦ f = idA.

If f is invertible, then the unique g whose existence is proved in Theo-
rem 1.2 (c) is called the inverse of f ; it is denoted by f−1.

Let f : A → B be a function. It is common to extend the notation f(x)
for x ∈ A to subsets of A. For X ⊆ A we introduce the notation

f(X) =
{

y ∈ B : ∃x ∈ X y = f(x)
}

.

With this notation, the range of f is simply the set f(A).
Below are few exercises about functions from my Math 312 notes.

Exercise 1.3. Let A, B and C be nonempty sets. Let f : A → B and
g : B → C be injections. Prove that g ◦ f : A → C is an injection.

Exercise 1.4. Let A, B and C be nonempty sets. Let f : A → B and
g : B → C be surjections. Prove that g ◦ f : A → C is a surjection.

Exercise 1.5. Let A, B and C be nonempty sets. Let f : A → B and
g : B → C be bijections. Prove that g ◦ f : A → C is a bijection. Prove that
(g ◦ f)−1 = f−1 ◦ g−1.

Exercise 1.6. Let A, B and C be nonempty sets. Let f : A → B, g : B →
C. Prove that if g ◦ f is an injection, then f is an injection.

Exercise 1.7. Let A, B and C be nonempty sets and let f : A → B,
g : B → C. Prove that if g ◦ f is a surjection, then g is a surjection.

Exercise 1.8. Let A, B and C be nonempty sets and let f : A → B,
g : B → C and h : C → A be three functions. Prove that if any two of
the functions h ◦ g ◦ f , g ◦ f ◦ h, f ◦ h ◦ g are injections and the third is a
surjection, or if any two of them are surjections and the third is an injection,
then f, g, and h are bijections.
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2. Linear operators

In this section U , V and W are vector spaces over a scalar field F.

2.1. The definition and the vector space of all linear operators. A
function T : V → W is said to be a linear operator if it satisfies the following
conditions:

∀u ∈ V ∀ v ∈ V T (u+ v) = T (u) + f(v), (2.1)

∀α ∈ F ∀ v ∈ V T (αv) = αT (v). (2.2)

The property (2.1) is called additivity, while the property (2.2) is called
homogeneity. Together additivity and homogeneity are called linearity.

Denote by L (V ,W ) the set of all linear operators from V to W . Define
the addition and scaling in L (V ,W ). For S, T ∈ L (V ,W ) and α ∈ F we
define

(S + T )(v) = S(v) + T (v), ∀ v ∈ V , (2.3)

(αT )(v) = αT (v), ∀ v ∈ V . (2.4)

(2.5)

Notice that two plus signs which appear in (2.3) have different meanings.
The plus sign on the left-hand side stands for the addition of linear operators
that is just being defined, while the plus sign on the right-hand side stands
for the addition in W . Notice the analogous difference in empty spaces
between α and T in (2.4). Define the zero mapping in L (V ,W ) to be

0L (V ,W )(v) = 0W , ∀ v ∈ V .

For T ∈ L (V ,W ) we define its opposite operator by

(−T )(v) = −T (v), ∀ v ∈ V .

Proposition 2.1. The set L (V ,W ) with the operations defined in (2.3),
and (2.4) is a vector space over F.

For T ∈ L (V ,W ) and v ∈ V it is customary to write Tv instead of T (v).

Example 2.2. Assume that a vector space V is a direct sum of its subspaces
U and W , that is V = U ⊕ W . Define the function P : V → V by

Pv = w ⇔ v = u+ w, u ∈ U , w ∈ W .

Then P is a linear operator. It is called the projection of V onto W parallel
to U ; it is denoted by PW ‖U .

2.2. Composition, inverse, isomorphism. In the next two propositions
we prove that the linearity is preserved under composition of linear operators
and under taking the inverse of a linear operator.

Proposition 2.3. Let S : U → V and T : V → W be linear operators.

The composition T ◦ S : U → W is a linear operator.
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Proof. Prove this as an exercise. �

When composing linear operators it is customary to write simply TS

instead of T ◦ S.
The identity function on V is denoted by IV . It is defined by IV (v) = v

for all v ∈ V . It is clearly a linear operator.

Proposition 2.4. Let T : V → W be a linear operator which is invertible.

Then the inverse T−1 : W → V of T is a linear operator.

Proof. Since T is invertible, by Theorem 1.2 there exists a function S : W →
V such that ST = IV and TS = IW . Since T is linear and TS = IW we
have

T
(

αSx+ βSy
)

= αT (Sx) + βT (Sy) = α(TS)x+ β(TS)y = αx+ βy

for all α, β ∈ F and all x, y ∈ W . Applying S to both sides of

T
(

αSx+ βSy
)

= αx+ βy

we get

(ST )
(

αSx+ βSy
)

= S
(

αx+ βy
)

∀α, β ∈ F ∀x, x ∈ W .

Since ST = IV , we get

αSx+ βSy = S
(

αx+ βy
)

∀α, β ∈ F ∀x, x ∈ W ,

thus proving the linearity of S. Since by definition S = T−1 the proposition
is proved. �

A linear operator T : V → W which is a bijection is called an isomorphism

between vector spaces V and W .
By Theorem 1.2 and Proposition 2.4 each isomorphism is invertible and

its inverse is also an isomorphism.
In the next proposition we introduce the most important isomorphism

CB.

Proposition 2.5. Let V be a finite dimensional vector space over F and

n = dimV . Let B = {v1, . . . , vn} be a basis for V . There exists a function

CB : V → F
n such that

CB(v) =







α1
...

αn






⇔ v =

n
∑

j=1

αjvj.

The function CB is an isomorphism between V and F
n.

Proof. Since B spans V , for every v ∈ V there exist α1, . . . , αn ∈ F such
that v =

∑n
j=1 αjvj. Thus CB is defined for every v ∈ V . To prove that

CB is a function assume

CB(v) =







α1
...
αn






and CB(v) =







β1
...
βn






.



LINEAR OPERATORS 5

Then

v =

n
∑

j=1

αjvj and v =

n
∑

j=1

βjvj.

Therefore 0V =
∑n

j=1(αj − βj)vj . Since B is linearly independent, αj = βj
for all j ∈ {1, . . . , n}. Thus

CB(v) =







α1
...
αn






and CB(v) =







β1
...
βn






⇒







α1
...
αn






=







β1
...
βn






.

This proves that CB is a function.
The linearity of CB is easy to verify.
The injectivity of CB follows from the linear independence of B.
The surjectivity of CB follows from the fact that for arbitrary α1, . . . , αn ∈

F we have v =
∑n

j=1 αjvj ∈ V and therefore

CB(v) =







α1
...
αn






. �

In the last part of the proof of Proposition 2.5 we showed that the formula
for the inverse (CB)−1 : Fn → V of CB is given by

(CB)−1







α1
...
αn






=

n
∑

j=1

αjvj ,







α1
...
αn






∈ F

n. (2.6)

Notice that (2.6) defines a function from F
n to V even if B is not a basis

of V .

Example 2.6. Inspired by the definition of CB and (2.6) we define a general
operator of this kind. Let V and W be vector spaces over F. Let V be finite
dimensional, n = dimV and let B be a basis for V . Let C = (w1, . . . , wn)
be any n-tuple of vectors in W . The entries of an n-tuple can be repeated,
they can all be equal, for example to 0V . We define the linear operator
LB

C
: V → W by

LB
C (v) =

n
∑

j=1

αjwj where







α1
...
αn






= CB(v). (2.7)

In fact, LB
C

: V → W is a composition of CB : V → F
n and the operator

F
n → W defined by







ξ1
...
ξn






7→

n
∑

j=1

ξjwj for arbitrary







ξ1
...
ξn






∈ F

n. (2.8)
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It is easy to verify that (2.8) defines a linear operator.
Denote by E the standard basis of Fn, that is the basis which consists of

the columns of the identity matrix. Then CB = LB
E

and (CB)−1 = LE
B
.

Exercise 2.7. Let V and W be vector spaces over F. Let V be finite
dimensional, n = dimV and let B be a basis for V . Let C = (w1, . . . , wn)
be a list of vectors in W with n entries.

(a) Characterize the injectivity of LB
C

: V → W .

(b) Characterize the surjectivity of LB
C

: V → W .

(c) Characterize the bijectivity of LB
C

: V → W .

(d) If LB
C

: V → W is an isomorphism, find a simple formula for (LB
C
)−1.

2.3. The nullity-rank theorem. Let T : V → W is be a linear operator.
The linearity of T implies that the set

nulT =
{

v ∈ V : Tv = 0W

}

is a subspace of V . This subspace is called the null space of T . Similarly,
the linearity of T implies that the range of T is a subspace of W . Recall
that

ranT =
{

w ∈ W : ∃ v ∈ V w = Tv
}

.

Proposition 2.8. A linear operator T : V → W is an injection if and only

if nulT = {0V }.

Proof. We first prove the “if” part of the proposition. Assume that nulT =
{0V }. Let u, v ∈ V be arbitrary and assume that Tu = Tv. Since T is linear,
Tu = Tv implies T (u−v) = 0W . Consequently u−v ∈ nulT = {0V }. Hence,
u− v = 0V , that is u = v. This proves that T is an injection.

To prove the “only if” part assume that T : V → W is an injection.
Let v ∈ nulT be arbitrary. Then Tv = 0W = T0V . Since T is injective,
Tv = T0V implies v = 0V . Thus we have proved that nulT ⊆ {0V }. Since
the converse inclusion is trivial, we have nulT = {0V }. �

Theorem 2.9 (Nullity-Rank Theorem). Let V and W be vector spaces

over a scalar field F and let T : V → W be a linear operator. If V is finite

dimensional, then nulT and ranT are finite dimensional and

dim(nulT ) + dim(ranT ) = dimV . (2.9)

Proof. Assume that V is finite dimensional. We proved earlier that for an
arbitrary subspace U of V there exists a subspace X of V such that

U ⊕ X = V and dimU + dimX = dimV .

Thus, there exists a subspace X of V such that

(nulT )⊕ X = V and dim(nulT ) + dimX = dimV . (2.10)

Since dim(nulT ) + dimX = dimV , to prove the theorem we only need
to prove that dimX = dim(ranT ). To this end, let m = dimX and let
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x1, . . . , xm be a basis for X . We will prove that vectors Tx1, . . . , Txm form
a basis for ranT . We first prove

span
{

Tx1, . . . , Txm
}

= ranT. (2.11)

Clearly
{

Tx1, . . . , Txm
}

⊆ ranT . Consequently, since ranT is a subspace of

W , we have span
{

Tx1, . . . , Txm
}

⊆ ranT . To prove the converse inclusion,
let w ∈ ranT be arbitrary. Then, there exists v ∈ V such that Tv = w.
Since V = (nulT )+X , there exist u ∈ nulT and x ∈ X such that v = u+x.
Then Tv = T (u+x) = Tu+Tx = Tx. As x ∈ X , there exist ξ1, . . . , ξm ∈ F

such that x =
∑m

j=1 ξjxj. Now we use linearity of T to deduce

w = Tv = Tx =
m
∑

j=1

ξjTxj.

This proves that w ∈ span
{

Tx1, . . . , Txm
}

. Since w was arbitrary in ranT
this completes a proof of (2.11).

Next we prove that the vectors Tx1, . . . , Txm are linearly independent.
Let α1, . . . , αm ∈ F be arbitrary and assume that

α1Tx1 + · · ·+ αmTxm = 0W . (2.12)

Since T is linear (2.12) implies that

α1x1 + · · ·+ αmxm ∈ nulT. (2.13)

Recall that x1, . . . , xm ∈ cX and X is a subspace of V , so

α1x1 + · · ·+ αmxm ∈ X . (2.14)

Now (2.13), (2.14) and the fact that (nulT ) ∩ X = {0V } imply

α1x1 + · · ·+ αmxm = 0V . (2.15)

Since x1, . . . , xm are linearly independent (2.15) yields α1 = · · · = αm = 0.
This completes a proof of the linear independence of Tx1, . . . , Txm.

Thus
{

Tx1, . . . , Txm
}

is a basis for ranT . Consequently dim(ranT ) = m.
Since m = dimX , (2.10) implies (2.9). This completes the proof. �

A direct proof of NRT Theorem is as follows:

Proof. Since nulT is a subspace of V it is finite dimensional. Set k =
dim

(

nulT
)

and let C =
{

u1, . . . , uk
}

be a basis for nulT .
Since V is finite dimensional there exists a finite set F ⊂ V such that

span(F ) = V . Then the set TF is a finite subset of W and ranT =
span

(

TF
)

. Thus ranT is finite dimensional. Let dim
(

ranT
)

= m and let

E =
{

w1, . . . , wm

}

be a basis of ranT .

Since clearly for every j ∈
{

1, . . . ,m
}

, wj ∈ ranT , we have that for

every j ∈
{

1, . . . ,m
}

there exists vj ∈ V such that Tvj = wj. Set D =
{

v1, . . . , vm
}

.
Further set B = C ∪ D .
We will prove the following three facts:
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(I) C ∩ D = ∅,
(II) spanB = V ,
(III) B is a linearly independent set.

To prove (I), notice that the vectors in E are nonzero, since E is linearly
independent. Therefore, for every v ∈ D we have that Tv 6= 0W . Since for
every u ∈ C we have Tu = 0W we conclude that u ∈ C implies u 6∈ D . This
proves (I).

To prove (II), first notice that by the definition of B ⊂ V . Since V is a
vector space, we have spanB ⊆ V .

To prove the converse inclusion, let v ∈ V be arbitrary. Then Tv ∈ ranT .
Since E spans ranT , there exist β1, . . . , βm ∈ F such that

Tv =

m
∑

j=1

βjwj .

Set

v′ =

m
∑

j=1

βjvj .

Then, by linearity of T we have

Tv′ =

m
∑

j=1

βjTvj =

m
∑

j=1

βjwj = Tv.

The last equality yields and the linearity of T yield T (v− v′) = 0W . Conse-
quently, v− v′ ∈ nulT . Since C spans nulT , there exist α1, . . . , αk ∈ F such
that

v − v′ =

k
∑

j=1

αiui.

Consequently,

v = v′ +
k

∑

j=1

αiui =
k

∑

j=1

αiui +
m
∑

j=1

βjvj.

This proves that for arbitrary v ∈ V we have v ∈ spanB. Thus V ⊆ spanB

and (II) is proved.
To prove (III) let α1, . . . , αk ∈ F and β1, . . . , βm ∈ F be arbitrary and

assume that
k

∑

j=1

αiui +
m
∑

j=1

βjvj = 0V . (2.16)

Applying T to both sides of the last equality, and using the fact that ui ∈
nulT and the definition of vj we get

m
∑

j=1

βjwj = 0W .
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Since E is a linearly independent set the last equality implies that βj = 0
for all j ∈ {1, . . . ,m}. Now substitute these equalities in (2.16) to get

k
∑

j=1

αiui = 0V .

Since C is a linearly independent set the last equality implies that αi = 0
for all i ∈ {1, . . . , k}. This proves the linear independence of B.

It follows from (II) and (III) that B is a basis for V . By (I) we have that
|B| = |C |+ |D | = k +m. This completes the proof of the theorem. �

The nonnegative integer dim(nulT ) is called the nullity of T ; the nonneg-
ative integer dim(ranT ) is called the rank of T .

The nullity-rank theorem in English reads: If a linear operator is defined
on a finite dimensional vector space, then its nullity and its rank are finite
and they add up to the dimension of the domain.

Proposition 2.10. Let V and W be vector spaces over F. Assume that V

is finite dimensional. The following statements are equivalent

(a) There exists a surjection T ∈ L (V ,W ).
(b) W is finite dimensional and dimV ≥ dimW .

Proposition 2.11. Let V and W be vector spaces over F. Assume that V

is finite dimensional. The following statements are equivalent

(a) There exists an injection T ∈ L (V ,W ).
(b) Either W is infinite dimensional or dimV ≤ dimW .

Proposition 2.12. Let V and W be vector spaces over F. Assume that V

is finite dimensional. The following statements are equivalent

(a) There exists an isomorphism T : V → W .

(b) W is finite dimensional and dimW = dimV .

2.4. Isomorphism between L (V ,W ) and F
n×m. Let V and W be fi-

nite dimensional vector spaces over F, m = dimV , n = dimW , let B =
{v1, . . . , vn} be a basis for V and let C = {w1, . . . , wn} be a basis for W . The
mapping CB provides an isomorphism between V and F

m and CC provides
an isomorphism between W and F

n.
Recall that the simplest way to define a linear operator from F

m to F
n

is to use an n×m matrix B. It is convenient to consider an n×m matrix
to be an m-tuple of its columns, which are vectors in F

n. For example, let
b1, . . . ,bm ∈ F

n be columns of an n×m matrix B. Then we write

B =
[

b1 · · · bm

]

.

This notation is convenient since it allows us to write a multiplication of a
vector x ∈ F

m by a matrix B as

Bx =

m
∑

j=1

ξjbj where x =







ξ1
...
ξn






. (2.17)
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Notice the similarity of the definition in (2.17) to the definition (2.7) of
the operator LB

C
in Example 2.6. Taking B to be the standard basis of Fm

and taking C to me the m-tuple given by B, we have LB
C
(x) = Bx.

Let T : V → W be a linear operator. Our next goal is to connect T in a
natural way to a certain n×m matrix B. That “natural way” is suggested
by following diagram:

V W

F
m

F
n

T

CB CC

B

We seek an n×m matrix B such that the action of T between V and W is
in some sense replicated by the action of B between F

m and F
n. Precisely,

we seek B such that

CC (Tv) = B(CB(v)) ∀ v ∈ V . (2.18)

In English: multiplying the vector of coordinates of v by B we get exactly
the coordinates of Tv.

Using the basis vectors v1, . . . , vn ∈ B in (2.18) we see that the matrix

B =
[

CC (Tv1) · · · CC (Tvm)
]

(2.19)

has the desired property (2.18).
For an arbitrary T ∈ L (V ,W ) the formula (2.19) associates the matrix

B ∈ F
n×m with T . In other words (2.19) defines a function from L (V ,W )

to F
n×m.

Theorem 2.13. Let V and W be finite dimensional vector spaces over F,

m = dimV , n = dimW , let B = {v1, . . . , vm} be a basis for V and let

C = {w1, . . . , wn} be a basis for W . The function

MB
C : L (V ,W ) → F

n×m

defined by

MB
C (T ) =

[

CC (Tv1) · · · CC (Tvm)
]

, T ∈ L (V ,W ) (2.20)

is an isomorphism.

Proof. It is easy to verify that MB
C

is a linear operator.

Since the definition of MB
C
(T ) coincides with (2.19), equality (2.18) yields

CC (Tv) =
(

MB
C (T )

)

CB(v). (2.21)
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The most direct way to prove that MB
C

is an isomorphism is to construct
its inverse. The inverse is suggested by the diagram (2.22).

V W

F
m

F
n

T

CB

B

(CC )−1 (2.22)

Define
NB

C : Fn×m → L (V ,W )

by
(

NB
C (B)

)

(v) = (CC )
−1

(

B(CB(v))
)

, B ∈ F
n×m. (2.23)

Next we prove that

NB
C ◦MB

C = IL (V ,W ) and MB
C ◦NB

C = IFn×m .

First for arbitrary T ∈ L (V ,W ) and arbitrary v ∈ V we calculate
(

(

NB
C ◦MB

C

)

(T )
)

(v) = (CC )
−1

((

MB
C (T )

)

(CB(v))
)

by (2.23)

= (CC )
−1

(

CC (Tv)
)

by (2.21)

= Tv.

Thus
(

NB
C

◦ MB
C

)

(T ) = T and thus, since T ∈ L (V ,W ) was arbitrary,

NB
C

◦MB
C

= IL (V ,W ).

Let now B ∈ F
n×m be arbitrary and calculate

(

MB
C ◦NB

C

)

(B) = MB
C

(

NB
C (B)

)

=
[

CC

((

NB
C (B)

)

(v1)
)

· · · CC

((

NB
C (B)

)

(vm)
)

]

by (2.20)

=
[

B(CB(v1)) · · · B(CB(vm))
]

by (2.23)

= B
[

CB(v1) · · · CB(vm)
]

matrix mult.

= B Im def. of CB

= B.

Thus
(

MB
C
◦NB

C

)

(B) = B for all B ∈ F
n×m, proving thatMB

C
◦NB

C
= IFn×m .

This completes the proof that MB
C

is a bijection. Since it is linear, MB
C

is an isomorphism. �

Theorem 2.14. Let U , V and W be finite dimensional vector spaces over

F, k = dimU , m = dimV , n = dimW , let A be a basis for U , let B

be a basis for V , and let C be a basis for W . Let S ∈ L (U ,V ) and

T ∈ L (V ,W ). Let MA
B
(S) ∈ F

m×k, MB
C
(T ) ∈ F

n×m and MA
C
(TS) ∈ F

n×k

be as defined in Theorem 2.13. Then

MA
C (TS) = MB

C (T )MA
B (S).
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Proof. Let A = {u, . . . , uk} and calculate

MA
C (TS) =

[

CC

(

TSu1
)

· · · CC

(

TSuk
)

]

by (2.20)

=
[

MB
C (T )

(

CB(Su1)
)

· · · MB
C (T )

(

CB(Suk)
)

]

by (2.21)

= MB
C (T )

[

CB(Su1) · · · CB(Suk)
]

matrix mult.

= MB
C (T )MA

B (S). by (2.20)

�

The following diagram illustrates the content of Theorem 2.14.

V

U W

F
m

F
k

F
n

T

CB

S

TS

CA CC

MB
C
(T )

MA
B

(S)

MA
C

(TS)=MB
C
(T )MA

B
(S)


