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1 Algebra of linear operators

In this section we consider a vector space ¥ over a scalar field F. By Z(¥)
we denote the vector space Z(7#,7) of all linear operators on ¥". The
vector space £ (¥') with the composition of operators as an additional binary
operation is an algebra in the sense of the following definition.

Definition 1.1. A vector space o/ over a field F is an algebra over F if the
following conditions are satisfied:
(a) there exist a binary operation - : &/ x &/ — 7.
(b)
(¢) (right-distributivity) for all z,y,z € o we have (z+vy) -z =x-24+y- 2.
(d) (left-distributivity) for all z,y,z € o/ we have z- (x +y) =z-x+2-y.
)

(e

(associativity) for all z,y,z € o/ we have (x-y)-z=x-(y-2).

(respect for scaling) for all z,y € o and all @ € F we have a(z - y) =
(az) -y =z (ay).
The binary operation in an algebra is often referred to as multiplication.

The multiplicative identity in the algebra .Z’(7') is the identity operator
Iy.

For T' € Z(¥) we recursively define nonnegative integer powers of 1" by
T =TIy and for alln e NT" =T o T" L.

For T e L(V), set

ofp = span{T" : k € NU{0}}.

Clearly <71 is a subspace of .Z(¥). Moreover, we will see below that 7 is
a commutative subalgebra of £ (7).



Recall that by definition of a span a nonzero S € Z(7') belongs to </
if and only if 3m € NU {0} and ag, o, ..., a, € F such that a,, # 0 and

§=3 auT". (1)
k=0

The last expression reminds us of a polynomial over F. Recall that by
F[z] we denote the algebra of all polynomials over F. That is

Flz] = {Zajzj :n e NU{0}, (ag,...,ap) € IF"H}.

J=0

Next we recall the definition of the multiplication in the algebra F[z]. Let
m,n € NU{0} and

p(z) = Z ;7' € Flz] and q(z) = Zﬁjzj € Flz]. (2)
i=0 Jj=0

Then by definition

m-+n
(Pa)(2) = > < > aiﬂy) 2.
i+j=k
1€{0,...,m}
j€{0,...,n}

Since the multiplication in F is commutative, it follows that pqg = ¢gp. That
is F[z] is a commutative algebra.

The obvious alikeness of the expression (1) and the expression for the
polynomial p in (2) is the motivation for the following definition. For a fixed
T € Z(V) we define

=7 F[Z] — f(ﬂf/)

by setting
m ) m )
Er(p) = Z ;T where p(z) = Z a;z' € Flz]. (3)
i=0 i=0

It is common to write p(T') for E7(p).

Theorem 1.2. Let T € L (V). The function Zp : F[z] — Z(¥) defined in
(3) is an algebra homomorphism. The range of 21 is <r.



Proof. 1t is not difficult to prove that =Z¢ : F[z] — £(¥) is linear. We will
prove that Zp : F[z] — Z(¥) is multiplicative, that is, for all p,q € F[z] we
have Zpr(pq) = Z7(p)=1r(q). To prove this let p,q € F[z] be arbitrary and
given in (2). Then

Er(p)Er(q) = (Z oziTi> <Z ﬁjTj> (by definition in (3))

= Z Z ;BT (since Z(7) is an algebra)
=0 j=0
m+n
= ( Z aiﬁj) T* (since Z(7) is a vector space)
k=0 \ itj=k
1€{0,...,m}
7€{0,....,n}
= Z7(pq) (by definition in (3)).

This proves the multiplicative property of =.
The fact that o/ is the range of Z¢ is obvious. O

Corollary 1.3. Let T € £(¥). The subspace <fp of L (V) is a commuta-
tive subalgebra of L(V).

Proof. Let Q,S € /. Since @/ is the range of Zp there exist p,q €
F[z] such that @ = Zp(p) and S = Zp(q). Then, since Zp is an algebra
homomorphism we have

QS =EZ7(p)=r(p) = Er(pq) = Er(qp) = Er(q9)Er(p) = SQ.

This sequence of equalities shows that QS € ran(Zp) = o/ and QS =
SQ. That is o7 is closed with respect to the operator composition and the
operator composition on 7 is commutative. ]

Corollary 1.4. Let ¥ be a complex vector space and let T € L(V) be a
nonzero operator. Then for every p € C[z]| such that m = degp > 1 there
exist a nonzero o € C and z1,...,zn € C such that

Z1(p) = p(T) = (T = 211) - (T — 2.

Proof. Let p € C[z] such that m = degp > 1. Then there exist ag, ..., q, €
C such that ay, # 0 such that

m
z) = Z a;z’.
k=0



By the Fundamental Theorem of Algebra there exist nonzero o € C and
21,y ...,2m € C such that

p(z) =alz —2z1) (2 — zm).

Here a = «u, and zq,..., 2z, are the roots of p. Since Zp is an algebra
homomorphism we have

p(T) =Zr(p) =aZr(z —21) - Ex(z — z2m) = (T — 211) -+ (T — zp ).

This completes the proof. O

2 Existence of an eigenvalue

Lemma 2.1. Let n € N and Sy,...,S, € ZL(¥). If S1,...,S, are all
injections, then the composition S1 --- S, is an injection.

Proof. We proceed by Mathematical Induction. The base step is trivial. It
is useful to prove the implication for n = 2. Assume that S,T € Z(¥') are
injective and let u,v € ¥ be such that u # v. Then, since T is injective,
Tu # Tw. Since S is injective, S(Tu) # S(Tv). Thus, ST is injective.

Next we prove the inductive step. Let m € N and assume that Sy --- 5,
is injective whenever Si,...,S,, € Z(¥) are all injective. (This is the in-
ductive hypothesis.) Now assume that Si,...,Sn, Smi1 € ZL(¥) are all
injective. By the inductive hypothesis the operator S = Sy --- S, is injec-
tive. Since by assumption 17" = S,, 1 is injective, the already proved claim
for n = 2 yields that

ST =51 -+ Sy S+t

is injective. This completes the proof. O

Theorem 2.2. Let ¥ be a nontrivial finite dimensional vector space over
C. Let T € L(V). Then there exists a X € C and v € ¥ such that v # Oy
and Tv = \wv.

Proof. The claim of the theorem is trivial if 7" = 0g(y). So, assume that
T € Z(V) is a nonzero operator.
Let n =dim ¥ and let u € 7 \ {0y }. Now consider the vectors

w,Tu, T?u, ..., T u. (4)

If two of these vectors coincide, say k,l € {0,...,n}, k <[ are such that
Tku = Tlu, setting a; = 0 for j € {0,...,n}\{k,l} and o = 1 and oy = —1
we obtain a nontrivial linear combination of the vectors in (4).



If the vectors in (4) are distinct, since n = dim ¥/, it follows from the
Steinitz Exchange Lemma that the vectors in (4) are linearly dependent.
Hence, in either case, there exist ag,...,a, € C and k € {0,...,n} such
that
aou+ onTu+ aT*u+ -+ a,T"u = 0y (5)

and ag, # 0. Since u # 0y it is not possible that o; = 0 forall j € {1,...,n}.
Therefore, there exists k € {1,...,n} such that ax # 0.
Set
p(2) = g+ a1z + ag2® + - + a2

Since there exists k& € {1,...,n} such that a; # 0, we have that m =
degp > 0. By the Fundamental Theorem of Algebra there exist a # 0 and
21, ..., 2m € C such that

p(z)=alz —z1) (2 — z2m).

Here a = oy, and z1, ..., z,,, are the roots of p.
Since Zr is an algebra homomorphism we have

p(T)=Zr(p) =aZp(z —21) - Ep(z — zpm) = (T — z1I) -+ (T — 2, 1).

Equality (5) yields that the operator p(T") is not an injection. Lemma 2.1
now implies that there exists j € {1,...,m} such that T'—z;[ is not injective.
That is, there exists v € ¥, v # 0y such that

(T'— ziI)v = 0.
Setting A = z; completes the proof. O

Definition 2.3. Let ¥ be a vector space over F, T' € Z(¥). A scalar A € F
is an eigenvalue of T if there exists v € ¥ such that v # 0 and Tv = \v.
The subspace nul(7" — AI) of ¥ is called the eigenspace of T' corresponding
to A.

Definition 2.4. Let ¥ be a finite dimensional vector space over F. Let
T € L(V). The set of all eigenvalues of T is denoted by o(T"). It is called
the spectrum of T.

The above proof of the existence of an eigenvalue can be adopted so that
we prove more. Below we prove: T" = 0.y if and only if o(7T') = {0}.



More information proof. Let n = dim ¥ and let u € ¥\ {0y }. Then n € N.
First assume that 7" = 0.4 (y). The set

K={je{0,....n}|T7u #0}

is nonempty since 0 € K. Set & = min K. Then k € {0,...,n — 1}, T*u # 0
and T(Tku) = 0. Thus, we can take A = 0 and v = T%u in this case.

Now assume that T" # 0g(y). Then there exists w € ¥ such that
T"w # 04. Consequently, none of the vectors

w, Tw, T?w,...,T"w (6)

equals to Oy .
If two of the vectors in (6) coincide, say k,l € {0,...,n} are such that
k <l and TFu = T, setting a; =0 for j € {0,...,n}\ {k,1} and ag, = 1
and oy = —1 we obtain a nontrivial linear combination of the vectors in (6).
If the vectors in (6) are distinct then we have n + 1 vector in a vector
space of the dimension n = dim ¥". The Steinitz Exchange Lemma implies
that the vectors in (6) are linearly dependent.

Hence, in either case, there exist «q,...,a, € C such that
aot + a1 Tu + aoT?u+ -+ a,T"u = 0y (7)
and at least one among «y, ..., a, is nonzero.
Set

I =min{i € {0,...,n}|a; # 0}, m = max{i € {0,...,n}|a; # 0}.

Since all the vectors in (6) are nonzero we have [ < m. Further set k = m—1
and

p(z) = ap+apiz+ -+ s

Then k = degp > 0 and (7) reads p(T)T'w = 0y with Tlw # 0.
By the Fundamental Theorem of Algebra there exist z1,..., 2, € C such
that

p(z) = am(z —2z1) (2 — 2x).

Here z1, ...,z are the roots of p. Since oy # 0, that is the constant coeffi-
cient of p is nonzero, we have that z; # 0 for all ¢ € {1,...,k}.
Since Zr is an algebra homomorphism we have

p(T)=Z7(p) = Ep(z —21) -+ Ep(z — 2z) = (T — =1 1) -+ (T — z1).



Since p(T)T'w = 04 and T'w # 0y the operator p(T') is not an injection.
Lemma 2.1 now implies that there exists j € {1,...,k} such that T'— z;I is
not injective. That is, there exists v € ¥, v # 0y such that

(T — ziI)v = 0.
As all the roots of p are nonzero, setting A = z; # 0 completes the proof. [J

The next theorem can be stated in English simply as: Eigenvectors cor-
responding to distinct eigenvalues are linearly independent.

Theorem 2.5. Let ¥ be a vector space over F, T € L(¥) and n € N.
Assume
(@) Ai,..., Ay € F are such that \; # \j for alli,j € {1,...,n} such that
i # 7,
(b) v1,...,v, € ¥ are such that Tvp = Mo and v # 0 for all k €

{1,...,n}.

Then {v1,...,v,} is linearly independent.

Proof. We will prove this by using the mathematical induction on n. For
the base case, we will prove the claim for n = 1. Let \; € F and let v; € ¥
be such that v; # 0 and T'v; = Ajvy. Since vy # 0, we conclude that {v;} is
linearly independent.

Next we prove the inductive step. Let m € N be arbitrary. The inductive
hypothesis is the assumption that the following implication holds.

If the following two conditions are satisfied:

(i) p1,...,pm € F are such that p; # p; for all 4,5 €
{1,...,m} such that i # j,

(il) wi,...,wy € ¥ are such that Twy = prwy and wy #
0 for all k € {1,...,m},
then {wy,...,w,} is linearly independent.

We need to prove the following implication

If the following two conditions are satisfied:
(I) AM,...,; Am41 € F are such that \; # A; for all i,j €
{1,...,m + 1} such that i # j,
(IT) v1,...,Vms1 € ¥ are such that Tvy, = Agvg and v # 0
forall k € {1,...,m+ 1},

then {v1,...,vp41} is linearly independent.




Assume (I) and (IT) in the red box. We need to prove that {v1,...,vpm41}
is linearly independent.
Let a1, ..., amy1 € F be such that

o101 + -+ U+ Qg 1Vmt1 = 0. (8)

Applying T € Z(¥) to both sides of (8), using the linearity of 7" and
assumption (IT) we get

a1 A1+ F A A Um + A1 Ama1Vma1 = 0. (9)
Multiplying both sides of (8) by A\;,+1 we get
A1V + - F O Am+1Um + @1 Am+1Um+1 = 0. (10)
Subtracting (10) from (9) we get
a1 (A1 — Amt1)v1 + -+ (A — A1) = 0.
Since by assumption (I) we have A\j — A1 # 0 forall j € {1,...,m}, setting
wj = (A = Amy1)vj,  JE{L...,m},
and taking into account (II) we have
w; #0 and Tw; = A\jw; forall  je{l,...,m}. (11)

Thus, by (I) and (11), the scalars Aq,..., A, and vectors wy, ..., w,, satisfy
assumptions (i) and (ii) of the inductive hypothesis (the green box). Conse-
quently, the vectors wy, ..., w,, are linearly independent. Since by (11) we
have

owy + -+ apwy, =0,

it follows that a3 = -+ = a,;, = 0. Substituting these values in (8) we get
Qmt1Um+1 = 0. Since by (II), v41 # 0 we conclude that ay, 41 = 0. This
completes the proof of the linear independence of vy, ..., vmy1. O

A different proof follows.

Proof. Consider operators T'— \;I for j € {1,...,n}. Then

(T— )\jI)?}k = ()\k — )\j)vk, 7.k € {1, .. ,n}.



Or, more precisely,

(T = M\T)vg = {éA’“ “N)ue 7& gkell,...,n}.  (12)

v Jj=
Let i,k € {1,...,n}. Repeated application of (12) yields

(11 e-vn)u=( I1 0e-2))e

or, more precisely,
0y k # i,
< n
II (- Aﬂ))w = n . (13)
1 < 11 ()\k—)\j)>vk k=i
j=1,j#k
Let ay,...,a, € F be such that
a1 + -+ apv, = 0y (14)

Let k € {1,...,n} be arbitrary and apply the operator

T (T-x1)
J=1,57#k
to both sides of (14). Then by (13) we get

ozk< H (Ak—A)> vp = Oy . (15)

J=1,37#k
Since A1,..., A, are distinct we have
II Ox—x) #0,
J=1,j#k
and since also vi, # 0y, from (15) we deduce ag, = 0. Since k € {1,...,n}

was arbitrary, the theorem is proved.

Corollary 2.6. Let ¥ be a finite dimensional vector space over F and let
T e Z(V). Then T has at most n = dim ¥ distinct eigenvalues.

Proof. Let % be a basis of ¥ where = {uy,...,u,}. Then |Z| = n and
spanB = V. Let € = {v1,...,un} be eigenvectors corresponding to m
distinct eigenvalues. Then % is a linearly independent set with || = m.
By the Steinitz Exchange Lemma, m < n. Consequently, T' has at most n
distinct eigenvalues. O



3 Existence of an upper-triangular matrix repre-
sentation

Definition 3.1. A matrix A € F™*" with entries a;j, 4,5 € {1,...,n} is
called upper triangular if a;; = 0 for all 4,5 € {1,...,n} such that ¢ > j.

Definition 3.2. Let ¥ be a vector space over F and T € .Z (7). A subspace
U of ¥ is called an invariant subspace under T if T(%) C U .

The following proposition is straightforward.

Proposition 3.3. Let S, T € (V) be such that ST = TS. Then nulT
is invariant under S and nul S is invariant under T. In particular, all
etgenspaces of T are invariant under T .

Definition 3.4. Let ¥ be a finite dimensional vector space over F with
n =dim¥ > 0. Let T € Z(¥). A sequence of nontrivial subspaces
U, ..., U, of ¥ such that

MU C - C Uy (16)

and
T, < U, for all kEe{l,...,n}

is called a fan for T in ¥. A basis {v,...,v,} of ¥ is called a fan basis
corresponding to 7T if the subspaces

V. = spanf{vy, ..., v}, ke{l,...,n},
form a fan for 7.
Notice that (16) implies
1 <dim?% <dim% < --- < dim %, < n.

Consequently, if 24,...,%, is a fan for T" we have dim %}, = k for all k €
{1,...,n}. In particular %, = 7.

Theorem 3.5 (Theorem 5.12). Let ¥ be a finite dimensional vector space
over F with dim ¥ =n and let T € L (V). Let = {v1,...,v,} be a basis
of V" and set

V. = spanf{vy, ..., vk}, ke{l,...,n}.

The followina statements are equivalent.



(a) M ( ) is upper-triangular.
(b) For all k e {1,...,n} we have Tv € ¥}.
(¢) Forallk e {1,...,n} we have TV, C V.
(d) £ is a fan baszs correspondmg toT.
Proof. (a) = (b). Assume that M%(T) is upper triangular. That is

(a11 a2 - aw o G
O a22 .. a2kf e a2n
7 . : : . : :
M (T) = 0 0 - app - 0
|0 0 0 o an

Let k € {1,...,n} be arbitrary. Then, by the definition of M (T),

a1k

Cy(Toy) = |FF

Consequently, by the definition of C», we have
Tvg = aygvr + - - + agpvg € span{vy, ..., vp} = %.

Thus, (b) is proved.

(b) = (a). Assume that Tv, € ¥} for all £ € {1,...,n}. Let a;,
i,j € {1,...,n}, be the entries of M%(T). Let j € {1,...,n} be arbitrary.
Since Tvj € ¥; there exist aq,...,a; € F such that

Tvj = oqvy + -+ + ajvj.

By the definition of C» we have

aq
o
Cou(Tvj) = |




On the other side, by the definition of M7 (T)), we have

a1k

Cop(Twy) = | "9

The last two equalities, and the fact that Cz is a function, imply a;; = 0
for all i € {j 4+ 1,...,n}. This proves (a).

(b) = (c). Suppose Tv, € ¥, = span{vy,...,v;} for all k € {1,...,n}.
Let v € 7. Then v = ajv; + -+ + agvg. Applying T, we get Tv =
arTvi + - -+ + apTv,. Thus,

Tv € span{Tvy,...,Tuy}. (17)

Since

Tv; € V; C Y for all jed{l,...,k},

we have
span{T'v1,...,Tv;} C %.

Together with (17), this proves (c).

(¢) = (b). Suppose T#, C ¥, for all k € {1,...,n}. Then since vy € ¥,
we have T'v, € ¥, for each k € {1,...,n}.

(¢) < (d) follows from the definition of a fan basis corresponding to
T. U

Theorem 3.6 (Theorem 5.13). Let ¥ be a nonzero finite dimensional com-
plex vector space. If dim ¥ =n and T € L(V), then there exists a basis A
of ¥ such that M%(T) is upper-triangular.

Proof. We proceed by the complete induction on n = dim(¥?").

The base case is trivial. Assume dim”? = 1 and T € Z(¥). Set
# = {u}, where u € ¥\{0y} is arbitrary. Then there exists A € C such
that Tu = Au. Thus, MZ(T) = [A].

Now we prove the inductive step. Let m € N be arbitrary. The inductive
hypothesis is

For every k € {1,...,m} the following implication holds: If
dm%Z = k and S € Z(%), then there exists a basis &/ of
% such that M (S) is upper-triangular.




To complete the inductive step, we need to prove the implication:

Ifdim¥ =m+1and T € Z(¥), then there exists a basis & of
¥ such that M7 (T) is upper-triangular.

To prove the red implication assume that dim ¥ = m+1and 7' € Z(¥).
By Theorem 2.2 the operator T" has an eigenvalue. Let A be an eigenvalue
of T. Set % = ran(T — AI). Because (T' — AI) is not injective, it is not
surjective, and thus k = dim(%) < dim(¥") = m+1. Thatisk € {1,...,m}.

Moreover, T% C % . To show this, let u € %. Then Tu = (T — A\ )u +
Au. Since (T'— M)u € % and A\u € %, Tu € % . Hence, S = Ty is an
operator on % .

By the inductive hypothesis (the green box), there exists a basis &/ =
{u1,...,u} of Z such that M;’f(S) is upper-triangular. That is,

Tuj = Suj € span{uy,...,u;} for all je{l,... k}.
Extend  to a basis 8 = {uy,...,ug,v1,...,0,_r} of ¥. Since
Tvj = (T — N)v; + \vj, jed{l,...,n—k},
where (T'— M )v; € %, for all j € {1,...,n — k} we have
Tvj € span{u, ..., Um,v;} Cspan{ur, ..., Un,V1,...,Vj}.
By Theorem 3.5 M g (T') is upper-triangular. O

Theorem 3.7. Let ¥ be a finite dimensional vector space over F with
dim¥ =mn, and let T € L (V). Let B = {v1,...,v,} be a basis of ¥ such
that M;‘g(T) is upper triangular with diagonal entries aj;, j € {1,...,n}.
Then T is not injective if and only if there exists j € {1,...,n} such that
Gjj = 0.

Proof. In this proof we set
Vi = span{vy, ..., v }, ke{l,..,n}
Then
NCHC...CT (18)

and by Theorem 3.5, T7;, C 7.
We first prove the “only if” part. Assume that 7" is not injective. Con-
sider the set
K={ke{l,..,n} : TV C %}



Since T is not injective, nulT" # {0y }. Thus by the Rank-Nullity Theorem,
ranT C ¥ = ¥,. Since T, = ranT, it follows that T, C ¥;,. Therefore
n € K. Hence the set K is a nonempty set of positive integers. Hence, by
the Well-Ordering principle min K exists. Set 7 = min K.

If j =1, then dim ¥4 = 1, but since T#; C #] it must be that dim 7% =
0. Thus T# = {0y}, so Tv; = 0,. Hence Cx(T) = [0 ---0]" and so
ajj; =0. If j > 1, then j—1 € {1,...,n} but j —1 ¢ K. By Theorem 3.5,
TY;—1 C ¥j—1 and, since j —1 ¢ K, T%;_1 C ¥;_1 is not true. Hence
TY;_1 = Yj—1. Since j € K, we have T/; C 7/;. Now we have

Vi =171 STV & 7
Consequently,
j—1=dim¥%_; <dim(T%;) < dim¥j = j,

which implies dim(T”//j) = j — 1 and therefore T/; = #;_;. This implies
that there exist a,...,aj_1 € F such that

TUj =ovr + -+ o151,
By the definition of M; ;‘g this implies that a;; = 0.
Next we prove the “if” part. Assume that there exists j € {1,...,n} such
that Qg5 = 0. Then
T?}j =ayvr+ -+ aj-1,vj-1+ O’Uj S 7/]'_1. (19)
By Theorem 3.5 and (18) we have
Tv; € V; € Va1 for all ie{l,...,j—1} (20)

Now (19) and (20) imply T'v; € #;_; for all i € {1,...,j} and consequently
TY; C ¥;_1. To complete the proof, we apply the Rank-Nullity theorem to
the restriction T'[y; of T' to the subspace 7;:

dimnul(TWj) —|—dimran(T|7/j) =]
Since T7; C ¥;_1 implies dim ran(le/j) < j — 1, we conclude
dimnul(Ty, ) > 1.

Thus nul(T'|y,) # {0y}, that is, there exists v € ¥; such that v # 0 and
Twv =T|y,v = 0. This proves that T"is not invertible. O



Corollary 3.8 (Theorem 5.16). Let ¥ be a finite dimensional vector space
over F with dim ¥ =n, and let T € L(V). Let A be a basis of V" such that
M%(T) is upper triangular with diagonal entries aj;, j € {1,...,n}. The
following statements are equivalent.

(a) T is not injective.
(b) T is not invertible.
(¢) 0 is an eigenvalue of T'.
(d) Tz aii = 0.

) There exists j € {1,...,n} such that aj; = 0.

d
(e

Proof. The equivalence (a) < (b) follows from the Rank-nullity theorem
and it has been proved earlier. The equivalence (a) < (c) is almost trivial.
The equivalence (a) < (e) was proved in Theorem 3.7 and The equivalence
(d) < (e) is should have been proved in high school. O

Theorem 3.9. Let ¥ be a finite dimensional vector space over F with
dim 7 =mn, and let T € L(¥). Let B be a basis of ¥ such that MJ(T) is
upper triangular with diagonal entries a;j, j € {1,...,n}. Then

o(T)={aj; :j€{1,...,n}}.
Proof. Notice that M7 : £ (V) — F™*" is a linear operator. Therefore
MZ(T — XI) = MZ(T) — A\MZ(I) = MZ(T) — \,.

Here I,, denotes the identity matrix in F**". As MZ(T) and MZ(I) = I,
are upper triangular, M % (T — \I) is upper triangular as well with diagonal
entries a;; — A, j € {1,...,n}.

To prove a set equality we need to prove two inclusions.

First we prove C. Let A € o(7'). Because A is an eigenvalue, 7" — A\I
is not injective. Because T'— AI is not injective, by Theorem 3.7 one of its
diagonal entries is zero. So there exists ¢ € {1,...,n} such that a;; — A = 0.
Thus A = a. So o(T) C {ajj:j €{1,...n}}.

Next we prove 2 Let aj; € {aj] j € {1,...,n}} be arbitrary. Then
a; — aj; = 0. By Theorem 3.7 and the note at the beginning of this proof
T — a;; 1 is not injective. This implies that a;; is an eigenvalue of T'. Thus
ai; € o(T). This completes the proof. O

Remark 3.10. Theorem 3.9 is identical to Theorem 5.18 in the textbook.



