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1 Algebra of linear operators

In this section we consider a vector space ¥ over a scalar field F. By Z(7")
we denote the vector space Z(¥,7) of all linear operators on ¥. The
vector space .Z (') with the composition of operators as an additional binary
operation is an algebra in the sense of the following definition.

Definition 1.1. A vector space & over a field F is an algebra over F if the
following conditions are satisfied:

(a) there exist a binary operation - : & X & — <.
) (associativity) for all x,y,z € o/ we have (x-y)-z=x-(y - 2).
) (right-distributivity) for all z,y, z € &/ we have (x+vy)-z =z 24y 2.
(d) (left-distributivity) for all z,y,z € o we have z- (x+y) =z -z+z-y.
) (respect for scaling) for all z,y € o/ and all o € F we have a(z -y) =
(ax) -y =z (ay).
The binary operation in an algebra is often referred to as multiplication.

The multiplicative identity in the algebra £ (%) is the identity operator
1.

For T' € Z(¥) we recursively define nonnegative integer powers of T' by
T9=17Iy andforalln e NT? =T o T™ 1.

For T € Z(V), set

o = span{Tk :keNU{0}}.

Clearly 71 is a subspace of .Z (7). Moreover, we will see below that o7 is
a commutative subalgebra of Z(¥).



Recall that by definition of a span a nonzero S € £ (') belongs to </
if and only if 3m € NU {0} and ag, a1, ..., a,, € F such that a,, # 0 and

S=> apT" (1)
k=0

The last expression reminds us of a polynomial over F. Recall that by
[F[z] we denote the algebra of all polynomials over F. That is

Flz] = {Zn:ajzj :neNU{0}, (ag,...,an) € F"+1}.

=0
Next we recall the definition of the multiplication in the algebra F[z]. Let
m,n € NU{0} and
p(z) = Z ;2" € Fz] and q(z) = Z Bjz) € F[2]. (2)
i=0 =0

Then by definition

m+n
(pg)(z) = Y ( > ai/Bj)Zk-

k=0 \ i+j=k
ie{or"vm}
je{ov"'vn}

Since the multiplication in F is commutative, it follows that pqg = ¢p. That
is F[z] is a commutative algebra.

The obvious alikeness of the expression (1) and the expression for the
polynomial p in (2) is the motivation for the following definition. For a fixed
T € Z(7) we define

Er:Flz] = Z2(7)

by setting
Er(p) = Z o T where  p(z) = Z ;2" € Flz]. (3)
=0 =0

It is common to write p(T) for = (p).

Theorem 1.2. Let T € ZL(¥). The function Zp : Flz] — ZL(¥) defined in
(3) is an algebra homomorphism. The range of Ep is “p.



Proof. Tt is not difficult to prove that Z¢ : F[z] — Z(¥) is linear. We will
prove that Zp : F[z] — Z(7) is multiplicative, that is, for all p, ¢ € F[z] we
have Zr(pq) = Er(p)E7r(q). To prove this let p,q € F[z] be arbitrary and
given in (2). Then

Er(p)Zr(q) = <Z a,-T’) (Z ﬂjTj> (by definition in (3))
i=0 =0

= Z Z o 3T (since Z(7) is an algebra)
i=0 j=0
m+n
= Z < Z a,ﬂj>Tk (since Z(7) is a vector space)
k=0 \ i+j=k
1€{0,...,m}
j€{0,...,n}
= Z7(pq) (by definition in (3)).

This proves the multiplicative property of Z.
The fact that o7 is the range of Zp is obvious. O

Corollary 1.3. Let T € £(V). The subspace </p of L(V) is a commuta-
tive subalgebra of L (V).

Proof. Let Q,S € /. Since o/ is the range of Zp there exist p,q €
F[z] such that @ = Zr(p) and S = Er(q). Then, since Zp is an algebra
homomorphism we have

QS = Er(p)=2r(q) = Er(pq) = Er(qp) = Er(q¢)=7(p) = SQ.

This sequence of equalities shows that QS € ran(Zp) = & and QS =
SQ. That is @7 is closed with respect to the operator composition and the
operator composition on @ is commutative. O

Corollary 1.4. Let ¥ be a complex vector space and let T € L (V) be a
nonzero operator. Then for every p € C[z] such that m = degp > 1 there
exist a nonzero o € C and z1,. .., 2z, € C such that

Er(p) =p(T)=a(T — 1) -+ (T — zpn1).

Proof. Let p € C[z] such that m = degp > 1. Then there exist ag,...,q, €
C such that «a,, # 0 such that

m
p(z) = Z a;2.
k=0
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By the Fundamental Theorem of Algebra there exist nonzero @ € C and
21, ...,2m € C such that

p(z) =a(z—2z1) (2 — zm).

Here a = au, and zq,..., 2z, are the roots of p. Since Zp is an algebra
homomorphism we have

p(T) =Er(p) =aZ7(z — 21) -+ Ex(z — z2;m) = a(T — 211) -+ (T — zp1).

This completes the proof. O

2 Existence of an eigenvalue

We will need the following lemma about injections.

Lemma 2.1. Let n € N, let A be a nonempty set and let f1,..., f, € A4
If for all k € {1,...,n} fr is an injection, then the composition fyo---o f,
18 an injection.

Proof. We proceed by Mathematical Induction. The base step is trivial. It
is useful to prove the implication for n = 2. Assume that f,g € A4 are
injections. Let s,t € A be such that s # ¢t. Then, since g is an injection,
g(s) # g(t). Since f is injective, f(g(x)) # f(g(t)). Thus, f o g is injective.

Next we prove the inductive step. Let m € N and assume that f; o
-0 fn, is an injection whenever fi,..., f,, € A% are all injections. (This is
the inductive hypothesis.) Now assume that fi,..., fm, fmi1 € A4 are all
injections. By the inductive hypothesis the function f = fio--- 0o f,, is an
injection. Since by assumption g = f,,+1 is an injection, the already proved
claim for n = 2 yields that

fog:flo"'ofmofm—i-l
is an injection. This completes the proof. O

Definition 2.2. Let ¥ be a vector space over F, T' € £ (7). A scalar A € F
is an eigenvalue of T if there exists v € ¥ such that v # 0 and Tv = Av.
The subspace nul(T — A\I) of ¥ is called the eigenspace of T corresponding
to A.

Definition 2.3. Let ¥ be a finite dimensional vector space over F. Let
T € Z(¥). The set of all eigenvalues of T is denoted by o(T'). It is called
the spectrum of T.



Our first goal is to prove that for an operator 1" defined on a vector
space ¥ over C we have o(T) # (). However, even before proving that we
can prove the Spectral Mapping Theorem.

Theorem 2.4. Let ¥ be a nontrivial finite-dimensional vector space over
C and let T € L (V). For a nonconstant p € C[z] we have

o (p(T)) = p(o(T)).

Specifically we have: If X is an eigenvalue of T with a corresponding eigen-
vector v, then p(\) is an eigenvalue of p(T) with the same eigenvector v

Proof. The equality is obvious if the polynomial p is constant. Assume that
degp = m € N and let the coefficients of p be ag, -+ , v, € C. Let A € o(T).
Then there exists v € ¥\ {0y} such that

Tv = \v.

Calculate

p(T)v =Zp(p)v = (Z aka> v = Z o Tro = Z N v = p(A)w.
k=0 k=0 k=0

Thus p(A) is an eigenvalue of p(T"). This proves the specific statement in
the theorem and the inclusion

p(a(T)) C a(p(T)).

To prove the reverse inclusion let u & p(a(T )) Then there exists w €
7\ {0y} such that
p(Tw = pw.

Set q(z) = p(z) — p. Then ¢(T)w = 04 and since w € ¥\ {0y } the operator
q(T) is not an injection. By the Fundamental Theorem of Algebra there
exist «, z1,..., 2y € C such that a # 0 and

qz)=alz —z1) (2 — zm).

Since Z¢ is an algebra homomorphism we have



That is, ¢(T') is a composition of m + 1 operators. Since ¢(7') is not an
injection, Lemma 2.1 yields that there exists k € {1,...,m} such that the
operator T — z[ is not an injection. This implies that z; € o(T'). Set
A=z € o(T). Then ¢(\) = 0, that is p(\) — u = 0. Thus we have proved
that for arbitrary € p(o(T)) there exists A € o(T') such that u = p(X).
This proves

o (p(T)) € p(o(T))

and completes the proof. O
Using the method of the proof of the preceding theorem one can prove.

Proposition 2.5. Let ¥ be a nontrivial finite-dimensional vector space over
C with n = dim¥ and let T € ZL(V). Then o(T) = {0} if and only

Theorem 2.6. Let ¥ be a nontrivial finite dimensional vector space over
C. Let T € L(V). Then there exists a A € C and v € ¥ such that v # Oy
and Tv = \v.

Proof. The claim of the theorem is trivial if " = 0g(y). So, assume that
T € Z(¥) is a nonzero operator.
Let n =dim ¥ and let u € ¥ \ {0y }. Now consider the vectors

w, Tu, T?u, ..., T . (4)

If two of these vectors coincide, say k,l € {0,...,n}, k <[ are such that
T*u = Tlu, setting a; = 0 for j € {0,...,n}\{k,l} and oy, = 1 and a; = —1
we obtain a nontrivial linear combination of the vectors in (4).

If the vectors in (4) are distinct, since n = dim ¥/, it follows from the
Steinitz Exchange Lemma that the vectors in (4) are linearly dependent.

Hence, in either case, there exist ag,...,a, € C and k € {0,...,n} such
that

aou + o Tu+ aoT*u+ - 4+ a,T"u =0y and ay # 0. (5)

Since u # 0y it is not possible that a; = 0 for all j € {1,...,n}. Therefore,
there exists k € {1,...,n} such that oy # 0.
Set
p(2) = a4+ a1z + a2’ + - + ay2".

Since there exists k € {1,...,n} such that aj # 0, we have that m = degp >
k> 0.

eq-lin-com



Thus we have constructed a polynomial p of positive degree for which,

by (5),
p(T)u =0y with we ¥\ {0y}

Hence, 0 € J(p(T )) By the Spectral Mapping Theorem there exists A €
o(T) such that p(\) = 0. This proves that ¢(7) is a nonempty set. O

Remark 2.7. In the preceding proof we have used the Spectral Mapping
Theorem to make the proof compact. I believe that it is important to make
proofs of fundamental theorems to be as self-contained as possible; just based
on the basic principles, avoiding long citation chains. We could have easily
avoided the citation of the Spectral Mapping Theorem. For this aim, the
last paragraph of the preceding proof should be replaced by the following
three paragraph.

By the Fundamental Theorem of Algebra there exist a # 0 and z1, ..., z;,
C such that

p(z)=alz—z1) (2 — zm).

Here o« = vy, and 21, ..., z,, are the roots of p.
Since =7 is an algebra homomorphism we have

p(T) =Er(p) = aBr(z — 21) -+ BEr(z — 2m) = (T — z11) -+ (T — 2 1).

Equality (5) yields that the operator p(7’) is not an injection. Lemma 2.1
now implies that there exists j € {1,...,m} such that T'—z;[ is not injective.
That is, there exists v € ¥, v # 04 such that

(T = zjI)v =0.
Setting A = z; completes the proof.

The next theorem can be stated in English simply as: Eigenvectors cor-
responding to distinct eigenvalues are linearly independent.

Theorem 2.8. Let 7 be a vector space over F, T € Z(¥) and n € N.
Assume

(a) Ai,..., A, € F are such that \; # \; for alli,j € {1,...,n} such that
i #7,
(b) v1,...,v, € ¥ are such that Tvy = Mg and vy # 0 for all k €

{1,...,n}.

Then {v1,...,v,} is linearly independent.



Proof. Let Ai,..., A, be distinct eigenvalues of T" and let vq,...,v, be cor-
responding eigenvectors:

To, = A\pvg, forall ke {l,...,n} (6)
For each k € {1,...,n} define the polynomial
a(2) = [[{(z=29) -5 € {1 onp\ {k}}
Then g has exactly n — 1 distinct roots {\1,..., Ay} \ {A\x} and
a(k) = [J{Ow = Aj) s G € {1,...,n}\ {k}} #0.

That is

0 J#k, .
a(\j) = , forall j ke{l,...,n}. (7) |eq-qkl
g {qkw) 40 j=k [earaxt]
By the specific statement in the Spectral Mapping Theorem we have

@k (T)vj = ar(A;)v;- (8)

Now we are ready to prove the linear independence of vq,...,v,. Let
ai,...,a, € F be such that

Let k € {1,...,n} be arbitrary. Apply the operator ¢x(T) to both sides of
(9) to obtain

a1qx(T)v1 + - -+ + anqe(T)v, = 0y (10) ‘eq—Vaughn—lil‘

By (8) we have
alqk()\l)vl + -+ an()\n)vn = 0y.

By (7) the last equality simplifies to
apqr(Ae)vr = Oy .
Since vi, # 0y and g (A;) # 0 we deduce
a = 0.

Since k € {1,...,n} was arbitrary the proof of linear independence is com-
plete. O



Corollary 2.9. Let ¥V be a finite dimensional vector space over F and let
T e L(Y). Then T has at most n = dim ¥ distinct eigenvalues.

Proof. Let % be a basis of ¥ where # = {uq,...,u,}. Then |%| = n and
span B = V. Let € = {v1,...,u} be eigenvectors corresponding to m
distinct eigenvalues. Then ¥ is a linearly independent set with || = m.
By the Steinitz Exchange Lemma, m < n. Consequently, T" has at most n
distinct eigenvalues. O

3 Existence of an upper-triangular

matrix representation
Definition 3.1. A matrix A € F"*" with entries a;j, 4,5 € {1,...,n} is
called upper triangular if a;; = 0 for all 4,5 € {1,...,n} such that i > j.

Definition 3.2. Let 7 be a vector space over F and T € .Z (7). A subspace
U of ¥ is called an invariant subspace under T if T(%) C U .

The following proposition is straightforward.

Proposition 3.3. Let S,T € Z(V) be such that ST = TS. Then each
eigenspaces of S is invariant under T and each eigenspaces of T is invariant
under S.

Definition 3.4. Let ¥ be a finite dimensional vector space over F with
n =dim? € N. Let T € Z(¥). A sequence of nontrivial subspaces
U, ..., %, of ¥ such that

UWCU S U (1)

=

and
T, C U, for all ke{l,...,n}

is called a fan for T in ¥'. A basis {vy,...,v,} of ¥ is called a fan basis
corresponding to 7T if the subspaces

Vi = span{vy, ..., v}, ke{l,...,n},
form a fan for 7.
Notice that (11) implies
1<dm?% <dm% < --- <dim %, < n.

Consequently, if 24, ...,%, is a fan for T" we have dim %4, = k for all k €
{1,...,n}. In particular %, = 7.

eq-fan-sss



th-utc| Theorem 3.5 (Theorem 5.12). Let ¥ be a finite dimensional vector space
over F with dim ¥ =n and let T € L (V). Let B = {v1,...,v,} be a basis
of V' and set

Vi = span{vy, ..., v}, ke{l,...,n}.

The following statements are equivalent.
MZ(T) is upper-triangular.

For allk € {1,...,n} we have Ty € Y.
For allk € {1,...,n} we have TV, C V.

A is a fan basis corresponding to T .

i-utc-1 (a
i-utc-2 (b
i-utc-3 (c
i-utc-4 (d

Proof. (a) = (b). Assume that M%(T) is upper triangular. That is

[a11 a1z - a o am

0 a22 PEErY a2k PR a2n

Mz (T) 0 0 - ag -~ O
(0 0 - 0 o ]

Let k € {1,...,n} be arbitrary. Then, by the definition of M (T,

ailk

a
Cop(Toy) = |

Consequently, by the definition of C'%, we have
Tvg = ayvr + - - + agpvg € span{vy, ..., v} = %%.

Thus, (b) is proved.

(b) = (a). Assume that Tv;, € ¥ for all k& € {1,...,n}. Let a;,
i,j € {1,...,n}, be the entries of MZ(T). Let j € {1,...,n} be arbitrary.
Since Tvj € ¥; there exist aq,...,a; € F such that

Tvj = aqvy + -+ + a;vj.
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By the definition of C's we have

Cy(Tvj) =

On the other side, by the definition of M7 (T'), we have

alk

Cop(Twj) = |

The last two equalities, and the fact that Cy is a function, imply a;; = 0
for all i € {j +1,...,n}. This proves (a).

(b) = (c). Suppose Tvy, € ¥, = span{vy,..., v} for all k € {1,...,n}.
Let v € ;. Then v = ajv; + -+ + agvg. Applying T, we get Tv =
arTvy + -+ + apTv,. Thus,

Tv € span{Tv1,...,Tv}. (12)

Since
Tv; € V; €V for all jed{l,... k},

we have
span{Tvy,...,Tv;} C %.

Together with (12), this proves (c).

(¢) = (b). Suppose TY}, C ¥ for all k € {1,...,n}. Then since v € ¥,
we have Tv, € ¥, for each k € {1,...,n}.

(¢) & (d) follows from the definition of a fan basis corresponding to
T. U

Theorem 3.6 (Theorem 5.13). Let ¥ be a nonzero finite dimensional com-
plex vector space. If dim ¥ =n and T € L(V), then there exists a basis A
of ¥ such that M;}?(T) is upper-triangular.

11



Proof. We proceed by the complete induction on n = dim(%).

The base case is trivial. Assume dim? = 1 and T € Z(¥). Set
#B = {u}, where u € ¥\{0y} is arbitrary. Then there exists A\ € C such
that Tu = Au. Thus, M7 (T) = [A].

Now we prove the inductive step. Let m € N be arbitrary. The inductive
hypothesis is

For every k € {1,...,m} the following implication holds: If
dim% = k and S € L (%), then there exists a basis & of
% such that M ;‘f (S) is upper-triangular.

To complete the inductive step, we need to prove the implication:

Ifdim? =m+1and T € Z(¥), then there exists a basis # of
¥ such that M7 (T) is upper-triangular.

To prove the red implication assume that dim ¥ = m+1and T' € Z(7).
By Theorem 2.6 the operator T" has an eigenvalue. Let A be an eigenvalue
of T. Set % = ran(T — X). Because (T — AI) is not injective, it is not
surjective, and thus k = dim(% ) < dim(¥") = m+1. Thatisk € {1,...,m}.

Moreover, T% C % . To show this, let u € %. Then Tu = (T — X\ )u +
Au. Since (T'— MN)u € % and \u € %, Tu € %. Hence, S =T
operator on % .

By the inductive hypothesis (the green box), there exists a basis & =
{ur,...,ur} of % such that M g (S) is upper-triangular. This, by Theo-
rem 3.5, implies

g/ 1s an

Tuj = Suj € span{uy,...,u;} for all jed{l,... k}.
Extend &7 to a basis & = {uq,...,ug,v1,...,0,_} of ¥. Since
Tvj = (T — A)v; + Avj, jed{l,...,n—k},
where (T'— X )v; € %, for all j € {1,...,n — k} we have
Tvj € span{uy,...,ug,vj} Cspan{ui, ..., U, v1,...,0;j}.
By Theorem 3.5 M g (T') is upper-triangular. O

Theorem 3.7. Let ¥ be a finite dimensional vector space over F with dim ¥ =
n, and let T € L(V). Let B = {v1,...,v,} be a basis of ¥ such that
Mg(T) is upper triangular with diagonal entries aj;, j € {1,...,n}. Then
T is not injective if and only if there exists j € {1,...,n} such that a;; = 0.

12



Proof. In this proof we set
¥, = span{vy, ..., ux }, ke{l,..,n}.

Then

KCHhC...C Y (13)
and by Theorem 3.5, T7;, C 7.
We first prove the “only if” part. Assume that 7" is not injective. Con-
sider the set
K={ke{l,..,n} : TV C %}

Since T is not injective, nulT" # {0y }. Thus by the Rank-Nullity Theorem,
ranT C ¥ = ¥,. Since T, = ranT, it follows that 7%, C #;,. Therefore
n € K. Hence the set K is a nonempty set of positive integers. Hence, by
the Well-Ordering principle min K exists. Set 7 = min K.

If j = 1, then dim #; = 1, but since T#; C ¥} it must be that dim(7'%;) =
0. Thus 7% = {0y}, so Tw; = 0,. Hence Cz(Twv;) = [0 --- 0] and so
ajp =0. If 5 > 1, then j — 1 € {1,...,n} but j — 1 ¢ K. By Theorem 3.5,
TY;—1 C ¥j—1 and, since j — 1 ¢ K, T/;_1 C ¥j_1 is not true. Hence

=

TY;_1 = ¥j_1. Since j € K, we have T'/; C 7. Now we have
Vi =17 CT7; V)
Consequently,
j—1=dim¥%_; <dim(T%;) < dim¥; = j,

which implies dim(T“//j) = j — 1 and therefore T; = ¥;_1. This implies
that there exist aq,...,a;_1 € F such that

Tvj = vy + -+ + o105 1.
By the definition of MZ(T') this implies that aj; = 0.

Next we prove the “if” part. Assume that there exists j € {1,...,n} such
that Qjj = 0. Then

Tv; = ajjvr + -+ aj—1jvj-1 + 0v; € ¥j_1. (14)

By Theorem 3.5 and (13) we have

Tv, € % C ¥y  forall ie{l,...,j—1}. (15) [eg-inv-if2]
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Now (14) and (15) imply T'v; € ¥;_; for all i € {1,...,j} and consequently
TY; C ¥;—1. To complete the proof, we apply the Rank-Nullity theorem to
the restriction 7'y, of T' to the subspace 7;:

dimnul(7'|y, ) + dimran(T|y,) = j.
Since T¥; C ¥;_1 implies dim ran (T |4yj) < j—1, we conclude
dimnul (T, ) > 1.

Thus nul(T']y;) # {0y}, that is, there exists v € ¥; such that v # 0 and
Tv = T|y;v = 0. This proves that 7" is not invertible. O

co-invc| Corollary 3.8 (Theorem 5.16). Let ¥ be a finite dimensional vector space
over F with dim ¥ =n, and let T € L (V). Let % be a basis of ¥ such that
Mg(T) is upper triangular with diagonal entries aj;, j € {1,...,n}. The
following statements are equivalent.

i-inve-1 (a) T is not injective.

i-invc-2 (b) T is not invertible.

i-invc-3 (c) 0 is an eigenvalue of T

i-invc-4 (d) H?:l ai; = 0.

i-invc-5 (e) There exists j € {1,...,n} such that a;; = 0.

Proof. The equivalence (a) < (b) follows from the Rank-nullity theorem
and it has been proved earlier. The equivalence (a) < (c) is almost trivial.
The equivalence (a) < (e) was proved in Theorem 3.7 and The equivalence
(d) < (e) is should have been proved in high school. O

th-sp-di| Theorem 3.9. Let ¥ be a finite dimensional vector space over F with dim ¥ =
n, and let T € L(¥). Let B be a basis of ¥ such that MJ(T) is upper
triangular with diagonal entries a;j, j € {1,...,n}. Then

o(T) ={aj;:j€{1,...,n}}.

Proof. Notice that M7 : £ (V) — F™*" is a linear operator. Therefore

MZ(T — ) = MZ(T) — A\AMZ(I) = MZ(T) — A,.

Here I,, denotes the identity matrix in F**". As MZ(T) and MZ(I) = I,
are upper triangular, M g (T — AI) is upper triangular as well with diagonal
entries a;; — A, j € {1,...,n}.

To prove a set equality we need to prove two inclusions.
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First we prove C. Let A € o(T). Because A is an eigenvalue, T' — I
is not injective. Because 1" — AI is not injective, by Theorem 3.7 one of its
diagonal entries is zero. So there exists i € {1,...,n} such that a;; — A = 0.
Thus A = a;;. So o(T) C {a;j:j €{1,...,n}}.

Next we prove 2. Let a;; € {a;; : j € {1,...,n}} be arbitrary. Then
a;; — a;; = 0. By Theorem 3.7 and the note at the beginning of this proof
T — a1 is not injective. This implies that a;; is an eigenvalue of T'. Thus
a;; € o(T'). This completes the proof. O

Remark 3.10. Theorem 3.9 is identical to Theorem 5.18 in the textbook.
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