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Throughout this note 7 is a nontrivial finite dimensional vector space over C. We set
n = dim ¥. The symbol N denotes the set of positive integers and i, j, k,l,m,n,p,q,r € N.
For T € Z (V) by nul(T) we denote the null-space and by ran(T") the range of 7.

1 Nilpotent operators

An operator N € Z (V) is nilpotent if there exists ¢ € N such that N9 = 0. If N7 =0 and
N9=1 £ 0, then q is called the degree of nilpotency of N.

Theorem 1.1. Let ¥ be a nontrivial finite dimensional vector space over C withn = dim ¥,
Let N € Z(¥) be a nilpotent operator such that m = dimnul(N). Then there ezist vectors
Viy...,Um € Y and positive integers qi, ..., qm such that the vectors

N1y, ke{l,...,m},
form a basis of nul(N) and the vectors
N% =Ly, N% =20, ..., N?v, Nog, vg, kEe{l,...,m},
form a basis of V.

Proof. The proof is by induction on the dimension n. Since in one-dimensional vector space
each linear operator is a multiplication by a fixed scalar, the only nilpotent operator for
n = 1 is the zero operator. So the statement is trivially true for n = 1.

Let n € N be such that n > 1 and assume that the statement is true for any vector
space of dimension less than n. It is always a good idea to be specific and state what is
being assumed. Let n € N be such that n > 1. The following implication is our inductive
hypothesis:

If # is a vector space over C such that dim % < n and it M € Z(#) is a nilpotent
operator such that | = dimnul(M), then there exist wy,...,w; € # and positive integers
P1,---,p; such that the vectors

MPi~ jef{l,...,1},
form a basis of nul(M) and the vectors

ij_le,...,MZUj,ZUj, je{l,... 1},



form a basis of #'.

Next we present a proof of the inductive step.

Let ¥ be a nontrivial finite dimensional vector space over C with dim ¥ = n. Let
N € Z(7) be a nilpotent operator.

First notice that if N = 0, then nul(N) = 7" and the claim is trivially true. In this case
m = n and any basis vq,...,v, of ¥ with positive integers ¢; = --- = ¢, = 1 satisfies the
requirement of the theorem. From now on we assume that N # 0.

Set m = dimnul(/N) and # = ran(N). Since all powers of an invertible operator are
invertible and a power of N is 0, N it is not invertible. Thus m = dimnul(N) > 1. By
the famous “nullity-rank” theorem dim % < n. Since N # 0, dim # > 0. It is clear that
W is invariant under N. Set M to be the restriction of N onto #. Then M € Z(¥).
Since N is nilpotent, M is nilpotent as well. Clearly, nul(M) = nul(N) Nran(N). Set
[ = dimnul(M). The vector space # and the operator M satisfy all the assumptions of the

inductive hypothesis. This allows us to deduce that there exist wq,...,w; € # and positive
integers p1, ..., p; such that the vectors
_1 .
MPi™ w;, jed{l,... 1}, (1)

form a basis of nul(M) = nul(N) Nran(NV) and the vectors
ij_le,...,MZUj,ZUj, je{l,... 1}, (2)

form a basis of # = ran(N). Since w; € ran(N), there exist v; € ¥ such that w; = Nv;
for all j € {1,...,l}. We know from (1) that the vectors

MPhyp; = NPiy;, je{l....,l}

form a basis of nul(M) = nul(N) Nran(N). Recall that m = dimnul(N) and [ < m. Let
V41, - - -, Um be such that
NPy, oo NP vpaq, ey U, (3)

form a basis of nul(N). (It is possible that [ = m. In this case we already have a basis of
nul(N) and the last step can be skipped.)
Now let us review the stage: We started with the basis

ij_le :ijvj,...,ij :Nz?}j, W :N’Uj, j € {1,...,1},

of # = ran(N) with dimran(/N) vectors. To this basis we added the vectors vi,..., v,
where m = dimnul(NV). Now we have

m + dimran(N) = dimnul(N) + dimran(N) = dim ¥ =n (4)

vectors:
NPiv;, ij,...,szj, vj, Jjed{l,... 1}, Vlt1s .-y Ume (5)

For easier writing set
pr+1 it ke{l,...,l}

1 if ke{l+1,...,m}.
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Then (5) can be rewritten as
N% Yy, Nug, ..., N2, g, ke{l,...,m}. (6)

Next we will prove that the vectors in (6) are linearly independent. Let oy ; € C,j €
{0,...,qx — 1}, k€ {1,...,m} be such that

m qp—1

Z Z Osz'Nj’Uk = 0. (7)

k=1 j=0

Applying N to the last equality yields

I qe—2 I pr—1
E E OékJN]—i_l’Uk = E E amMjwk =0.
k=1 j=0 k=1 j=

Since the vectors in the last double sum are exactly the vectors from (2) which are linearly
independent, we conclude that

ago = =0agq-2=0 forall ke{l,... I}
Substituting these values in (7) we get
m
Z ak,f]k—quk_lvk =0.
k=1

But, beautifully, the vectors in the last sum are exactly the vectors in (3) which are linearly
independent. Thus
Qpg—1 =0 forall ke{l,... m}

This completes the proof that all the coefficients in (7) must be zero. Thus, the vectors in
(6) are linearly independent. Since by (4) there are exactly n vectors in (6) these vectors
do form a basis of ¥. This completes the proof. O

2 A Decomposition of a Vector Space

Lemma 2.1. Let ¥ be a vector space over F. Let A and B be commuting linear operators
on ¥. Then nul(B) and ran(B) are invariant subspaces for A.

Proof. This is a very simple exercise. O

Proposition 2.2. Let ¥ be a vector space over F. Let T € L(¥). If X and p are distinct
etgenvalues of T and j and k are positive integers, then

nul((T — AI)7) ﬂ nul((7 — ,uI)k) = {0y }.



Proof. The set equality in the proposition is equivalent to the implication
v e nul((T - p)¥)\ {0y} = v¢ nul((7 — AI)7).

We will prove this implication. Let v € # be such that (T — ul)*v = 0y and v # 0y. Let
i€ {l,...,k} besuch that (T — pul)'v = 0y and (T — )"~ v # 0y. Set w = (T — pl ) to.
Then w is an eigenvector of 1" corresponding to p, that is Tw = pw and w # 0. Then (as
we must have proven before), for an arbitrary polynomial p € C[z] we have p(T)w = p(u)w.
In particular

(T —AD'w = (u— N'w  forall [eN.

Since p — A # 0 and w # 0y we have that
(T — MD)'w # 0y forall [cN.

Consequently, '
(T = XDNT — pI)"'v #0y forall [eN.

Since the operators (T'— AI)! and (T — pI)*~! commute we have
(T — pu)" YT —XD)'w #0y forall [eN.

Therefore (T — A )!v # 0y for all I € N. Hence v ¢ nul((T — AI)7). This proves the
proposition. O

Corollary 2.3. Let ¥ be a finite dimensional vector space over F. Let T € L(V). If
and p are distinct eigenvalues of T and j and k are positive integers, then

nul((T — AI)?) C ran((T — ,u[)k).

Proof. Since the operators (T'— )7 and (T — pl)* commute, by Lemma 2.1, nul (7 — AI)7)
is invariant under (7' — p)*. Denote by S the restriction of (T — uI)* onto nul((T — AI)7).
Since clearly,

nul(S) = nul((T — AI)7) Nl ((T — p)*).

Proposition 2.2 implies that S is an injection, and thus bijection. Hence,
$(nul((T = A1) ) = nul((T = AD)Y)
and consequently
nul((T — M) = (T — pl)* (nul((T - )\I)j)) C ran((T — u[)k).
U
Lemma 2.4. Let ¥ be a vector space over F. Let % and W be subspaces of V' such that
V=udW.

Let S € Z(V) be such that S% C % and SW CW. If nul(S)N# = {0}, then

nul((S

2))=mul(S?)  forall jeN. (8)
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Proof. Assume nul(S) N % = {0}. We first prove the equality for j = 1. Since nul(S|y) =

nul(S) N %, the inclusion nul(S|4) C nul(S) is clear. Let v € nul(S) be arbitrary. Then

v=u+w with u € Z and w € #. Applying S to this identity we get 0 = Sv = Su + Sw.

Since Su € % and Sw € #, the assumption that the sum of % and # is direct yields

Sw = 0. Since nul(S) N # = {0}, we have w = 0. Thus, v € %, and hence v € nul(S|y ).
To prove (8) for arbitrary j € N we will first prove that

nul($7) N = {0} forall ~ jeN. 9)

A simple proof proceeds by mathematical induction. The statement in (9) is true for j = 1.
Let j € N and assume that the statement in (9) is true for j. Now assume that w € #
and S7*lw = 0. Then Sw € # and S7(Sw) = 0. By the inductive hypothesis, that is
nul(57) N # = {0} we conclude Sw = 0. Since nul(S) N % = {0}, we deduce that w = 0.
Having (9), we can apply the equality proved in the first part of the proof to the operator
S7. O

Corollary 2.5. Let ¥ be a finite dimensional vector space over F. Let % and W be
subspaces of V' such that

V=uw>dW.
Let T € Z(V) be such that T% C % and THW C W . Then
o(T)z) Vo (T|y) = o(T). (10)

Ifxea(T) and X € o(T|y), then X € o(T

@) and
nul((T]y — M) =nul((T — AXI)?)  forall  jeN. (11)

Proof. The inclusion C in (10) is clear. To prove D, let A € o(T') and let v # 0 be such that
Tv = Mv. Let v =u+ w, with u € Z and w € #'. Since v # 0 we have u # 0 or w # 0.
Applying T to both sides of v = u4w and using the fact that v is an eigenvalue corresponding
to A we get Tu + Tw = Tv = Av = Au+ Aw. Consequently, (Tu — Au) + (Tw — Aw) = 0.
Since the sum ¥ = % @ W is direct and Tu — Au € % and Tw — Aw € # we conclude
Tw— A w =0 and Tu— Au = 0. Since u # 0 or w # 0, we have \ € U(T@/) or)\GJ(T|~///).

Assume A € o(T) and A & o(T|y). Then nul(T — AI) N # = {0}. Lemma 2.4 applies
to the operator T'— AI and yields (11). Since A € o(T), nul(T — AI) # {0}. Now (11) with
j=1yields A € o(T|%). O

Theorem 2.6. Let ¥ be a finite dimensional vector space over C, n = dim ¥ and let
T e L(V). Let M\,..., g, be all the distinct eigenvalues of T. Set

#;=nul((T — N\;I)") and n;=dim¥;, je{l,... k}.
Then

(a) Each of the subspaces W1, ..., W, is invariant under T.

b) ¥ =M& &Y.

(c) Set Tj = Tly; and Nj = Tj — M1, j € {1,...,k}. Then N;Lj = 0, that is, Nj is a
nilpotent operator on 7/]



Proof. (a) Since T’ commutes with each of the operators (T — \;I)?, j € {1,...,k} Lemma 2.1
implies that each subspace #1,...,#}, is an invariant subspace of T

To prove (b) we proceed by mathematical induction on the number £ of distinct eigen-
values of T'. We first prove the base step. Assume that X is the only eigenvalue of 1. Let
#B = {v1,...,v,} be a basis of ¥ such that the matrix I\/Ig(T) is upper triangular. Then,
as we proved earlier all the diagonal entries of M%(T') equal to A. From the definition of
MZ(T) it follows that

(T — M) (span{vy,...,v;}) C (spanfur,...,v; —1}) forall je{2,...,n}.
Therefore

(T = X)"(V) = (T — XI)" 1T — M) (span{vy, ..., vn})
(T — A"t (span{vl, . ,vn_l})

N

(T — X )(T — AI)(span{vi, v2})
(T — \I) (span{vl})
= {0y }.

Thus ¥ = nul((T' — AI)™). This completes the proof of the base case.

Now we prove the inductive step. Let k € N and assume that the statement is true for
an operator with k distinct eigenvalues. Let T' be an operator with £+ 1 distinct eigenvalues
ALy -3 Ay Ag1. For convenience we set A1 = A. Then, by assumption A # A; for all
jed{l,... k}. We set

U =ran((T — XI)") and W =nul((T — AI)").

Since T and (T' — AI)"™ commute, Lemma 2.1 implies that both % and # are invariant
under 7T'.
Next we prove that

ran((T — A)") Nnul((T — AI)") = % N# = {0}. (12)

(Prove this as an exercise.)
By the Nullity-Rank theorem
V=UDW. (13)

(Provide details as an exercise.)
By Corollary 2.3

nul((T = NI)") C% forall je{l,... k}. (14)

Let m = dim % . Denote by S the restriction of 7" onto % . The inclusion in (14) implies
that Aj,..., Ax are eigenvalues of S. Similarly, (12) implies that A is not an eigenvalue of
S. Now Corollary 2.5 yields

a(S)={A1,..., A}



The second claim of Corollary 2.5 implies
nul((T'— \I)") = nul((S — A\1)").
Since n > m = dim % we have
nul((S — A\I)™) = nul((S — A D)™ ) = = nul((S — A\1)").

Therefore,
nul((T— \1)") = nul((S — M\1)™). (15)

The inductive hypothesis applies to S. Therefore
k
% =ran((T — AI)") = @ nul((S — A, D)™). (16)
j=1

Now (16), (15), and (13) yield

k+1

¥ =@ uul((T - N1)").

J=1

Now we prove (c). Lemma 2.1 implies that #; is an invariant subspace of T — ;1.
Denote by N; the restriction of T'— ;I to its invariant subspace #; and by T the restriction
of T to #;. Then, T; = A\;I + N; and the operator N; is nilpotent. O

Definition 2.7. Let k € {1,...,n} be such that Ay,...,\; are all the distinct eigenvalues
of T'. Set
n; = dimnul((T' — X;)"), jed{l,... k}.

The number n; is called the algebraic multiplicity of the eigenvalue A;. The polynomial
p(z) = (z — )\1)”1 . (z — /\k)nk (17)

is called the characteristic polynomial of T.

3 The Jordan Normal Form

Let T be an operator on a vector space ¥ over C. Let A be an eigenvalue of T" and let v be
such that (T — A )'v = 04 and (T — AI)'~'v # 0y. Then the system of vectors

(T — M), (T = XI)'2v,... (T — X)v, v, (18)

is called a Jordan chain of T' corresponding to the eigenvalue A. The vectors in (18) are
called generalized eigenvectors (or root vectors) corresponding to the eigenvalue A.
Let # be a subspace of ¥ generated by a Jordan chain

vj = (T =A)'Tv,  je{l,... 1},



of T. Note that the vector v; = (T — AI)!~'v is an eigenvector of T' corresponding to the
eigenvalue A. Therefore Tv; = Avi. We also have

T’L)J:(T—)\I)’L)J—I—AU]:U]_l‘i‘)\U], ]G{Lvl}

It follows that # is an invariant subspace of T'. If we denote by A the restriction of T" to

W, then the matrix representation of A with respect to the basis {v1,...,v;} is
A 1.0 -+ 0 0]
oOox1 -+ 00
. . . P . . 19
0o oo -~ 10 (19)
o000 - X1
000 - 0 X

A matrix of this form is called a Jordan block corresponding to the eigenvalue A. In words:
a Jordan block corresponding to the eigenvalue A is a square matrix with all elements on
the main diagonal equal to A and all elements on the superdiagonal equal to 1.

A basis for ¥ which consists of Jordan chains of T is called a Jordan basis for ¥ with
respect to T'.

If a basis # for ¥ is a Jordan basis with respect to 7' then the matrix M%(T') has
Jordan blocks of different sizes on the diagonal and all other elements of M%(T') are zeros.
Each eigenvalue of T is represented in Mg(T ) by one or more Jordan blocks;

i A1 0 o o0 --- 0 i
0 AN - 0 o 0 - 0
0 0 1 0 0 0
0 0 A1 0 0 0
0 0 0 A2 1 0
0 0 0 0 0 1
0 0 0 0 0 A2

In the above matrix A; and Ay are not necessarily distinct eigenvalues. A matrix of the form
(20) is called the Jordan normal form for T. More precisely, a square matrix M = [aj,k] is
a Jordan normal form for T if:

(i) all elements of M outside of the main diagonal and the superdiagonal are 0,



(ii) all elements on the main diagonal of M are eigenvalues of T,
(iii) all elements on the superdiagonal of M are either 1 or 0, and,
(iV) if Aj—1,5—1 #* ajj, with j € {2, . ,n}, then a;_1 ; = 0.

Theorem 3.1. Let ¥V be a vector space over C and let T be a linear operator on V. Then
¥V has a Jordan basis with respect to T'.

Proof. We use the notation and the results of Theorem 2.6. Let j € {1,...,k}. It is
important to notice that each Jordan chain of the nilpotent operator NN; is a Jordan chain
of T which corresponds to the eigenvalue A;. Since N; is a nilpotent operator in 2 (%),
by Theorem 1.1 there exists a basis %; = {vj1,...,vjn,;} for #; which consists of Jordan
chains of ;. Consequently, %; consists of Jordan chains of 7". Since 7" is a direct sum of
W,..., W, the union & = % U --- U Py, that is,

B = {’Ul,ly"' yUlng V2155020953 Vk 1y -- 7’Uk,nk}

is a basis for #". This basis consists of Jordan chains of T B
The matrix M%(T') is a block diagonal with the blocks I\/I;; (Tj), j € {1,...,k}, on the
diagonal and with zeros every where else:

MZ (T1) Jo 0
ME(T) — 0 M7 (Ty) - 0
0 0 o MZE(TR)

Since T; = A\jI + N;, we have

Mgz, (T}) = Ajl + Mg, (N;).

Thus all the elements on the main diagonal of ng (Tj) equal A; and all the elements of
superdiagonal of ng (Tj) are either 1 or 0. If there are exactly m; Jordan chains in the

basis %;, then 0 appears exactly m; — 1 times on the superdiagonal of M‘Zj (Tj). Therefore
Mg(T) is a Jordan normal form for 7T'. O



