
LINEAR OPERATORS

BRANKO ĆURGUS

Throughout this note V is a vector space over a scalar field F. N denotes
the set of positive integers and i, j, k, l,m, n, p ∈ N.

1. Functions

First we review formal definitions related to functions. In this section A

and B are nonempty sets.
The formal definition of function identifies a function and its graph. A

justification for this is the fact that if you know the graph of a function, then
you know the function, and conversely, if you know a function you know its
graph. Simply stated the definition below says that a function from a set A
to a set B is a subset f of the Cartesian product A×B such that for each
x ∈ A there exists unique y ∈ B such that (x, y) ∈ F .

A function from A into B is a subset f of the Cartesian product A×B

such that

(a) ∀x ∈ A ∃ y ∈ B (x, y) ∈ f ,
(b) ∀x ∈ A ∀ y ∈ B ∀ z ∈ B (x, y) ∈ f ∧ (x, z) ∈ f ⇒ y = z.

If f is a function, the relationship (x, y) ∈ f is commonly written as
y = f(x). The symbol f : A → B denotes a function from A to B.

The set A is the domain of f : A → B. The set B is the codomain of
f : A → B. The set

{

y ∈ B : ∃x ∈ A y = f(x)
}

is called the range of f : A → B. It is denoted by ran f .
A function f : A → B is a surjection if for every y ∈ B there exists x ∈ A

such that y = f(x).
A function f : A → B is an injection if for every x1, x2 ∈ A the following

implication holds: x1 6= x2 implies f(x1) 6= f(x2).
A function f : A → B is a bijection if it is both: a surjection and an

injection.
Next we give a formal definition of a composition of two functions. How-

ever, before giving a definition we need to prove a proposition.

Proposition 1.1. Let f : A → B and g : C → D be functions. If ran f ⊆ C,

then
{

(x, z) ∈ A×D : ∃ y ∈ B (x, y) ∈ f ∧ (y, z) ∈ g
}

(1.1) eq-comp

is a function from A to D.
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Proof. A proof is a nice exercise. �

The function defined by (1.1) is called the composition of functions f and
g. It is denoted by f ◦ g.

The function
{

(x, x) ∈ A×A : x ∈ A
}

is called the identity function on A. It is denoted by idA. In the standard
notation idA is the function idA : A → A such that idA(x) = x for all x ∈ A.

A function f : A → B is invertible if there exist functions g : B → A and
h : B → A such that f ◦ g = idB and h ◦ f = idA.

th-inv Theorem 1.2. Let f : A → B be a function. The following statements are

equivalent.

(a) The function f is invertible.

(b) The function f is a bijection.

th-inv-c (c) There exists a unique function g : B → A such that f ◦ g = idB and

g ◦ f = idA.

If f is invertible, then the unique g whose existence is proved in Theo-
rem 1.2 (c) is called the inverse of f ; it is denoted by f−1.

Let f : A → B be a function. It is common to extend the notation f(x)
for x ∈ A to subsets of A. For X ⊆ A we introduce the notation

f(X) =
{

y ∈ B : ∃x ∈ X y = f(x)
}

.

With this notation, the range of f is simply the set f(A). It is also common
to extend this notation to describe “inverse” image of a subset in B. For
Y ⊆ B we introduce the notation

f−1(Y ) =
{

x ∈ A : f(x) ∈ Y
}

.

Notice that this notation is used for arbitrary function f . It does not imply
that f is invertible. Here f−1 is just a notational device.

Below are few exercises about functions from my Math 312 notes.

Exercise 1.3. Let A, B and C be nonempty sets. Let f : A → B and
g : B → C be injections. Prove that g ◦ f : A → C is an injection.

Exercise 1.4. Let A, B and C be nonempty sets. Let f : A → B and
g : B → C be surjections. Prove that g ◦ f : A → C is a surjection.

exefgb Exercise 1.5. Let A, B and C be nonempty sets. Let f : A → B and
g : B → C be bijections. Prove that g ◦ f : A → C is a bijection. Prove that
(g ◦ f)−1 = f−1 ◦ g−1.

Exercise 1.6. Let A, B and C be nonempty sets. Let f : A → B, g : B →
C. Prove that if g ◦ f is an injection, then f is an injection.

Exercise 1.7. Let A, B and C be nonempty sets and let f : A → B,
g : B → C. Prove that if g ◦ f is a surjection, then g is a surjection.
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Exercise 1.8. Let A, B and C be nonempty sets and let f : A → B,
g : B → C and h : C → A be three functions. Prove that if any two of
the functions h ◦ g ◦ f , g ◦ f ◦ h, f ◦ h ◦ g are injections and the third is a
surjection, or if any two of them are surjections and the third is an injection,
then f, g, and h are bijections.

2. Linear operators

In this section U , V and W are vector spaces over a scalar field F.

2.1. The definition and the vector space of all linear operators. A
function T : V → W is said to be a linear operator if it satisfies the following
conditions:

∀u ∈ V ∀ v ∈ V T (u+ v) = T (u) + f(v), (2.1) eq-add

∀α ∈ F ∀ v ∈ V T (αv) = αT (v). (2.2) eq-hom

The property (2.1) is called additivity, while the property (2.2) is called
homogeneity. Together additivity and homogeneity are called linearity.

Denote by L (V ,W ) the set of all linear operators from V to W . Define
the addition and scaling in L (V ,W ). For S, T ∈ L (V ,W ) and α ∈ F we
define

(S + T )(v) = S(v) + T (v), ∀ v ∈ V , (2.3) eq-po+

(αT )(v) = αT (v), ∀ v ∈ V . (2.4) eq-po-s

Notice that two plus signs which appear in (2.3) have different meanings.
The plus sign on the left-hand side stands for the addition of linear operators
that is just being defined, while the plus sign on the right-hand side stands
for the addition in W . Notice the analogous difference in empty spaces
between α and T in (2.4). Define the zero mapping in L (V ,W ) to be

0L (V ,W )(v) = 0W , ∀ v ∈ V .

For T ∈ L (V ,W ) we define its opposite operator by

(−T )(v) = −T (v), ∀ v ∈ V .

Proposition 2.1. The set L (V ,W ) with the operations defined in (2.3),
and (2.4) is a vector space over F.

For T ∈ L (V ,W ) and v ∈ V it is customary to write Tv instead of T (v).

Example 2.2. Assume that a vector space V is a direct sum of its subspaces
U and W , that is V = U ⊕ W . Define the function P : V → V by

Pv = w ⇔ v = u+ w, u ∈ U , w ∈ W .

Then P is a linear operator. It is called the projection of V onto W parallel
to U ; it is denoted by PW ‖U .
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The definition of the linearity of a function between vector spaces is ex-
pressed in the standard functional notation. The next proposition states
that a function between vector spaces is linear if and only if its graph is
a subspace of the direct product of the domain and the codomain of that
function.

pr-lfsub Proposition 2.3. Let V and W be vector spaces over a scalar field F. Let

f : V → W be a function and denote by F the graph of f ; that is let

F =
{(

v,w
)

∈ V ×W : v ∈ V and w = f(v)
}

⊆ V ×W .

The function f is linear if and only if the set F is a subspace of the vector

space V ×W .

pr-imsub Proposition 2.4. Let V and W be vector spaces over a scalar field F. Let

T ∈ L (V , cW ), let G be a subspace of V and let H be a subspace of W .

Then

T (G ) =
{

w ∈ W : ∃v ∈ G such that w = Tv
}

is a subspace of W and

T−1(H ) =
{

v ∈ V : Tv ∈ H
}

is a subspace of V .

2.2. Composition, inverse, isomorphism. In the next two propositions
we prove that the linearity is preserved under composition of linear operators
and under taking the inverse of a linear operator.

Proposition 2.5. Let S : U → V and T : V → W be linear operators.

The composition T ◦ S : U → W is a linear operator.

Proof. Prove this as an exercise. �

When composing linear operators it is customary to write simply TS

instead of T ◦ S.
The identity function on V is denoted by IV . It is defined by IV (v) = v

for all v ∈ V . It is clearly a linear operator.

pr-inv-l Proposition 2.6. Let T : V → W be a linear operator which is invertible.

Then the inverse T−1 : W → V of T is a linear operator.

Proof. Since T is invertible, by Theorem 1.2 there exists a function S : W →
V such that ST = IV and TS = IW . Since T is linear and TS = IW we
have

T
(

αSx+ βSy
)

= αT (Sx) + βT (Sy) = α(TS)x+ β(TS)y = αx+ βy

for all α, β ∈ F and all x, y ∈ W . Applying S to both sides of

T
(

αSx+ βSy
)

= αx+ βy

we get

(ST )
(

αSx+ βSy
)

= S
(

αx+ βy
)

∀α, β ∈ F ∀x, x ∈ W .
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Since ST = IV , we get

αSx+ βSy = S
(

αx+ βy
)

∀α, β ∈ F ∀x, y ∈ W ,

thus proving the linearity of S. Since by definition S = T−1 the proposition
is proved. �

A linear operator T : V → W which is a bijection is called an isomorphism

between vector spaces V and W .
By Theorem 1.2 and Proposition 2.6 each isomorphism is invertible and

its inverse is also an isomorphism.
In the next theorem we introduce the most important isomorphism be-

tween a finite-dimensional space V and a space F
n where n = dimV .

th-cor Theorem 2.7. Let V be a finite dimensional vector space over F , let n =
dimV and let B = {b1, . . . , bn} be a basis for V . The subset CB of V ×(Fn)
defined by

CB :=
{

(v,a) ∈ V ×(Fn) : a = [α1, . . . , αn]
⊤ and v = α1b1 + · · ·+ αnbn

}

is an isomorphism between V and F
n.

Proof. To prove that CB is a bijection we need to prove the following four
statements:

Fun 1: ∀v ∈ V ∃ a ∈ F
n such that (v,a) ∈ CB

Fun 2: (v,a), (v,a′) ∈ CB implies a = a′

Inj: (v,a), (v′,a) ∈ CB implies v = v′

Sur: ∀ a ∈ F
n ∃ v ∈ V such that (v,a) ∈ CB.

A blueprint of the proof is as follows:

(1) V = spanB implies Fun 1;
(2) B is linearly independent implies Fun 2;
(3) AE and SE imply Inj;

(This implication is a consequence of the Fun 2 property of the ad-
dition function and the scaling function.)

(4) AE and SE imply Sur.
(This implication is a consequence of the Fun 1 property of the ad-
dition function and the scaling function.)

To prove that the bijection CB is linear we need to prove that CB is a
subspace of V ×W . �

In the last part of the proof of Proposition ?? we showed that the formula
for the inverse (CB)−1 : Fn → V of CB is given by

(CB)−1







α1
...
αn






=

n
∑

j=1

αjvj ,







α1
...
αn






∈ F

n. (2.5) eq-CB-i

Notice that (2.5) defines a function from F
n to V even if B is not a basis

of V .
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exa-LBC Example 2.8. Inspired by the definition of CB and (2.5) we define a general
operator of this kind. Let V and W be vector spaces over F. Let V be finite
dimensional, n = dimV and let B be a basis for V . Let C = (w1, . . . , wn)
be any n-tuple of vectors in W . The entries of an n-tuple can be repeated,
they can all be equal, for example to 0V . We define the linear operator
LB

C
: V → W by

LB
C (v) =

n
∑

j=1

αjwj where







α1
...
αn






= CB(v). (2.6) eq-rCA

In fact, LB
C

: V → W is a composition of CB : V → F
n and the operator

F
n → W defined by







ξ1
...
ξn






7→

n
∑

j=1

ξjwj for arbitrary







ξ1
...
ξn






∈ F

n. (2.7) eq-rC

It is easy to verify that (2.7) defines a linear operator.
Denote by E the standard basis of Fn, that is the basis which consists of

the columns of the identity matrix. Then CB = LB
E

and (CB)−1 = LE
B
.

Exercise 2.9. Let V and W be vector spaces over F. Let V be finite
dimensional, n = dimV and let B be a basis for V . Let C = (w1, . . . , wn)
be a list of vectors in W with n entries.

(a) Characterize the injectivity of LB
C

: V → W .

(b) Characterize the surjectivity of LB
C

: V → W .

(c) Characterize the bijectivity of LB
C

: V → W .

(d) If LB
C

: V → W is an isomorphism, find a simple formula for (LB
C
)−1.

2.3. The nullity-rank theorem. Let T : V → W is be a linear operator.
The linearity of T implies that the set

nulT =
{

v ∈ V : Tv = 0W

}

is a subspace of V . This subspace is called the null space of T . Similarly,
the linearity of T implies that the range of T is a subspace of W . Recall
that

ranT =
{

w ∈ W : ∃ v ∈ V w = Tv
}

.

Proposition 2.10. A linear operator T : V → W is an injection if and

only if nulT = {0V }.

Proof. We first prove the “if” part of the proposition. Assume that nulT =
{0V }. Let u, v ∈ V be arbitrary and assume that Tu = Tv. Since T is linear,
Tu = Tv implies T (u−v) = 0W . Consequently u−v ∈ nulT = {0V }. Hence,
u− v = 0V , that is u = v. This proves that T is an injection.

To prove the “only if” part assume that T : V → W is an injection.
Let v ∈ nulT be arbitrary. Then Tv = 0W = T0V . Since T is injective,
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Tv = T0V implies v = 0V . Thus we have proved that nulT ⊆ {0V }. Since
the converse inclusion is trivial, we have nulT = {0V }. �

Theorem 2.11 (Nullity-Rank Theorem). Let V and W be vector spaces

over a scalar field F and let T : V → W be a linear operator. If V is finite

dimensional, then nulT and ranT are finite dimensional and

dim(nulT ) + dim(ranT ) = dimV . (2.8) eq-rnt

Proof. Assume that V is finite dimensional. We proved earlier that for an
arbitrary subspace U of V there exists a subspace X of V such that

U ⊕ X = V and dimU + dimX = dimV .

Thus, there exists a subspace X of V such that

(nulT )⊕ X = V and dim(nulT ) + dimX = dimV . (2.9) eq-st1-rnt

Since dim(nulT ) + dimX = dimV , to prove the theorem we only need
to prove that dimX = dim(ranT ). To this end, let m = dimX and let
x1, . . . , xm be a basis for X . We will prove that vectors Tx1, . . . , Txm form
a basis for ranT . We first prove

span
{

Tx1, . . . , Txm
}

= ranT. (2.10) eq-span-rnt

Clearly
{

Tx1, . . . , Txm
}

⊆ ranT . Consequently, since ranT is a subspace of

W , we have span
{

Tx1, . . . , Txm
}

⊆ ranT . To prove the converse inclusion,
let w ∈ ranT be arbitrary. Then, there exists v ∈ V such that Tv = w.
Since V = (nulT )+X , there exist u ∈ nulT and x ∈ X such that v = u+x.
Then Tv = T (u+x) = Tu+Tx = Tx. As x ∈ X , there exist ξ1, . . . , ξm ∈ F

such that x =
∑m

j=1 ξjxj. Now we use linearity of T to deduce

w = Tv = Tx =
m
∑

j=1

ξjTxj.

This proves that w ∈ span
{

Tx1, . . . , Txm
}

. Since w was arbitrary in ranT
this completes a proof of (2.10).

Next we prove that the vectors Tx1, . . . , Txm are linearly independent.
Let α1, . . . , αm ∈ F be arbitrary and assume that

α1Tx1 + · · ·+ αmTxm = 0W . (2.11) eq-li-rnt

Since T is linear (2.11) implies that

α1x1 + · · ·+ αmxm ∈ nulT. (2.12) eq-li2-rnt

Recall that x1, . . . , xm ∈ cX and X is a subspace of V , so

α1x1 + · · ·+ αmxm ∈ X . (2.13) eq-li3-rnt

Now (2.12), (2.13) and the fact that (nulT ) ∩ X = {0V } imply

α1x1 + · · ·+ αmxm = 0V . (2.14) eq-li4-rnt

Since x1, . . . , xm are linearly independent (2.14) yields α1 = · · · = αm = 0.
This completes a proof of the linear independence of Tx1, . . . , Txm.
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Thus
{

Tx1, . . . , Txm
}

is a basis for ranT . Consequently dim(ranT ) = m.
Since m = dimX , (2.9) implies (2.8). This completes the proof. �

A direct proof of the Nullity-Rank Theorem is as follows:

Proof. Since nulT is a subspace of V it is finite dimensional. Set k =
dim

(

nulT
)

and let C =
{

u1, . . . , uk
}

be a basis for nulT .
Since V is finite dimensional there exists a finite set F ⊂ V such that

span(F ) = V . Then the set TF is a finite subset of W and ranT =
span

(

TF
)

. Thus ranT is finite dimensional. Let dim
(

ranT
)

= m and let

E =
{

w1, . . . , wm

}

be a basis of ranT .

Since clearly for every j ∈
{

1, . . . ,m
}

, wj ∈ ranT , we have that for

every j ∈
{

1, . . . ,m
}

there exists vj ∈ V such that Tvj = wj. Set D =
{

v1, . . . , vm
}

.
Further set B = C ∪ D .
We will prove the following three facts:

(I) C ∩ D = ∅,
(II) spanB = V ,
(III) B is a linearly independent set.

To prove (I), notice that the vectors in E are nonzero, since E is linearly
independent. Therefore, for every v ∈ D we have that Tv 6= 0W . Since for
every u ∈ C we have Tu = 0W we conclude that u ∈ C implies u 6∈ D . This
proves (I).

To prove (II), first notice that by the definition of B ⊂ V . Since V is a
vector space, we have spanB ⊆ V .

To prove the converse inclusion, let v ∈ V be arbitrary. Then Tv ∈ ranT .
Since E spans ranT , there exist β1, . . . , βm ∈ F such that

Tv =
m
∑

j=1

βjwj .

Set

v′ =

m
∑

j=1

βjvj .

Then, by linearity of T we have

Tv′ =

m
∑

j=1

βjTvj =

m
∑

j=1

βjwj = Tv.

The last equality yields and the linearity of T yield T (v− v′) = 0W . Conse-
quently, v− v′ ∈ nulT . Since C spans nulT , there exist α1, . . . , αk ∈ F such
that

v − v′ =

k
∑

j=1

αiui.
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Consequently,

v = v′ +

k
∑

j=1

αiui =

k
∑

j=1

αiui +

m
∑

j=1

βjvj.

This proves that for arbitrary v ∈ V we have v ∈ spanB. Thus V ⊆ spanB

and (II) is proved.
To prove (III) let α1, . . . , αk ∈ F and β1, . . . , βm ∈ F be arbitrary and

assume that
k

∑

j=1

αiui +
m
∑

j=1

βjvj = 0V . (2.15) eq-assu-4-l-i

Applying T to both sides of the last equality, and using the fact that ui ∈
nulT and the definition of vj we get

m
∑

j=1

βjwj = 0W .

Since E is a linearly independent set the last equality implies that βj = 0
for all j ∈ {1, . . . ,m}. Now substitute these equalities in (2.15) to get

k
∑

j=1

αiui = 0V .

Since C is a linearly independent set the last equality implies that αi = 0
for all i ∈ {1, . . . , k}. This proves the linear independence of B.

It follows from (II) and (III) that B is a basis for V . By (I) we have that
|B| = |C |+ |D | = k +m. This completes the proof of the theorem. �

The nonnegative integer dim(nulT ) is called the nullity of T ; the nonneg-
ative integer dim(ranT ) is called the rank of T .

The nullity-rank theorem in English reads: If a linear operator is defined
on a finite dimensional vector space, then its nullity and its rank are finite
and they add up to the dimension of the domain.

Proposition 2.12. Let V and W be vector spaces over F. Assume that V

is finite dimensional. The following statements are equivalent

(a) There exists a surjection T ∈ L (V ,W ).
(b) W is finite dimensional and dimV ≥ dimW .

Proposition 2.13. Let V and W be vector spaces over F. Assume that V

is finite dimensional. The following statements are equivalent

(a) There exists an injection T ∈ L (V ,W ).
(b) Either W is infinite dimensional or dimV ≤ dimW .

Proposition 2.14. Let V and W be vector spaces over F. Assume that V

is finite dimensional. The following statements are equivalent

(a) There exists an isomorphism T : V → W .

(b) W is finite dimensional and dimW = dimV .
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2.4. Isomorphism between L (V ,W ) and F
n×m. Let V and W be fi-

nite dimensional vector spaces over F, m = dimV , n = dimW , let B =
{v1, . . . , vn} be a basis for V and let C = {w1, . . . , wn} be a basis for W . The
mapping CB provides an isomorphism between V and F

m and CC provides
an isomorphism between W and F

n.
Recall that the simplest way to define a linear operator from F

m to F
n

is to use an n×m matrix B. It is convenient to consider an n×m matrix
to be an m-tuple of its columns, which are vectors in F

n. For example, let
b1, . . . ,bm ∈ F

n be columns of an n×m matrix B. Then we write

B =
[

b1 · · · bm

]

.

This notation is convenient since it allows us to write a multiplication of a
vector x ∈ F

m by a matrix B as

Bx =
m
∑

j=1

ξjbj where x =







ξ1
...
ξn






. (2.16) eq-defBx

Notice the similarity of the definition in (2.16) to the definition (2.6) of
the operator LB

C
in Example 2.8. Taking B to be the standard basis of Fm

and taking C to me the m-tuple given by B, we have LB
C
(x) = Bx.

Let T : V → W be a linear operator. Our next goal is to connect T in a
natural way to a certain n×m matrix B. That “natural way” is suggested
by following diagram:

V W

F
m

F
n

T

CB CC

B

We seek an n×m matrix B such that the action of T between V and W is
in some sense replicated by the action of B between F

m and F
n. Precisely,

we seek B such that

CC (Tv) = B(CB(v)) ∀ v ∈ V . (2.17) eq-cdB

In English: multiplying the vector of coordinates of v by B we get exactly
the coordinates of Tv.

Using the basis vectors v1, . . . , vn ∈ B in (2.17) we see that the matrix

B =
[

CC (Tv1) · · · CC (Tvm)
]

(2.18) eq-defB

has the desired property (2.17).
For an arbitrary T ∈ L (V ,W ) the formula (2.18) associates the matrix

B ∈ F
n×m with T . In other words (2.18) defines a function from L (V ,W )

to F
n×m.
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th-MatR Theorem 2.15. Let V and W be finite dimensional vector spaces over F,

m = dimV , n = dimW , let B = {v1, . . . , vm} be a basis for V and let

C = {w1, . . . , wn} be a basis for W . The function

MB
C : L (V ,W ) → F

n×m

defined by

MB
C (T ) =

[

CC (Tv1) · · · CC (Tvm)
]

, T ∈ L (V ,W ) (2.19) eq-defM

is an isomorphism.

Proof. It is easy to verify that MB
C

is a linear operator.

Since the definition of MB
C
(T ) coincides with (2.18), equality (2.17) yields

CC (Tv) =
(

MB
C (T )

)

CB(v). (2.20) eq-cdMBC

The most direct way to prove that MB
C

is an isomorphism is to construct
its inverse. The inverse is suggested by the diagram (2.21).

V W

F
m

F
n

T

CB

B

(CC )−1 (2.21) cd-rT

Define

NB
C : Fn×m → L (V ,W )

by
(

NB
C (B)

)

(v) = (CC )
−1

(

B(CB(v))
)

, B ∈ F
n×m. (2.22) eq-defN

Next we prove that

NB
C ◦MB

C = IL (V ,W ) and MB
C ◦NB

C = IFn×m .

First for arbitrary T ∈ L (V ,W ) and arbitrary v ∈ V we calculate
(

(

NB
C ◦MB

C

)

(T )
)

(v) = (CC )
−1

((

MB
C (T )

)

(CB(v))
)

by (2.22)

= (CC )
−1

(

CC (Tv)
)

by (2.20)

= Tv.

Thus
(

NB
C

◦ MB
C

)

(T ) = T and thus, since T ∈ L (V ,W ) was arbitrary,

NB
C

◦MB
C

= IL (V ,W ).

Let now B ∈ F
n×m be arbitrary and calculate

(

MB
C ◦NB

C

)

(B) = MB
C

(

NB
C (B)

)

=
[

CC

((

NB
C (B)

)

(v1)
)

· · · CC

((

NB
C (B)

)

(vm)
)

]

by (2.19)

=
[

B(CB(v1)) · · · B(CB(vm))
]

by (2.22)
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= B
[

CB(v1) · · · CB(vm)
]

matrix mult.

= B Im def. of CB

= B.

Thus
(

MB
C
◦NB

C

)

(B) = B for all B ∈ F
n×m, proving thatMB

C
◦NB

C
= IFn×m .

This completes the proof that MB
C

is a bijection. Since it is linear, MB
C

is an isomorphism. �

th-MTS Theorem 2.16. Let U , V and W be finite dimensional vector spaces over

F, k = dimU , m = dimV , n = dimW , let A be a basis for U , let B

be a basis for V , and let C be a basis for W . Let S ∈ L (U ,V ) and

T ∈ L (V ,W ). Let MA
B
(S) ∈ F

m×k, MB
C
(T ) ∈ F

n×m and MA
C
(TS) ∈ F

n×k

be as defined in Theorem 2.15. Then

MA
C (TS) = MB

C (T )MA
B (S).

Proof. Let A = {u, . . . , uk} and calculate

MA
C (TS) =

[

CC

(

TSu1
)

· · · CC

(

TSuk
)

]

by (2.19)

=
[

MB
C (T )

(

CB(Su1)
)

· · · MB
C (T )

(

CB(Suk)
)

]

by (2.20)

= MB
C (T )

[

CB(Su1) · · · CB(Suk)
]

matrix mult.

= MB
C (T )MA

B (S). by (2.19)

�

The following diagram illustrates the content of Theorem 2.16.

V

U W

F
m

F
k

F
n

T

CB

S

TS

CA CC

MB

C
(T )

MA

B
(S)

MA

C
(TS)=MB

C
(T )MA

B
(S)

3. Problems

Problem 3.1. Let V and W be vector spaces over a scalar field F. Let S

be a subspace of the direct product vector space V ×W , let G be a subspace
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of V and let H be a subspace of W . Then

S (G ) =
{

w ∈ W : ∃v ∈ G such that (v,w) ∈ S
}

is a subspace of W and

S
−1(H ) =

{

v ∈ V : ∃w ∈ H such that (v,w) ∈ S
}

is a subspace of V .

Problem 3.2. Let V and W be finite-dimensional vector spaces over a
scalar field F. Let S be a subspace of the direct product vector space
V ×W . The following four sets are subspaces

domS =
{

v ∈ V : ∃w ∈ W such that (v,w) ∈ S
}

,

ranS =
{

w ∈ W : ∃ v ∈ V such that (v,w) ∈ S
}

,

nulS =
{

v ∈ V : (v, 0W ) ∈ S
}

,

mulS =
{

w ∈ W : (0V , w) ∈ S
}

.

and the following equality holds:

dimdomS + dimmulS = dim ranS + dimnulS .

Hint: The following equivalence holds. For all v ∈ V and all w ∈ W we
have:

(v,w) ∈ S ⇔ (v + x,w + y) ∈ S ∀x ∈ nulS and ∀y ∈ mulS .

pb-rev Problem 3.3. Let V and W be finite-dimensional vector spaces over a
scalar field F and recall that V ×W and W ×V are the direct product vector
spaces. Prove that the function

R : V ×W → W ×V

defined by
R(v,w) = (w, v) for all (v,w) ∈ V ×W

is an isomorphism.

Problem 3.4. Let V and W be finite-dimensional vector spaces over a
scalar field F and recall that V ×W and W ×V are the direct product vector
spaces. Let T be a subset of V ×W . Then T is an isomorphism between
V and W if and only if the set

{

(w, v) ∈ W ×V : (v,w) ∈ T
}

= RT

is an isomorphism between W and V . (Use Problem 3.3 and Propositions 2.3
and 2.4 to prove this equivalence.)


