LINEAR OPERATORS

BRANKO CURGUS

Throughout this note ¥ is a vector space over a scalar field F. N denotes
the set of positive integers and i, j, k, [, m,n,p € N.

1. FUNCTIONS

First we review formal definitions related to functions. In this section A
and B are nonempty sets.

The formal definition of function identifies a function and its graph. A
justification for this is the fact that if you know the graph of a function, then
you know the function, and conversely, if you know a function you know its
graph. Simply stated the definition below says that a function from a set A
to a set B is a subset f of the Cartesian product A x B such that for each
x € A there exists unique y € B such that (z,y) € F.

A function from A into B is a subset f of the Cartesian product Ax B
such that

(a) Vee A 3ye B (z,y) € f,
(b) Ve AVye BVzeB (r,y) € fA(x,2)ef = y==z.

If f is a function, the relationship (z,y) € f is commonly written as
y = f(x). The symbol f: A — B denotes a function from A to B.

The set A is the domain of f : A — B. The set B is the codomain of
f:A— B. The set

{yeB:Jzc A y=f(x)}

is called the range of f: A — B. It is denoted by ran f.

A function f : A — B is a surjection if for every y € B there exists x € A
such that y = f(x).

A function f: A — B is an injection if for every x1,x9 € A the following
implication holds: z1 # xo implies f(z1) # f(z2).

A function f : A — B is a bijection if it is both: a surjection and an
injection.

Next we give a formal definition of a composition of two functions. How-
ever, before giving a definition we need to prove a proposition.

Proposition 1.1. Let f : A — B and g : C — D be functions. Ifran f C C,
then
{(z,2) e AxD:3y e B (z,y) € fA(y,2) € g} (1.1)

is a function from A to D.
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Proof. A proof is a nice exercise. O

The function defined by (1.1) is called the composition of functions f and
g. It is denoted by f o g.
The function

{(z,z) € AxA:z € A}

is called the identity function on A. It is denoted by id4. In the standard
notation id 4 is the function id4 : A — A such that id4(z) = x for all z € A.

A function f: A — B is invertible if there exist functions g : B — A and
h: B — Asuch that fog=idp and ho f =id4.

Theorem 1.2. Let f: A — B be a function. The following statements are
equivalent.

(a) The function f is invertible.

(b) The function f is a bijection.

(¢) There exists a unique function g : B — A such that fog=idp and

go f=ida.
If f is invertible, then the unique g whose existence is proved in Theo-

rem 1.2 (c) is called the inverse of f; it is denoted by f~1.

Let f: A — B be a function. It is common to extend the notation f(z)
for x € A to subsets of A. For X C A we introduce the notation

f(X)={yeB:3zeXy=f(x)}.

With this notation, the range of f is simply the set f(A). It is also common
to extend this notation to describe “inverse” image of a subset in B. For
Y C B we introduce the notation

) ={zed: fa) eV}

Notice that this notation is used for arbitrary function f. It does not imply
that f is invertible. Here f~! is just a notational device.
Below are few exercises about functions from my Math 312 notes.

Exercise 1.3. Let A, B and C be nonempty sets. Let f : A — B and
g : B — C be injections. Prove that go f : A — (' is an injection.

Exercise 1.4. Let A, B and C be nonempty sets. Let f : A — B and
g : B — C be surjections. Prove that go f : A — C'is a surjection.

Exercise 1.5. Let A, B and C be nonempty sets. Let f : A — B and
g : B — C be bijections. Prove that go f : A — C is a bijection. Prove that

(gof)™t=f"tog™"
Exercise 1.6. Let A, B and C be nonempty sets. Let f: A— B, g: B —
C. Prove that if g o f is an injection, then f is an injection.

Exercise 1.7. Let A, B and C be nonempty sets and let f : A — B,
g: B — C. Prove that if g o f is a surjection, then ¢ is a surjection.



Exercise 1.8. Let A, B and C be nonempty sets and let f : A — B,
g: B — C and h : C — A be three functions. Prove that if any two of
the functions hogo f, go foh, f o hog are injections and the third is a
surjection, or if any two of them are surjections and the third is an injection,
then f, g, and h are bijections.

2. LINEAR OPERATORS

In this section %, ¥ and # are vector spaces over a scalar field F.

2.1. The definition and the vector space of all linear operators. A
function T': ¥ — # is said to be a linear operator if it satisfies the following
conditions:

Vue? YveV T(u+v)=T(u)+ f(v), (2.1)

VaelF VYve? T(aw) = aT(v). (2.2)

The property (2.1) is called additivity, while the property (2.2) is called
homogeneity. Together additivity and homogeneity are called linearity.

Denote by Z(¥,#') the set of all linear operators from ¥ to # . Define

the addition and scaling in Z(¥,#). For S,T € L (¥, %) and o € F we

define

(S+T)(v)=Sw)+T(v), Voe?, (2.3)

(o) (v) = aT(v), Yoe?. (2.4)

Notice that two plus signs which appear in (2.3) have different meanings.

The plus sign on the left-hand side stands for the addition of linear operators

that is just being defined, while the plus sign on the right-hand side stands

for the addition in %#'. Notice the analogous difference in empty spaces
between o and 7" in (2.4). Define the zero mapping in .2 (¥, #) to be

0;/(«/7«//)(21) = Oy, YveV?.
For T € Z(¥,#) we define its opposite operator by
(=T)(v) = =T (v), VveV.

Proposition 2.1. The set L(V,#') with the operations defined in (2.3),
and (2.4) is a vector space over F.

For T € Z(¥,#)and v € ¥ it is customary to write T'v instead of T'(v).

Example 2.2. Assume that a vector space ¥ is a direct sum of its subspaces
U and W, that is ¥ = % ® W . Define the function P : ¥ — ¥ by

Pv=w & v=utw, uwueEY, wewW.

Then P is a linear operator. It is called the projection of ¥ onto # parallel
to % ; it is denoted by Py 4 .



The definition of the linearity of a function between vector spaces is ex-
pressed in the standard functional notation. The next proposition states
that a function between vector spaces is linear if and only if its graph is
a subspace of the direct product of the domain and the codomain of that
function.

Proposition 2.3. Let ¥V and # be vector spaces over a scalar field F. Let
[V =W be a function and denote by F' the graph of f; that is let

F={(v,w)e¥xW# :ve¥ and w=f(v)} SV xH.

The function f is linear if and only if the set F is a subspace of the vector

space VX W .

Proposition 2.4. Let ¥V and # be vector spaces over a scalar field F. Let
T e L(V,cW), let 9 be a subspace of ¥V and let H be a subspace of W .
Then

T@)={we¥ : Jve¥ such that w="Tv}

is a subspace of W and
THH#)={veV : Tve X}
s a subspace of V.

2.2. Composition, inverse, isomorphism. In the next two propositions
we prove that the linearity is preserved under composition of linear operators
and under taking the inverse of a linear operator.

Proposition 2.5. Let S : % — ¥V and T : ¥V — W be linear operators.
The composition T oS : % — W is a linear operator.

Proof. Prove this as an exercise. O

When composing linear operators it is customary to write simply TS
instead of T' o0 S.

The identity function on ¥ is denoted by Iy. It is defined by Iy (v) = v
for all v € ¥. It is clearly a linear operator.

Proposition 2.6. Let T : V' — W be a linear operator which is invertible.
Then the inverse T~ : W — ¥ of T is a linear operator.

Proof. Since T is invertible, by Theorem 1.2 there exists a function S : # —
¥ such that ST = Iy and T'S = Iy. Since T is linear and T'S = Iy we
have

T(aSz + BSy) = aT(Sz) + BT(Sy) = a(TS)z + B(TS)y = az + By
for all , 8 € F and all z,y € #. Applying S to both sides of
T(aSz + BSy) = az + By
we get
(ST)(aSm + BSy) = S(ozx + ﬁy) Va,B€F Vz,ze¥.



Since ST = Iy, we get
aSz + Sy = S(ax + By) Va,B€F Vx,yc ¥,

thus proving the linearity of S. Since by definition S = T~! the proposition
is proved. O

A linear operator T : ¥ — # which is a bijection is called an isomorphism
between vector spaces ¥ and #.

By Theorem 1.2 and Proposition 2.6 each isomorphism is invertible and
its inverse is also an isomorphism.

In the next theorem we introduce the most important isomorphism be-
tween a finite-dimensional space ¥ and a space F" where n = dim ¥

Theorem 2.7. Let ¥ be a finite dimensional vector space over F | let n =
dim ¥ and let B = {b1,...,by} be a basis for V. The subset Cy of ¥ x(F")
defined by

Cz:={(v,a) e ¥*x(F") : a= (o1, ..., an]" and v = a1b + o+ by}
is an isomorphism between ¥ and F™.

Proof. To prove that Cg is a bijection we need to prove the following four
statements:

Fun 1: Yo € ¥ Ja € F" such that (v,a) € Oy
Fun 2: (v,a),(v,a’) € C» implies a=a’
Inj: (v,a),(v,a) € Cz implies v =1
Sur: Va € F" Jv € ¥ such that (v,a) € Cz.
A blueprint of the proof is as follows:
(1) ¥ = span % implies Fun 1;
(2) 4 is linearly independent implies Fun 2;
(3) AE and SE imply Inj;
(This implication is a consequence of the Fun 2 property of the ad-
dition function and the scaling function.)
(4) AE and SE imply Sur.
(This implication is a consequence of the Fun 1 property of the ad-
dition function and the scaling function.)

To prove that the bijection Cyz is linear we need to prove that Cypz is a
subspace of ¥ x ¥ . O
In the last part of the proof of Proposition 77 we showed that the formula
for the inverse (Cz)~! : F* — ¥ of Cy is given by
o1 n aq
(Cg)_l = Zajvj, e F". (2.5)
o J=1 o

Notice that (2.5) defines a function from F” to ¥ even if & is not a basis

of V.



Example 2.8. Inspired by the definition of C'4 and (2.5) we define a general
operator of this kind. Let ¥ and # be vector spaces over F. Let ¥ be finite
dimensional, n = dim ¥ and let £ be a basis for ¥". Let € = (wy,...,wy,)
be any n-tuple of vectors in #'. The entries of an n-tuple can be repeated,

they can all be equal, for example to 0y. We define the linear operator
L;Zf VYV — W by

L{w) =3 oju;  where | i | =Ci(v) (26)
j=1

Qn

In fact, L;? : ¥V — W is a composition of Cg : ¥ — F™ and the operator
F™ — # defined by

&1 n 3

N s Z §w; for arbitrary :

] 7 £
It is easy to verify that (2.7) defines a linear operator.

Denote by & the standard basis of F™, that is the basis which consists of
the columns of the identity matrix. Then Cyz = L? and (Cp)~! = L@.
Exercise 2.9. Let ¥ and # be vector spaces over F. Let ¥ be finite
dimensional, n = dim ¥ and let % be a basis for ¥. Let € = (wy,...,wy)
be a list of vectors in # with n entries.

(a) Characterize the injectivity of LZ : ¥ — #.

(b) Characterize the surjectivity of LZ : ¥ — #.

(c) Characterize the bijectivity of LY : ¥ — #'.

(d) If LZ : ¥ — # is an isomorphism, find a simple formula for (LZ)~L.

e F". (2.7)

2.3. The nullity-rank theorem. Let T': ¥ — # is be a linear operator.
The linearity of T" implies that the set

nulT:{UG"f/:Tv:Oyy}

is a subspace of ¥'. This subspace is called the null space of T. Similarly,
the linearity of T implies that the range of T' is a subspace of #'. Recall
that

ranT:{wGW:Elve”f/ w:Tv}.

Proposition 2.10. A linear operator T : ¥V — W is an injection if and
only if nulT = {0y }.

Proof. We first prove the “if” part of the proposition. Assume that nul7 =
{0y }. Let u,v € ¥ be arbitrary and assume that T'u = T'v. Since T is linear,
Tu = Tv implies T'(u—v) = 0y . Consequently u—v € nulT = {0y }. Hence,
u — v = Oy, that is u = v. This proves that T is an injection.

To prove the “only if” part assume that T : ¥ — # is an injection.
Let v € nulT be arbitrary. Then Tw = 0y = T0y. Since T is injective,



Tv = T0y implies v = 0y. Thus we have proved that nulT C {0y }. Since
the converse inclusion is trivial, we have nul7 = {0y }. O

Theorem 2.11 (Nullity-Rank Theorem). Let ¥ and # be vector spaces
over a scalar field F and let T : ¥V — W be a linear operator. If ¥V is finite
dimensional, then nulT and ranT are finite dimensional and

dim(nulT") + dim(ran7") = dim 7. (2.8)

Proof. Assume that 7 is finite dimensional. We proved earlier that for an
arbitrary subspace % of ¥ there exists a subspace 2~ of ¥ such that

veEX =" and dim% +dim Z =dim ¥
Thus, there exists a subspace 2 of ¥ such that
(lT)e Z =7 and dim(nulT') + dim 2" = dim 7. (2.9)

Since dim(nul7) 4+ dim 2" = dim ¥, to prove the theorem we only need
to prove that dim 2" = dim(ran7T’). To this end, let m = dim 2" and let
Z1,...,Ty, be a basis for . We will prove that vectors Txq,...,Tx,, form
a basis for ranT. We first prove

span{Tml, ... ,Ta;m} =ranT. (2.10)

Clearly {T T1,..., T a:m} CranT. Consequently, since ran T is a subspace of
W, we have Span{Txl, . ,Txm} CranT. To prove the converse inclusion,
let w € ranT be arbitrary. Then, there exists v € ¥ such that Tv = w.
Since ¥ = (nul T')+ 2, there exist u € nul T and = € £ such that v = u+z.
Then Tv =T(u+x) =Tu+Tex =Tx. Asz € 2, there exist &,...,&n €F
such that z = Z;nzl §jr;. Now we use linearity of T' to deduce

m
w:Tv:T:E:Z£jT:Ej.

j=1
This proves that w € Span{Txl, . ,T:L'm}. Since w was arbitrary in ran T
this completes a proof of (2.10).
Next we prove that the vectors Tzq,...,Tz,, are linearly independent.
Let aq,...,ay, € F be arbitrary and assume that
arTx1+ -+ apTxy, = 0yp. (2.11)
Since T is linear (2.11) implies that
arry + -+ oy € nulT. (2.12)
Recall that z1,...,x, € ¢cX and 2 is a subspace of ¥, so
oax1 + -+ oy € 2. (2.13)
Now (2.12), (2.13) and the fact that (nul7) N 2" = {0y } imply
oa1x1 + -+ oy = 0y (2.14)
Since 1, ..., &, are linearly independent (2.14) yields a1 = --- = a,;, = 0.

This completes a proof of the linear independence of T'x1,...,Txy,.



Thus {T:El, . ,Txm} is a basis for ran T". Consequently dim(ran7") = m.
Since m = dim £, (2.9) implies (2.8). This completes the proof. O

A direct proof of the Nullity-Rank Theorem is as follows:

Proof. Since nulT is a subspace of ¥ it is finite dimensional. Set k =
dim(nul T) and let ¥ = {ul, . ,uk} be a basis for nul 7.

Since 7 is finite dimensional there exists a finite set % C ¥ such that
span(#) = ¥. Then the set T.Z is a finite subset of # and ranT =
Span(Tﬁ ) Thus ran T is finite dimensional. Let dim(ran T) = m and let
& = {wl,...,wm} be a basis of ranT.

Since clearly for every j € {1,...,m}, w; € ranT, we have that for
every j € {1,...,m} there exists v; € ¥ such that Tv; = w;. Set ¥ =
{’Ul, cee ,Um}.

Further set =% U 9.

We will prove the following three facts:

(I) €nN2 =0,

(IT) span B =7,

(ITI) & is a linearly independent set.

To prove (I), notice that the vectors in & are nonzero, since & is linearly
independent. Therefore, for every v € 2 we have that Tv # 0y . Since for
every u € € we have Tu = Oy we conclude that u € ¥ implies u ¢ 2. This
proves (I).

To prove (II), first notice that by the definition of 4 C #. Since 7 is a
vector space, we have span % C 7.

To prove the converse inclusion, let v € ¥ be arbitrary. Then Tv € ranT.
Since & spans ranT', there exist (51,..., 3, € F such that

m
Tv = Z ﬁjwj.
j=1
Set

m
v = Zﬁjvj.
Jj=1

Then, by linearity of 7" we have
m m
To' =Y BTv; =Y Bjw; = Tv.
j=1 j=1

The last equality yields and the linearity of T yield T'(v —v’) = 04 . Conse-
quently, v — v’ € nulT'. Since € spans nul T, there exist a1, ..., q; € F such

that
k
v — U/ = Z AUy
j=1



Consequently,

k k m
v = U/ + Zaiui = Zaiui + Z,ijj.
Jj=1 Jj=1 J=1

This proves that for arbitrary v € ¥ we have v € span #. Thus ¥ C span %
and (II) is proved.

To prove (III) let ay,...,ar € F and (4,...,B, € F be arbitrary and
assume that

k m
Z ;UG + Z ﬁj’[)j = 0y. (2.15)
=1 =1

Applying T to both sides of the last equality, and using the fact that u; €
nul7" and the definition of v; we get

m
Z ijj = 07/.
j=1

Since & is a linearly independent set the last equality implies that 8; = 0
for all j € {1,...,m}. Now substitute these equalities in (2.15) to get

k
Z ;U = 07/.
j=1

Since € is a linearly independent set the last equality implies that a; = 0
for all i € {1,...,k}. This proves the linear independence of %.

It follows from (II) and (III) that Z is a basis for #". By (I) we have that
|B| = |€|+ |Z| = k +m. This completes the proof of the theorem. O

The nonnegative integer dim(nulT’) is called the nullity of T'; the nonneg-
ative integer dim(ranT) is called the rank of T.

The nullity-rank theorem in English reads: If a linear operator is defined
on a finite dimensional vector space, then its nullity and its rank are finite
and they add up to the dimension of the domain.

Proposition 2.12. Let ¥ and W be vector spaces over F. Assume that ¥V
1s finite dimensional. The following statements are equivalent

(a) There exists a surjection T € L(V, W).
(b) # s finite dimensional and dim ¥ > dim %' .

Proposition 2.13. Let ¥ and # be vector spaces over F. Assume that ¥
1s finite dimensional. The following statements are equivalent

(a) There exists an injection T € LV, W).

(b) Either W is infinite dimensional or dim ¥ < dim #'.

Proposition 2.14. Let ¥ and W be vector spaces over F. Assume that ¥V
s finite dimensional. The following statements are equivalent

(a) There exists an isomorphism T : ¥V — W .
(b) # is finite dimensional and dim # = dim ¥'.



2.4. Isomorphism between Z (7, %) and F"*™. Let ¥ and # be fi-
nite dimensional vector spaces over F, m = dim %, n = dim#/, let & =
{v1,...,v,} be abasis for ¥ and let € = {w1,...,w,} be abasis for #. The
mapping Cg provides an isomorphism between ¥ and F™ and C¢ provides
an isomorphism between # and F".

Recall that the simplest way to define a linear operator from F" to F"
is to use an n X m matrix B. It is convenient to consider an n X m matrix
to be an m-tuple of its columns, which are vectors in F". For example, let
b1,...,b,, € F” be columns of an n X m matrix B. Then we write

B=[b - byl
This notation is convenient since it allows us to write a multiplication of a
vector x € F™ by a matrix B as
&1

Bx = ijbj where  x = (2.16)
j=1

&n

Notice the similarity of the definition in (2.16) to the definition (2.6) of
the operator L;g in Example 2.8. Taking & to be the standard basis of F™
and taking % to me the m-tuple given by B, we have L%’? (x) = Bx.

Let T : ¥ — # be a linear operator. Our next goal is to connect T in a
natural way to a certain n x m matrix B. That “natural way” is suggested
by following diagram:

vy T Ly

Cy Cy

We seek an n x m matrix B such that the action of T between ¥ and # is
in some sense replicated by the action of B between F” and F". Precisely,
we seek B such that

Cy(Tv) = B(C»(v)) Voe?. (2.17)

In English: multiplying the vector of coordinates of v by B we get exactly
the coordinates of Tv.
Using the basis vectors vy, ...,v, € Z in (2.17) we see that the matrix

B = [Cg(Tvr) -+ Cqo(Tom)) (2.18)

has the desired property (2.17).

For an arbitrary T' € Z(¥,#') the formula (2.18) associates the matrix
B € F™™ with T. In other words (2.18) defines a function from Z(¥', #")
to Fmxm,



Theorem 2.15. Let ¥ and W be finite dimensional vector spaces over F,
m=dim¥, n = dm¥, let B = {v1,...,9m} be a basis for ¥ and let
¢ ={w1,...,wy} be a basis for W. The function

M7 LV W) — Fm
defined by
MZ(T) = [Cx(Tv1) -+ Cy(Tvm)], TeLV. W) (2.19)
s an isomorphism.

Proof. It is easy to verify that Mg is a linear operator.
Since the definition of MZ(T') coincides with (2.18), equality (2.17) yields

Cy(Tv) = (MZ(T))Cx(v). (2.20)

The most direct way to prove that Mg? is an isomorphism is to construct
its inverse. The inverse is suggested by the diagram (2.21).

Ca (Cg)-! (2.21)

Define
NZ :F™™ 5 L(V W)
by ]
(NZ(B))(v) = (C4) " (B(Cx(v))),  BeF™™™ (2.22)
Next we prove that
NZ oMy =Igwyy) and ML o N = Ignxm.
First for arbitrary T' € £ (¥, #') and arbitrary v € ¥ we calculate
((NZ 0 MZ)(D)) (v) = (Co) T ((MZ (D) (Cv)) by (2:22)

= (Cy) ™' (Ce(Tv)) by (2.20)
=Twv.

Thus (NZ o MZ)(T) = T and thus, since T € Z(¥,#) was arbitrary,
N(g o M(? = [g(y/’yy).
Let now B € F™"*™ be arbitrary and calculate

(M o NZ)(B) = MZ (NZ(B)
= [C%((N(?(B))(Ul)) - Co(( (?(B))(Um))] by (2.19)
= [B(Cy(v1) -+ B(Cy(vm))] by (2.22)



=B [C’g(vl) e C’g(vm)] matrix mult

=BIl, def. of Cyp
= B.

Thus (MZoNZ)(B) = B for all B € F**™ proving that MZoNZ = Ignxm.
This completes the proof that M(‘Z;’? is a bijection. Since it is linear, M;}?
is an isomorphism. O

Theorem 2.16. Let %, V and # be finite dimensional vector spaces over
F, k=dm%, m =dim?, n = dim#, let &/ be a basis for U, let B
be a basis for ¥V, and let € be a basis for W. Let S € L(%,V) and
T e LV, W). Let M (S) € F™*F, MZ(T) € F™™™ and MZ (TS) € F<k
be as defined in Theorem 2.15. Then

MZ(TS) = MZ(T)MZ(S).
Proof. Let « = {u, ..., u;} and calculate
M(TS) = |C(TSw) -+ C(TSuy)| by (2.19)
= [MZ(T)(Ca(Sw)) -+ MZ(T)(Cop(Sur))| by (2:20)
= MZ(T [C% Suy) - %(Suk)] matrix mult,
= MZ(TYMZ(S). by (2.19)

The following diagram illustrates the content of Theorem 2.16.
v
/ \
U IS s W
C%J
% \

MZ(TS)=MZ(T)M

Ces

<

3. PROBLEMS

Problem 3.1. Let ¥ and # be vector spaces over a scalar field F. Let .
be a subspace of the direct product vector space ¥ x#, let 4 be a subspace



of ¥ and let JZ be a subspace of #. Then
S(G)={we W : Fve¥ suchthat (v,w) €.}
is a subspace of # and
SN A)={veV : Jwe I such that (v,w) € .7}
is a subspace of 7.

Problem 3.2. Let ¥ and # be finite-dimensional vector spaces over a
scalar field F. Let . be a subspace of the direct product vector space
¥V x# . The following four sets are subspaces

dom . = {v e ¥ : 3w € # such that (v,w) € .7},
ran. = {w € # : Jv € ¥ such that (v,w) € .},
nul . = {v eV : (v,0p)c Y},
mul.? ={we¥ : (0y,w) €7}
and the following equality holds:
dim dom . + dimmul . = dimran . + dim nul ..

Hint: The following equivalence holds. For all v € ¥ and all w € # we
have:

(vw)e s & (+z,w+y) €S Vrenul” and Yy € mul.”.

Problem 3.3. Let ¥ and # be finite-dimensional vector spaces over a
scalar field F and recall that #' x# and # x ¥ are the direct product vector
spaces. Prove that the function

R:VXW = WXV

defined by
R(v,w) = (w,v) forall (v,w)e€ ¥x¥#

is an isomorphism.
Problem 3.4. Let ¥ and # be finite-dimensional vector spaces over a
scalar field F and recall that #' x# and # x ¥ are the direct product vector

spaces. Let 7 be a subset of ¥ x#. Then .7 is an isomorphism between
¥ and # if and only if the set

{(w,v) e# xV : (vyw)e T} =RT

is an isomorphism between # and #. (Use Problem 3.3 and Propositions 2.3
and 2.4 to prove this equivalence.)



