Theorem 1. Let ¥ be a finite-dimensional vector space over a scalar field F with dim ¥ = n € N. Let
T € L(V) and assume that there exists a basis B = (v1,...,v,) of ¥ for which the matriz MZ(T) is
upper-triangular with diagonal entries aj; where j € {1,...,n}. Then T is not injective if and only if there
exists i € {1,...,n} such that a;; = 0.
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or, in English, the entries of the matrix M%(T) are ay; € F with k,j € {1,...,n} and aj; = 0 whenever

k > j. By the definition of the matrix M% (T, this means that for every j € {1,...,n} we have

J
ij = Zakjvk. (1)
k=1

We first prove the “if” part of the claim. Assume that there exists i € {1,...,n} such that a;; = 0. Set
U = span{vy,...,v;}.

By (1), for every j € {1,...,i} we have

J i
Tvj = Zakjvk = Zakjvk EU. (2)
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It follows from the preceding i equalities that for every u € % we have Tuw € % . Therefore, the restriction
of T' to %, that is, the operator S defined by Su = T'u for all u € % is an operator in L (% ).
Since a;; = 0, the equalities in (2) read: for every j € {1,...,i} we have

7 i—1
Svj =Tvj = Zakﬂ/k = Z ap;vr € span{vi, ..., vi—1}.
k=1 k=1

Consequently, for every u € % we have
Su = Tu € span{vy,...,v;—1}.

Hence, v; ¢ ran(S). That is, ran(S) C %, or equivalently dimran(S) < dim % . By the Nullity-Rank
theorem, dimnul(S) = dim% — dimran(S) > 1. Thus, nul(S) # {0y }. Let w € % C ¥ be such that
u # 0y and Su = 0y. Since Tu = Su = 0y, it has been proven that T' is not an injection.

Next we prove the “only if” part of the claim. Assume that T is not injective. It is convenient to
introduce the following notation: for every j € {1,...,n} set

U; = span{vy,...,v;}.

Notice that %, = ¥ and, if n > 1, for all j € {2,...,n} we have %;_1 C %;p. Since the vectors vq,...,v,
are linearly independent, for all j € {1,...,n} we have

dim %; = j. (3)



The equalities in (1) imply that for every j € {1,...,n} we have
% C %, (1)

Since T is not injective, we have nul(T") # {0y}, that is dimnul(7") > 1. By the Nullity-Rank theorem,
dimran(7) = n — dimnul(7) < n. Consequently, ran(7) = T% C ¥. Since %, = ¥, we also have
TU, C Un.
Consider the set
K={je{l,.n} : T% C U}.

Since T, < %,, we have n € K. Hence, the set K is a nonempty set of positive integers. By the
Well-Ordering Axiom of Integers min K exists. Set m = min K.
Case 1. m = 1. In this case T% < % . Consequently, dim(T% ) < dim(%4). Since dim % = 1, we
deduce that dim(7T%1) = 0. Thus T% = {04}, so Tv; = 04. Hence C5(Tv;) = [0 --- 0] and so aj; = 0.
Case 2. m € {2,...,n}. Then m —1 € {1,...,n}. By the definition of minimum, we have that
m — 1 ¢ K. Consequently,
TUnm—1 S Un—1 is not true.

By (4), we have T%yn—1 C %mn—1. The last inclusion is equivalent to
T%m—l Q %m—l \ T%m—l = %m—L

Since we proved that T%,—1 & %m—1 is not true, we must have T%,,—1 = %pn—1. (This logical reasoning
(pV q) A (—q) = pis called “disjunctive syllogism.”)
Since m € K we have
Ty, C U,

Further, by definition of %,,—1 and %, we have %1 < %y. Hence T%,—1 C T U,-
Now we collect all the information that we have about Z,_1, T%mn—1, Um, T%mn:

U1 = TU—1 CT Uy S YU,
Using (3), for the corresponding dimensions we deduce
m — 1 =dim(%m—1) < dim(T%,) < dim(%,) = m.
Since dim(7T%,,) is a positive integer, the preceding relation among positive integers yields

m—1=dim(T%).

Since
Up—1 €T, and m—1=dim(%y,-1) and m —1=dim(T%,),

we deduce
TUy, = Upp—1.

Since by the definition of %, we have v,, € %,,, the preceding set equality yields
Tvy € Up—1 = spanf{vy, ..., Vm—1}.
Thus, there exist aq,...,an—1 € F such that
TV =101+ -+ + Q—1Vm—1.

By (1), that is by the definition of MZ(T) we have,

m
Toym = Z Al Uk -
k=1
Since the vectors v1,...,v,, are linearly independent, the last two equalities imply that a,,,, = 0. O



Theorem 2 (5.41 page 157 in the textbook). Let ¥ be a finite-dimensional vector space over a scalar field
F with dim? =n € N. Let T € L (V) and assume that there exists a basis B of ¥V for which the matrix
Mf;(T) is upper-triangular with diagonal entries aj; where j € {1,...,n}. Then

o(T)={aj;:j€{1,...,n}}.
Proof. We proved before that M g : Z(V) — F™™ is an isomorphism of algebras. Therefore
MZ(T — \I) = MZ(T) — AMZ(I) = MZ(T) — M,.

Here I, denotes the identity matrix in F**". As M2 (T) and M%(I) = I,, are upper triangular, M2 (T—\I)
is upper triangular as well. Its diagonal entries are aj; — A, where j € {1,...,n}.
To prove the set equality

o(T)={aj; :j€{1,...,n}}.
in the theorem we need to prove two inclusions.

First we prove C. Let A\ € o(T'). Because A is an eigenvalue, T — A\ is not injective. Because T' — A
is not injective. By Theorem 1 one of the diagonal entries of the upper triangular matrix

MZ(T — \I) = MZ(T) — )\,
is zero. That is, there exists i € {1,...,n} such that a;; — A = 0. Thus A\ = a;;, and we proved

O'(T) - {a]‘j 1j € {1,...,n}}.

Next we prove 2. Let j € {1,...,n} be arbitrary. Consider the matrix M7 (T —a;;I). The j-th diagonal

entry of the matrix
MZ(T = aj;l) = MZ(T) — a1,

is equal to a;j; — a;; = 0. By Theorem 1 the operator T' — a;;/ is not injective. This implies that a;; is an
eigenvalue of 7. Thus a;; € o(T'). This completes the proof. O



