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1 Inner Product Spaces

By i we denote the imaginary unit in C. For a complex number α by Re(α)
we denote the real part of α and by Im(α) we denote the imaginary part of
α. We have α = Re(α)+ i Im(α). By α we denote the conjugate of of α. We
have α = Re(α)− i Im(α). By |α| we denote the modulus of α. We have

|α| =
√
αα =

√
(Reα)2 + (Imα)2.

In this section F stands for either R or C.

def-ips Definition 1.1. Let V be a vector space over F. If the following five con-
ditions are satisfied

IPE. ⟨ · , · ⟩ : V × V → F is a function,

IPL. ∀u, v, w ∈ V ∀α, β ∈ F ⟨αu+ βv,w⟩ = α⟨u,w⟩+ β⟨v, w⟩,
IPC. ∀u, v ∈ V ⟨v, u⟩ = ⟨u, v⟩,
IPN. ∀v ∈ V ⟨v, v⟩ ≥ 0,

IPD. ∀v ∈ V ⟨v, v⟩ = 0 implies v = 0V ,

then the function ⟨ · , · ⟩ : V × V → F is called a (positive definite) inner
product on V . The ordered pair (V , ⟨ · , · ⟩) is called an inner product space
over F.

In the following proposition we establish basic algebra on an inner prod-
uct space.

pr-aip Proposition 1.2. Let (V , ⟨ · , · ⟩) be an inner product space over F. The
following statements hold.

pr-aip-i1 (a) ∀v ∈ V we have ⟨0V , v⟩ = ⟨v, 0V ⟩ = 0.
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pr-aip-i2 (b) ∀u, v, w ∈ V ∀α, β ∈ F we have ⟨u, αv + βw⟩ = α⟨u, v⟩+ β⟨u,w⟩.
pr-aip-i3 (c) For all m,n ∈ N and all α1, . . . , αm, β1, . . . , βn ∈ F and all u1, . . . , um,

v1, . . . , vn ∈ V we have〈
m∑
j=1

αjuj ,

n∑
k=1

βkvk

〉
=

m∑
j=1

n∑
k=1

αjβk⟨uj , vk⟩.

Proof.

Definition 1.3. Let (V , ⟨ · , · ⟩) be an inner product space over F. Vectors
u, v ∈ V are said to be orthogonal if ⟨u, v⟩ = 0. The notation for orthogonal
vectors is u ⊥ v.

A set of vectors A ⊂ V is said to form an orthogonal system in (V , ⟨ · , · ⟩)
if for all u, v ∈ A we have ⟨u, v⟩ = 0 whenever u ̸= v and for all v ∈ A we
have ⟨v, v⟩ > 0. An orthogonal system A is called an orthonormal system
if for all v ∈ A we have ⟨v, v⟩ = 1.

th-PT Theorem 1.4 (Pythagorean Theorem). Let (V , ⟨ · , · ⟩) be an inner product
space over F and let n ∈ N. If {v1, · · · , vn} ⊂ V is an orthogonal system in
(V , ⟨ · , · ⟩), then 〈

n∑
j=1

vj ,

n∑
k=1

vk

〉
=

n∑
j=1

⟨vj , vj⟩.

Proof. Assume that {v1, · · · , vn} ⊂ V is orthogonal system in (V , ⟨ · , · ⟩).
That is, assume that for all j, k ∈ {1, . . . , n} we have ⟨vj , vk⟩ = 0 whenever
j ̸= k and ⟨vk, vk⟩ > 0. Then we have〈

n∑
j=1

vj ,

n∑
k=1

vk

〉
=

n∑
j=1

〈
vj ,

n∑
k=1

vk

〉

=

n∑
j=1

〈
vj , vj +

n∑
k=1
k ̸=j

vk

〉

=
n∑

j=1

⟨vj , vj⟩+

〈
vj ,

n∑
k=1
k ̸=j

vk

〉
=

n∑
j=1

⟨vj , vj⟩+
n∑

j=1

〈
vj ,

n∑
k=1
k ̸=j

vk

〉
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=

n∑
j=1

⟨vj , vj⟩+
n∑

j=1

 n∑
k=1
k ̸=j

⟨vj , vk⟩


=

n∑
j=1

⟨vj , vj⟩.

The first equality follows from the additivity property in the first variable of
the inner product (a special case of Proposition 1.2(c)). The second equality
follows from the commutativity of addition in the vector space. The third
equality follows from the additivity property in the second variable of the
inner product (a special case of Proposition 1.2(b)). The fourth equality
follows from the commutativity of addition in C. The fifth equality follows
from the additivity property in the second variable of the inner product
(a special case of Proposition 1.2(c)). The sixth equality follows from the
assumption for all j, k ∈ {1, . . . , n} we have ⟨vj , vk⟩ = 0 whenever j ̸= k.

Remark 1.5. One could have stated that the Pythagorean theorem follows
from Proposition 1.2(c)), but that would have obscured the details of the
reasoning. I also wanted to emphasize that the only property of the inner
product that is used in the proof is the additivity property of the inner
product.

Theorem 1.6 (Cauchy-Bunyakovsky-Schwartz Inequality). Let (V , ⟨ · , · ⟩)
be an inner product space over F. Then

∀u, v ∈ V
∣∣⟨u, v⟩∣∣2 ≤ ⟨u, u⟩⟨v, v⟩. (1) eq-CSBi

The equality occurs in (1) if and only if u and v are linearly dependent.

Proof. Proof 1. Let u, v ∈ V be arbitrary. Case 1. Assume v = 0V .
By Proposition 1.2(a) we have ⟨u, v⟩ = 0 and ⟨v, v⟩ = 0. Therefore the
Cauchy-Bunyakovsky-Schwartz Inequality holds as an equality.

Case 2. Assume v ̸= 0V . Then ⟨v, v⟩ > 0. Consider the vector

u− ⟨u, v⟩
⟨v, v⟩

v.

Then by Proposition 1.2(c), and using the fact that ⟨v, v⟩ > 0 we have〈
u− ⟨u, v⟩

⟨v, v⟩
v, u− ⟨u, v⟩

⟨v, v⟩
v

〉
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= ⟨u, u⟩ − ⟨u, v⟩
⟨v, v⟩

⟨u, v⟩ − ⟨u, v⟩
⟨v, v⟩

⟨v, u⟩+ ⟨u, v⟩⟨u, v⟩
⟨v, v⟩2

⟨v, v⟩

= ⟨u, u⟩ − |⟨u, v⟩|2

⟨v, v⟩
.

Since ⟨v, v⟩ > 0, the established equality is equivalent to

⟨v, v⟩
〈
u− ⟨u, v⟩

⟨v, v⟩
v, u− ⟨u, v⟩

⟨v, v⟩
v

〉
= ⟨u, u⟩⟨v, v⟩ − |⟨u, v⟩|2. (2) eq-CBS1

Since the left-hand side in (2) is nonnegative, we have that

0 ≤ ⟨u, u⟩⟨v, v⟩ − |⟨u, v⟩|2,

which is equivalent to the Cauchy-Bunyakovsky-Schwartz Inequality.

The case of equality. Assume that u and v are linearly dependent.
If v = 0V , then equality in the Cauchy-Bunyakovsky-Schwartz Inequality
holds. If v ̸= 0V , then there exists α ∈ F such that u = αv. Then

|⟨u, v⟩|2 = |α|2⟨v, v⟩2 and ⟨u, u⟩⟨v, v⟩ = |α|2⟨v, v⟩2.

Thus the equality in the Cauchy-Bunyakovsky-Schwartz Inequality holds.
To prove the converse, assume that the equality holds in the Cauchy-

Bunyakovsky-Schwartz Inequality. Then both sides of the equality in (2)
equal to 0. If v = 0V , then u and v are linearly dependent. If v ̸= 0V , then
⟨v, v⟩ > 0. Consequently, (2), by IPD in Definition 1.1, implies that

u− ⟨u, v⟩
⟨v, v⟩

v = 0V .

This proves that u and v are linearly dependent. End of Proof 1.

Proof 2. Let u, v ∈ V be arbitrary. Case 2. Assume v ̸= 0V . As is
calculated in Figure 1, the vectors on the right hand side of the following
decomposition of u,

u =
⟨u, v⟩
⟨v, v⟩

v +

(
u− ⟨u, v⟩

⟨v, v⟩
v

)
are orthogonal. With the notation

w = u− ⟨u, v⟩
⟨v, v⟩

v,
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Figure 1: Orthogonal decomposition of u along v and ⊥ v. fig:OrthDec2

an application of Pythagorean Theorem yields

⟨u, u⟩ =
〈
⟨u, v⟩
⟨v, v⟩

v,
⟨u, v⟩
⟨v, v⟩

v

〉
+ ⟨w,w⟩. (3) eq-ptuv

Using algebra of inner product, (3) is equivalent to:

⟨u, u⟩ = |⟨u, v⟩|2

⟨v, v⟩
+ ⟨w,w⟩. (4) eq-ptuv1

Since ⟨w,w⟩ ≥ 0, we have that (4) implies

⟨u, u⟩ ≥ |⟨u, v⟩|2

⟨v, v⟩
. (5) eq-ptuv2

Multiplying the last inequality by ⟨v, v⟩ > 0, we obtain the Cauchy-Bunyakovsky-
Schwartz Inequality:

⟨u, u⟩⟨v, v⟩ ≥ |⟨u, v⟩|2. (6) eq-ptuv3

The case of equality. We prove only the second part. Assume that
the equality holds in (6). Then the equality holds in (5). Comparing (5) and
(4) we deduce that ⟨w,w⟩ = 0. Now, IPD in Definition 1.1 implies w = 0V .
By the definition of w this proves that u and v are linearly dependent.
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def-ns Definition 1.7. Let V be a vector space over F, where F is either R or C.
If the following five conditions are satisfied:

NE. ∥ · ∥ : V → F is a function,

NS. ∀v ∈ V ∀α ∈ F ∥αv∥ = |α|∥v∥,
NT. ∀u, v ∈ V ∥u+ v∥ ≤ ∥u∥+ ∥v∥,
NN. ∀v ∈ V ∥v∥ ≥ 0,

ND. ∀v ∈ V ∥v∥ = 0 implies v = 0V ,

then the function ∥ · ∥ : V → F is called a norm on V .
A normed space over a field F is an ordered pair (V , ∥ · ∥), where V is a

vector space over F and ∥ · ∥ is a norm on V .
In a normed space (V , ∥ · ∥), the distance between any two vectors u, v ∈

V is defined as:
dist(u, v) = ∥u− v∥.

An inner product gives rise to a norm.

th-ipsns Theorem 1.8. Let (V , ⟨ · , · ⟩) be an inner product space over F. The func-
tion ∥ · ∥ : V → F defined by

∀v ∈ V ∥v∥ =
√

⟨v, v⟩ (7) eq-ipsns

is a norm on V .

Proof. The formula in (7) defines a function on V since it represents a com-
position of two functions. The first function is v 7→ ⟨v, v⟩ defined on V with
the values in the set of nonnegative real numbers, see IPN in Definition 1.1.
The second function is the real square root function.

To prove NS, let v ∈ V and α ∈ F be arbitrary.
To prove NT, let u, v ∈ V be arbitrary.
The property NN follows from the definition of the real square root

function.
To prove ND, let v ∈ V be arbitrary.

Remark 1.9. An alternative formulation of the Cauchy-Bunyakovsky-Schwartz
Inequality involves the norm defined in Theorem 1.8. Let (V , ⟨ · , · ⟩) be an
inner product space over F. Then

∀u, v ∈ V
∣∣⟨u, v⟩∣∣ ≤ ∥u∥∥v∥. (8) eq-CSBin
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The following theorem collects important properties of finite orthogonal
systems of vectors.

th-os-ec Theorem 1.10. Let (V , ⟨ · , · ⟩) be an inner product space over F. Let n ∈ N
and let {u1, . . . , un} ⊂ V be an orthogonal system in (V , ⟨ · , · ⟩), and set
U = span{u1, . . . , un}. The following statements hold.

th-os-eci1 (a) For all u ∈ U we have

u =

n∑
j=1

αjuj ⇒ ∀j ∈ {1, . . . , n} αj =
⟨u, uj⟩
⟨uj , uj⟩

.

In particular, an orthogonal system is linearly independent.

th-os-eci2 (b) For every v ∈ V we have

v −
n∑

j=1

⟨v, uj⟩
⟨uj , uj⟩

uj ⊥ U .

th-os-eci3 (c) For every v ∈ V Bessel’s inequality holds

n∑
j=1

|⟨v, uj⟩|2

⟨uj , uj⟩
≤ ⟨v, v⟩ = ∥v∥2.

The equality holds in Bessel’s inequality if and only if v ∈ U .

Proof. To prove (a), let u =
∑n

j=1 αjuj , let k ∈ {1, . . . , n} be arbitrary, and
calculate the inner product with uk for both sides of the equality. Then,
using the linearity of the inner product in the first variable and the fact
that ⟨uj , uk⟩ = 0 whenever j ̸= k we obtain ⟨u, uk⟩ =

∑n
j=1 αj⟨uj , uk⟩ =

αk⟨uk, uk⟩. Since ⟨uk, uk⟩ > 0, we have αk =
⟨u, uk⟩
⟨uk, uk⟩

.

To prove (b) let v ∈ V be arbitrary. Let let k ∈ {1, . . . , n} be arbitrary,
and calculate the inner product〈

v −
n∑

j=1

⟨v, uj⟩
⟨uj , uj⟩

uj , uk

〉
= ⟨v, uk⟩ −

n∑
j=1

⟨v, uj⟩
⟨uj , uj⟩

⟨uj , uk⟩

= ⟨v, uk⟩ − ⟨v, uk⟩
= 0.

Since k ∈ {1, . . . , n} was arbitrary, replacing uk with an arbitrary vector in
U also leads to the zero inner product.
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To prove (c) we observe that the n + 1 vectors on the right side in the
equality

v =

v −
n∑

j=1

⟨v, uj⟩
⟨uj , uj⟩

uj

+

n∑
j=1

⟨v, uj⟩
⟨uj , uj⟩

uj

are mutually orthogonal and apply the Pythagorean Theorem to obtain

∥v∥2 =

∥∥∥∥∥∥v −
n∑

j=1

⟨v, uj⟩
⟨uj , uj⟩

uj

∥∥∥∥∥∥
2

+
n∑

j=1

|⟨v, uj⟩|2

⟨uj , uj⟩
.

Bessel’s inequality and the characterization of the equality follow from the
preceding equality.

The formulas that appear in the preceding theorem are probably the
most important formulas in inner product spaces. My nickname for the
content in (a) is “easy coefficients” since (a) shows that finding the coef-
ficients of a linear combination of an orthogonal system is given by clear
formulas. The vector

n∑
j=1

⟨v, uj⟩
⟨uj , uj⟩

uj

in (b) is called the orthogonal projection of v onto U . For more about the
orthogonal projections see paragraphs after Corollary 1.17. My nickname
for the content in (b) is “easy orthogonal projection” since (b) shows that
finding the coefficients of the orthogonal projection onto a span of an or-
thogonal system is given by a clear formula. Bessel’s inequality needs no
nickname, it is one of the key tools in proving convergence of Fourier series.

Theorem 1.11 (The Gram-Schmidt orthogonalization). Let (V , ⟨ · , · ⟩) be a
vector space over F with a inner product ⟨ · , · ⟩. Let n ∈ N and let v1, . . . , vn
be linearly independent vectors in V . Let the vectors u1, . . . , un be defined
recursively by

u1 = v1,

uk+1 = vk+1 −
k∑

j=1

⟨vk+1, uj⟩
⟨uj , uj⟩

uj , k ∈ {1, . . . , n− 1}.

Then the vectors u1, . . . , un form an orthogonal system for which the follow-
ing set equalities hold

∀k ∈ {1, . . . , n} span{u1, . . . , uk} = span{v1, . . . , vk}.
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Proof. We will prove by Mathematical Induction the following statement:
For all k ∈ {1, . . . , n} we have:

(a) ⟨uk, uk⟩ > 0 and ⟨uj , uk⟩ = 0 whenever j ∈ {1, . . . , k − 1};
(b) vectors u1, . . . , uk are linearly independent;

(c) span{u1, . . . , uk} = span{v1, . . . , vk}.

For k = 1 statements (a), (b) and (c) are clearly true. Let m ∈
{1, . . . , n − 1} and assume that statements (a), (b) and (c) are true for
all k ∈ {1, . . . ,m}.

Next we will prove that statements (a), (b) and (c) are true for k = m+1.
Recall the definition of um+1:

um+1 = vm+1 −
m∑
j=1

⟨vm+1, uj⟩
⟨uj , uj⟩

uj .

By the Inductive Hypothesis we have span{u1, . . . , um} = span{v1, . . . , vm}.
Since v1 . . . , vm+1 are linearly independent, vm+1 ̸∈ span{u1, . . . , um}. There-
fore, um+1 ̸= 0V . That is, ⟨um+1, um+1⟩ > 0. Let k ∈ {1, . . . ,m} be arbi-
trary. Then by the Inductive Hypothesis we have that ⟨uj , uk⟩ = 0 whenever
j ∈ {1, . . . ,m} and j ̸= k. Therefore,

⟨um+1, uk⟩ = ⟨vm+1, uk⟩ −
m∑
j=1

⟨vm+1, uj⟩
⟨uj , uj⟩

⟨uj , uk⟩

= ⟨vm+1, uk⟩ − ⟨vm+1, uk⟩
= 0.

This proves claim (a). To prove claim (b) notice that by the Inductive Hy-
pothesis u1, . . . , um are linearly independent and um+1 ̸∈ span{u1, . . . , um}
since vm+1 ̸∈ span{u1, . . . , um}. To prove claim (c) notice that the definition
of um+1 implies um+1 ∈ span{v1, . . . , vm+1}. Since by the inductive hypoth-
esis span{u1, . . . , um} = span{v1, . . . , vm}, we have span{u1, . . . , um+1} ⊆
span{v1, . . . , vm+1}. The converse inclusion follows from the fact that vm+1 ∈
span{u1, . . . , um+1}.

The claim of the theorem follows from the claim that has been proven.

The following two statements are immediate consequences of the Gram-
Schmidt orthogonalization algorithm.
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Corollary 1.12. If (V , ⟨ · , · ⟩) is a finite-dimensional inner product vector
space, then V has an orthonormal basis.

c-onb-ut Corollary 1.13. Let (V , ⟨ · , · ⟩) be a finite-dimensional complex inner prod-
uct space and T ∈ L (V ) then there exists an orthonormal basis B such that
MB

B(T ) is upper-triangular.

Definition 1.14. Let (V , ⟨ · , · ⟩) be an inner product space and A ⊂ V .
We define the orthogonal complement of A to be A ⊥ = {v ∈ V : ⟨v, a⟩ =
0 ∀ a ∈ A }.

The following is a straightforward proposition.

Proposition 1.15. Let (V , ⟨ · , · ⟩) be an inner product space and A ⊂ V .
Then A ⊥ is a subspace of V .

th-fd-ds Theorem 1.16. Let (V , ⟨ · , · ⟩) be an inner product space and let U be a
finite-dimensional subspace of V . Then V = U ⊕ U ⊥.

Proof. We first prove that V = U ⊕ U ⊥. Note that since U is a subspace
of V , U inherits the inner product from V . Thus U is a finite-dimensional
inner product space. Thus there exists an orthonormal basis of U , B =
{u1, u2, . . . uk}.

Let v ∈ V be arbitrary. Then

v =

 k∑
j=1

⟨v, uj⟩uj

+

v −
k∑

j=1

⟨v, uj⟩uj

 ,

where the first summand is in U . By Theorem 1.10(b) the second summand
is in U ⊥. This proves that V = U + U ⊥.

To prove that the sum is direct, let w ∈ U and w ∈ U ⊥. Then ⟨w,w⟩ =
0. Since ⟨ · , · ⟩ satisfies property IPD in Definition 1.1, ⟨w,w⟩ = 0 implies
w = 0V . The theorem is proved.

co-pp Corollary 1.17. Let (V , ⟨ · , · ⟩) be an inner product space and let U be a

finite-dimensional subspace of V . Then
(
U ⊥)⊥ = U .

Recall that an arbitrary direct sum V = U ⊕W gives rise to a projection
operator PU ∥W , the projection of V onto U parallel to W .

If V = U ⊕ U ⊥, then the resulting projection of V onto U parallel to
U ⊥ is called the orthogonal projection of V onto U ; it is denoted simply by
PU . By definition for every v ∈ V ,

u = PU v ⇔ u ∈ U and v − u ∈ U ⊥.
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As for any projection we have PU ∈ L (V ), ranPU = U , nulPU = U ⊥,
and (PU )2 = PU .

Theorem 1.16 yields the following solution of the best approximation
problem for finite-dimensional subspaces of an inner product space.

Corollary 1.18. Let (V , ⟨ · , · ⟩) be an inner product space and let U be a
finite-dimensional subspace of V . For arbitrary v ∈ V the vector PU v ∈ U
is the unique best approximation for v in U . That is∥∥v − PU v

∥∥ < ∥v − u∥ for all u ∈ U \
{
PU v

}
. (9) eq-bapp

Proof. Let v ∈ V and u ∈ U \
{
PU v

}
be arbitrary. Recall the basic two

fact which characterize the orthogonal projection PU v:

PU v ∈ U and v − PU v ∈ U ⊥.

In the next calculation we use the preceding two facts, the Pythagorean
Theorem and the fact that u ̸= PU v as follows

∥v − u∥2 =
∥∥v − PU v + PU v − u

∥∥2
=
∥∥v − PU v

∥∥2 + ∥∥PU v − u
∥∥2

>
∥∥v − PU v

∥∥2.
Taking the square root of both sides of the preceding inequality proves (9)
in the corollary.

2 The definition of an adjoint operator

Let V be a vector space over F. The space L (V ,F) is called the dual space
of V ; it is denoted by V ∗.

Let V and W be vector spaces over F. A function Ψ : V → W is said
to be anti-linear if for all α, β ∈ F and all u, v ∈ V we have

Ψ(αu+ βv) = αΨ(u) + βΨ(v).

th-Phi Theorem 2.1. Let (V , ⟨ · , · ⟩) be a finite-dimensional inner product space
over F. Define the function

Φ : V → V ∗

as follows: for w ∈ V we set(
Φ(w)

)
(v) = ⟨v, w⟩ for all v ∈ V .

Then Φ is an anti-linear bijection.
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Proof. Clearly, for each w ∈ V , Φ(w) ∈ V ∗. The mapping Φ is anti-linear,
since for α, β ∈ F and u,w ∈ V , for all v ∈ V we have(

Φ(αu+ βw)
)
(v) = ⟨v, αu+ βw⟩

= α⟨v, u⟩+ β⟨v, w⟩
= α

(
Φ(u)

)
(v) + β

(
Φ(w)

)
(v)

=
(
αΦ(u) + βΦ(w)

)
(v).

Thus Φ(αu+ βw) = αΦ(u) + βΦ(w). This proves anti-linearity.
To prove injectivity of Φ, let u,w ∈ V be such that Φ(u) = Φ(w). Then(

Φ(u)
)
(v) =

(
Φ(w)

)
(v) for all v ∈ V . By the definition of Φ this means

⟨v, u⟩ = ⟨v, w⟩ for all v ∈ V . Consequently, ⟨v, u − w⟩ = 0 for all v ∈ V .
In particular, with v = u− w we have ⟨u− w, u− w⟩ = 0. Since ⟨ · , · ⟩ is a
positive definite inner product, it follows that u− w = 0V , that is u = w.

To prove that Φ is a surjection we use the assumption that V is finite-
dimensional. Then there exists an orthonormal basis (u1, . . . , un) of V . Let
φ ∈ V ∗ be arbitrary. Set

w =

n∑
j=1

φ(uj)uj .

The proof that Φ(w) = φ follows. Let v ∈ V be arbitrary.(
Φ(w)

)
(v) = ⟨v, w⟩

=

〈
v,

n∑
j=1

φ(uj)uj

〉

=
n∑

j=1

φ(uj)⟨v, uj⟩

=
n∑

j=1

⟨v, uj⟩φ(uj)

= φ

(
n∑

j=1

⟨v, uj⟩uj

)
= φ(v).

Since the equality
(
Φ(w)

)
(v) = φ(v) holds for all v ∈ V , we have proved

Φ(w) = φ. The theorem is proved.
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pr-alb Proposition 2.2. Let V and W be vector spaces over F and let V be finite-
dimensional. If Ψ : V → W is an anti-linear bijection, then W is finite-
dimensional and dimV = dimW .

Proof. Let n = dimV and let (u1, . . . , un) be a basis for V . We will prove
that

(
Ψ(u1), . . . ,Ψ(un)

)
is a basis for W . First we prove that Ψ(u1), . . . ,Ψ(un)

are linearly independent. For this goal, let α1, . . . , αn ∈ F be such that

α1Ψ(u1) + · · ·+ αnΨ(un) = 0W .

Since Ψ : V → W is anti-linear, the last equality is equivalent to

Ψ
(
α1u1 + · · ·+ αnun

)
= 0W .

Since anti-linearity of Ψ implies Ψ(0V ) = 0W , and since Ψ is a bijection, we
deduce

α1u1 + · · ·+ αnun = 0V .

Since u1, . . . , un are linearly independent, the last equality implies that for
all k ∈ {1, . . . , n} we have αk = 0F. Therefore for all k ∈ {1, . . . , n} we have
αk = αk = 0F = 0F. This proves linear independence.

Now we prove that Ψ(u1), . . . ,Ψ(un) span W . Let w ∈ W be arbitrary.
Since Ψ : V → W is a surjection there exists v ∈ V such that Ψ(v) = w.
Since the vectors u1, . . . , un span V , there exist α1, . . . , αn ∈ F such that

v = α1u1 + ·+ αnun.

Applying Ψ to both sides of the preceding equality and using that Ψ is
anti-linear, we obtain

w = Ψ(v) = Ψ
(
α1u1 + ·+ αnun

)
= α1Ψ(u1) + · · ·+ αnΨ(un).

Thus, w is a linear combination of Ψ(u1), . . . ,Ψ(un). Since w ∈ W was
arbitrary, the vectors Ψ(u1), . . . ,Ψ(un) span W . This proves that the vectors
Ψ(u1), . . . ,Ψ(un) form a basis for W . Thus dimV = dimW .

Corollary 2.3. Let (V , ⟨ · , · ⟩) be a finite-dimensional inner product space
over F. Then dimV = dimV ∗.

Proof. Since Φ : V → V ∗ from Theorem 2.1 is an anti-linear bijection,
Proposition 2.2 implies that dimV = dimV ∗.

13



The function Φ from Theorem 2.1 is a convenient tool for defining the
adjoint of a linear operator. In the following definition, we will deal with two
inner product spaces (V , ⟨ · , · ⟩V ) and (W , ⟨ · , · ⟩W ). We will use subscripts
to emphasize different inner products and different functions Φ:

ΦV : V → V ∗, ΦW : W → W ∗.

Recall that for every x, v ∈ V we have(
ΦV (v)

)
(x) = ⟨x, v⟩V ,

and for every y, w ∈ W we have(
ΦW (w)

)
(y) = ⟨y, w⟩W .

Let
(
V , ⟨ · , · ⟩V

)
and

(
W , ⟨ · , · ⟩W

)
be two finite-dimensional inner prod-

uct spaces over F. Let T ∈ L (V ,W ). We define the adjoint T ∗ : W → V
of T by

T ∗w = Φ−1
V

(
ΦW (w) ◦ T

)
, w ∈ W . (10) eq-def-T*

Since ΦW and Φ−1
V are anti-linear, T ∗ is linear. For arbitrary α1, α1 ∈ F

and w1, w2 ∈ W we have

T ∗(α1w1 + α2w2) = Φ−1
V

(
ΦW (α1w1 + α2w2) ◦ T

)
= Φ−1

V

((
α1ΦW (w1) + α2ΦW (w2)

)
◦ T
)

= Φ−1
V

(
α1ΦW (w1) ◦ T + α2ΦW (w2) ◦ T

)
= α1Φ

−1
V

(
ΦW (w1) ◦ T

)
+ α2Φ

−1
V

(
ΦW (w2) ◦ T

)
= α1 T

∗w1 + α2 T
∗w2.

Thus, T ∗ ∈ L (W ,V ).
Next we will deduce the most important property of T ∗. By the definition

of T ∗ : W → V , for a fixed arbitrary w ∈ W we have

T ∗w = Φ−1
V

(
ΦW (w) ◦ T

)
.

This is equivalent to
ΦV

(
T ∗w

)
= ΦW (w) ◦ T,

which is, by the definition of ΦV , equivalent to(
ΦW (w) ◦ T

)
(v) = ⟨v, T ∗w⟩V for all v ∈ V ,

14



which, in turn, is equivalent to(
ΦW (w)

)
(Tv) = ⟨v, T ∗w⟩V for all v ∈ V .

From the definition of ΦW the last statement is equivalent to

⟨Tv,w⟩W = ⟨v, T ∗w⟩V for all v ∈ V .

The reasoning above proves the following proposition.

p-ch-adj Proposition 2.4. Let
(
V , ⟨ · , · ⟩V

)
and

(
W , ⟨ · , · ⟩W

)
be finite-dimensional

inner product spaces over F. Let T ∈ L (V ,W ) and S ∈ L (W ,V ). Then
S = T ∗ if and only if

⟨Tv,w⟩W = ⟨v, Sw⟩V for all v ∈ V , w ∈ W . (11) eq-def-T*e

3 Properties of the adjoint operator

Theorem 3.1. Let
(
U , ⟨ · , · ⟩U

)
,
(
V , ⟨ · , · ⟩V

)
and

(
W , ⟨ · , · ⟩W

)
be finite-

dimensional inner product spaces F. Let S ∈ L (U ,V ) and T ∈ L (V ,W ).
Then (TS)∗ = S∗T ∗.

Proof. By definition for every u ∈ U , v ∈ V and w ∈ W we have

S∗v = Φ−1
U

(
ΦV (v) ◦ S

)
T ∗w = Φ−1

V

(
ΦW (w) ◦ T

)
(TS)∗w = Φ−1

U

(
ΦW (w) ◦ (TS)

)
With this, for arbitrary w ∈ W we calculate

S∗T ∗w = S∗(T ∗w)

= Φ−1
U

(
ΦV

(
Φ−1

V

(
ΦW (w) ◦ T

))
◦ S
)

= Φ−1
U

(
ΦW (w) ◦ T ◦ S

)
= (TS)∗w.

Thus (TS)∗ = S∗T ∗.

A function f : X → X is said to be an involution if it is its own inverse,
that is, if f(f(x)) = x for all x ∈ X.
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th-pr-adj-in Theorem 3.2. Let
(
V , ⟨ · , · ⟩V

)
and

(
W , ⟨ · , · ⟩W

)
be finite-dimensional in-

ner product spaces over F. Then the adjoint mapping

∗ : L (V ,W ) → L (W ,V )

is an anti-linear bijection. Its inverse is the adjoint mapping from L (W ,V )
to L (V ,W ). In particular the adjoint mapping in L (V ,V ) is an anti-linear
involution.

Proof. To prove that ∗ : L (V ,W ) → L (W ,V ) is anti-linear let α, β ∈ F
be arbitrary and let S, T ∈ L (V ,W ) be arbitrary. By the definition of ∗

for arbitrary w ∈ W we have

(αS + βT )∗w = Φ−1
V

(
ΦW (w) ◦ (αS + βT )

)
= Φ−1

V

(
αΦW (w) ◦ S + βΦW (w) ◦ T

)
= αΦ−1

V

(
ΦW (w) ◦ S

)
+ βΦ−1

V

(
ΦW (w) ◦ T

)
= αS∗w + βT ∗w

=
(
αS∗ + βT ∗)w.

Hence (αS + βT )∗ = αS∗ + βT ∗.
To prove that the adjoint mapping ∗ : L (V ,W ) → L (W ,V ) is a

bijection we will use the adjoint mapping ⋆ : L (W ,V ) → L (V ,W ). In
fact we will prove that ⋆ is the inverse of ∗. To this end we will prove that
for all S ∈ L (V ,W ) we have that (S∗)⋆ = S and that for all T ∈ L (W ,V )
we have that (T ⋆)∗ = T .

Here are the proofs. By the definition of the mapping ∗ : L (V ,W ) →
L (W ,V ) for an arbitrary S ∈ L (V ,W ) we have

∀v ∈ V ∀w ∈ W ⟨S∗w, v⟩V = ⟨w, Sv⟩W .

By Proposition 2.4 this identity yields (S∗)⋆ = S. By the definition of the
mapping ⋆ : L (W ,V ) → L (V ,W ) for an arbitrary T ∈ L (W ,V ) we
have

∀w ∈ W ∀v ∈ V ⟨T ∗v, w⟩W = ⟨v, Tw⟩V .

By Proposition 2.4 this identity yields (T ⋆)∗ = T .

th-pr-adj Theorem 3.3. Let
(
V , ⟨ · , · ⟩V

)
and

(
W , ⟨ · , · ⟩W

)
be finite-dimensional in-

ner product spaces over F. The following statements hold.

(i) nul(T ∗) = (ranT )⊥.
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(ii) ran(T ∗) = (nulT )⊥.

(iii) nul(T ) = (ranT ∗)⊥.

(iv) ran(T ) = (nulT ∗)⊥.

th-adj-mat Theorem 3.4. Let
(
V , ⟨ · , · ⟩V

)
and

(
W , ⟨ · , · ⟩W

)
be finite-dimensional in-

ner product spaces over F. Let B and C be orthonormal bases of
(
V , ⟨ · , · ⟩V

)
and

(
W , ⟨ · , · ⟩W

)
, respectively, and let T ∈

(
V , ⟨ · , · ⟩V

)
. Then MC

B(T ∗) is
the conjugate transpose of the matrix MB

C (T ).

Proof. Let B = {v1, . . . , vm} and C = {w1, . . . , wn} be orthonormal bases
from the theorem. Let i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Then the term in
the j-th column and the i-th row of the n×m matrix MB

C (T ) is ⟨Tvj , wi⟩,
while the term in the i-th column and the j-th row of the m×n matrix
MC

B(T ∗) is

⟨T ∗wi, vj⟩ = ⟨wi, T vj⟩ = ⟨Tvj , wi⟩.

This proves the claim.

le-Uinv Lemma 3.5. Let V be a vector space over F and let ⟨ · , · ⟩ be an inner
product on V . Let U be a subspace of V and let T ∈ L (V ). The subspace
U is invariant under T if and only if the subspace U ⊥ is invariant under
T ∗.

Proof. By the definition of adjoint we have

⟨Tu, v⟩ = ⟨u, T ∗v⟩ (12) eq-ad-1

for all u, v ∈ V . Assume TU ⊆ U . From (12) we get

0 = ⟨Tu, v⟩ = ⟨u, T ∗v⟩ ∀u ∈ U and ∀v ∈ U ⊥.

Therefore, T ∗v ∈ U ⊥ for all v ∈ U ⊥. This proves “only if” part.
The proof of the “if” part is similar.

4 Self-adjoint and normal operators

Definition 4.1. Let (V , ⟨ · , · ⟩) be an inner product space over F. An oper-
ator T ∈ L (V ) is said to be self-adjoint if T = T ∗. An operator T ∈ L (V )
is said to be normal if TT ∗ = T ∗T .

Proposition 4.2. Let (V , ⟨ · , · ⟩) be an inner product space over F. All
eigenvalues of a self-adjoint T ∈ L (V ) are real.
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Proof. Let λ ∈ F be an eigenvalue of T and let Tv = λv with a nonzero
v ∈ V . Then

λ⟨v, v⟩ = ⟨Tv, v⟩ = ⟨v, Tv⟩ = ⟨v, λv⟩ = λ⟨v, v⟩.

Since ⟨v, v⟩ > 0 the preceding equalities yield λ = λ.

In the rest of this section we will consider only the
scalar field C.

Proposition 4.3 (this is 7.13 in the textbook). Let (V , ⟨ · , · ⟩) be an inner
product space over C. Let T ∈ L (V ). Then T = 0 if and only if ⟨Tv, v⟩ = 0
for all v ∈ V .

Proof. Set, [u, v] = ⟨Tu, v⟩ for all u, v ∈ V . Then [ · , · ] is a sesquilinear
form on V . Since ⟨ · , · ⟩ is a positive definite inner product, T = 0 if and
only if for all u, v ∈ V we have ⟨Tu, v⟩ = 0, which in turn is equivalent
to for all u, v ∈ V we have [u, v] = 0. By Corollary 10.4 [u, v] = 0 for all
u, v ∈ V is equivalent to [u, u] = 0 for all u ∈ V , that is to ⟨Tu, u⟩ = 0 for
all u ∈ V .

Proposition 4.4 (this is 7.14 in the textbook). Let V be a vector space
over C and let ⟨ · , · ⟩ be an inner product on V . An operator T ∈ L (V ) is
self-adjoint if and only if ⟨Tv, v⟩ ∈ R for all v ∈ V .

Proof.

th-no-iff Theorem 4.5 (this is 7.20 in the textbook). Let V be a vector space over
C and let ⟨ · , · ⟩ be an inner product on V . An operator T ∈ L (V ) is normal
if and only if ∥Tv∥ = ∥T ∗v∥ for all v ∈ V .

co-noT-sym-Sp Corollary 4.6 (this is 7.21 in the textbook). Let V be a vector space over
C, let ⟨ · , · ⟩ be an inner product on V and let T ∈ L (V ) be normal. Then
for every λ ∈ C we have

nul
(
T ∗ − λI

)
= nul(T − λI).

In particular for all λ ∈ C we have that λ is an eigenvalue of T if and only
if λ is an eigenvalue of T ∗.
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5 The Spectral Theorem

In the rest of the notes we will consider only the
scalar field C.

th-charnor Theorem 5.1. Let (V , ⟨ · , · ⟩) be an inner product space over C. Let T ∈
L (V ). Then V has an orthonormal basis which consists of eigenvectors of
T if and only if T is normal. In other words, T is normal if and only if
there exists an orthonormal basis B of V such that MB

B(T ) is a diagonal
matrix.

Proof. Let n = dim(V ). Assume that T is normal. By Corollary 1.13 there
exists an orthonormal basis B = {u1, . . . , un} of V such that MB

B(T ) is
upper-triangular. That is,

MB
B(T ) =


⟨Tu1, u1⟩ ⟨Tu2, u1⟩ · · · ⟨Tun, u1⟩

0 ⟨Tu2, u2⟩ · · · ⟨Tun, u2⟩
...

...
. . .

...
0 0 · · · ⟨Tun, un⟩

 , (13) eq-MBBut

or, equivalently,

Tuk =

k∑
j=1

⟨Tuk, uj⟩uj for all k ∈ {1, . . . , n}. (14) eq-Tuk

By Theorem 3.4 we have

MB
B(T ∗) =


⟨Tu1, u1⟩ 0 · · · 0

⟨Tu2, u1⟩ ⟨Tu2, u2⟩ · · · 0
...

...
. . .

...

⟨Tun, u1⟩ ⟨Tun, u2⟩ · · · ⟨Tun, un⟩

 .

Consequently,

T ∗uk =
n∑

j=k

⟨Tuj , uk⟩uj for all k ∈ {1, . . . , n}. (15) eq-T*uk

Since T is normal, Theorem 4.5 implies

∥Tuk∥2 = ∥T ∗uk∥2 for all k ∈ {1, . . . , n}.
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Together with (14) and (15) the last identities become

k∑
j=1

∣∣⟨Tuk, uj⟩∣∣2 = n∑
j=k

∣∣⟨Tuj , uk⟩∣∣2 for all k ∈ {1, . . . , n},

or, equivalently,

k∑
j=1

∣∣⟨Tuk, uj⟩∣∣2 = n∑
j=k

∣∣⟨Tuj , uk⟩∣∣2 for all k ∈ {1, . . . , n}. (16) eq-sums-eq

The equality in (16) corresponding to k = 1 reads

∣∣⟨Tu1, u1⟩∣∣2 = ∣∣⟨Tu1, u1⟩∣∣2 + n∑
j=2

∣∣⟨Tuj , u1⟩∣∣2,
which implies

⟨Tuj , u1⟩ = 0 for all j ∈ {2, . . . , n} (17) eq-1st-row

In other words we have proved that the off-diagonal entries in the first row
of the upper triangular matrix MB

B(T ) in (13) are all zero.
Substituting the value ⟨Tu2, u1⟩ = 0 (from (17)) in the equality in (16)

corresponding to k = 2 reads we get∣∣⟨Tu2, u2⟩∣∣2 = ∣∣⟨Tu2, u2⟩∣∣2 + n∑
j=3

∣∣⟨Tuj , u2⟩∣∣2,
which implies

⟨Tuj , u2⟩ = 0 for all j ∈ {3, . . . , n} (18) eq-2nd-row

In other words we have proved that the off-diagonal entries in the second
row of the upper triangular matrix MB

B(T ) in (13) are all zero.
Repeating this reasoning n− 2 more times would prove that all the off-

diagonal entries of the upper triangular matrixMB
B(T ) in (13) are zero. That

is, MB
B(T ) is a diagonal matrix.

To prove the converse, assume that there exists an orthonormal basis
B = {u1, . . . , un} of V which consists of eigenvectors of T . That is, for
some λj ∈ C,

Tuj = λjuj for all j ∈ {1, . . . , n},

Then, for arbitrary v ∈ V we have

Tv = T

(
n∑

j=1

⟨v, uj⟩uj

)
=

n∑
j=1

⟨v, uj⟩Tuj =
n∑

j=1

λj⟨v, uj⟩uj . (19)
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Therefore, for arbitrary k ∈ {1, . . . , n} we have

⟨Tv, uk⟩ = λk⟨v, uk⟩. (20)

Now we calculate

T ∗Tv =
n∑

j=1

⟨T ∗Tv, uj⟩uj

=

n∑
j=1

⟨Tv, Tuj⟩uj

=

n∑
j=1

⟨Tv, Tuj⟩uj

=
n∑

j=1

λj⟨Tv, uj⟩uj

=
n∑

j=1

λjλj⟨v, uj⟩uj .

Similarly,

TT ∗v = T

(
n∑

j=1

⟨T ∗v, uj⟩uj

)

=
n∑

j=1

⟨v, Tuj⟩Tuj

=

n∑
j=1

⟨v, λjuj⟩λjuj

=

n∑
j=1

λjλj⟨v, uj⟩uj .

Thus, we proved T ∗Tv = TT ∗v, that is, T is normal.

A different proof of the “only if” part of the spectral theorem for normal
operators follows. In this proof we use δij to represent the values of the
Kronecker delta function:

δ : N× N → {0, 1}

such that for all i, j ∈ N we have δij = 1 if and only if i = j.
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Proof. Set n = dimV . We first prove “only if” part. Assume that T is
normal. Set

K =

{
k ∈ {1, . . . , n} :

∃w1, . . . , wk ∈ V and ∃λ1, . . . , λk ∈ C
such that ⟨wi, wj⟩ = δij and Twj = λjwj

for all i, j ∈ {1, . . . , k}

}

Clearly 1 ∈ K. Since K is finite, m = maxK exists. Clearly, m ≤ n.
Next we will prove that k ∈ K and k < n implies that k + 1 ∈ K.

Assume k ∈ K and k < n. Let w1, . . . , wk ∈ V and λ1, . . . , λk ∈ C be such
that ⟨wi, wj⟩ = δij and Twj = λjwj for all i, j ∈ {1, . . . , k}. Set

W = span{w1, . . . , wk}.

Since w1, . . . , wk are eigenvectors of T we have TW ⊆ W . By Lemma 3.5,
T ∗(W ⊥) ⊆ W ⊥. Thus, T ∗|W ⊥ ∈ L

(
W ⊥). Since dimW = k < n we

have dim
(
W ⊥) = n − k ≥ 1. Since W ⊥ is a complex vector space the

operator T ∗|W ⊥ has an eigenvalue µ with the corresponding unit eigenvector
u. Clearly, u ∈ W ⊥ and T ∗u = µu. Since T ∗ is normal, Corollary 4.6 yields
that Tu = µu. Since u ∈ W ⊥ and Tu = µu, setting wk+1 = u and λk+1 = µ
we have

⟨wi, wj⟩ = δij and Twj = λjwj for all i, j ∈ {1, . . . , k, k + 1}.

Thus k + 1 ∈ K. Consequently, k < m. Thus, for k ∈ K, we have proved
the implication

k < n ⇒ k < m.

The contrapositive of this implication is: For k ∈ K, we have

k ≥ m ⇒ k ≥ n.

In particular, for m ∈ K we have m = m implies m ≥ n. Since m ≤ n is also
true, this proves that m = n. That is, n ∈ K. This implies that there exist
u1, . . . , un ∈ V and λ1, . . . , λn ∈ C such that ⟨ui, uj⟩ = δij and Tuj = λjuj
for all i, j ∈ {1, . . . , n}.

Since u1, . . . , un are orthonormal, they are linearly independent. Since
n = dimV , it turns out that u1, . . . , un form a basis of V . This completes
the proof.
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6 Invariance under a normal operator

th-normo-inv Theorem 6.1. Let (V , ⟨ · , · ⟩) be an inner product space over C. Let T ∈
L (V ) be normal and let U be a subspace of V . Then

TU ⊆ U ⇔ TU ⊥ ⊆ U ⊥

Recall that we have previously proved that for any T ∈ L (V ) we have

TU ⊆ U ⇔ T ∗U ⊥ ⊆ U ⊥.

So, the claim of the theorem gives an additional information about a normal
operator.

Proof. Assume TU ⊆ U . We know V = U ⊕ U ⊥. Let u1, . . . , um be
an orthonormal basis of U and um+1, . . . , un be an orthonormal basis of
U ⊥. Then u1, . . . , un is an orthonormal basis of V . If j ∈ {1, . . . ,m} then
uj ∈ U , so Tuj ∈ U . Hence

Tuj =
m∑
k=1

⟨Tuj , uk⟩uk.

Also, clearly,

T ∗uj =
n∑

k=1

⟨T ∗uj , uk⟩uk.

Since T is normal, by Theorem 4.5 we have ∥Tuj∥2 = ∥T ∗uj∥2 for all j ∈
{1, . . . ,m}. Starting with this, we calculate

m∑
j=1

∥Tuj∥2 =
m∑
j=1

∥T ∗uj∥2

Pythag. thm. =
m∑
j=1

n∑
k=1

|⟨T ∗uj , uk⟩|2

group terms =
m∑
j=1

m∑
k=1

|⟨T ∗uj , uk⟩|2 +
m∑
j=1

n∑
k=m+1

|⟨T ∗uj , uk⟩|2

def. of T ∗ =

m∑
j=1

m∑
k=1

|⟨uj , Tuk⟩|2 +
m∑
j=1

n∑
k=m+1

|⟨T ∗uj , uk⟩|2

|α| = |α| =
m∑
j=1

m∑
k=1

|⟨Tuk, uj⟩|2 +
m∑
j=1

n∑
k=m+1

|⟨T ∗uj , uk⟩|2
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order of sum. =
m∑
k=1

m∑
j=1

|⟨Tuk, uj⟩|2 +
m∑
j=1

n∑
k=m+1

|⟨T ∗uj , uk⟩|2

Pythag. thm. =
m∑
k=1

∥Tuk∥2 +
m∑
j=1

n∑
k=m+1

|⟨T ∗uj , uk⟩|2.

From the above equality we deduce that
∑m

j=1

∑n
k=m+1 |⟨T ∗uj , uk⟩|2 = 0. As

each term is nonnegative, we conclude that |⟨T ∗uj , uk⟩|2 = |⟨uj , Tuk⟩|2 = 0,
that is,

⟨uj , Tuk⟩ = 0 for all j ∈ {1, . . . ,m}, k ∈ {m+ 1, . . . , n}. (21) eq-T*-bv

Let now w ∈ U ⊥ be arbitrary. Then

Tw =
n∑

j=1

〈
Tw, uj

〉
uj

use w =

n∑
k=m+1

⟨w, uk⟩uk =
n∑

j=1

〈
n∑

k=m+1

⟨w, uk⟩Tuk, uj

〉
uj

=
n∑

j=1

n∑
k=m+1

⟨w, uk⟩
〈
Tuk, uj

〉
uj

by (21) =

n∑
j=m+1

n∑
k=m+1

⟨w, uk⟩
〈
Tuk, uj

〉
uj

Hence Tw ∈ U ⊥, that is TU ⊥ ⊆ U ⊥.

A different proof follows. The proof below uses the property of polyno-
mials that for arbitrary distinct α1, . . . , αm ∈ C and arbitrary β1, . . . , βm ∈
C there exists a polynomial p(z) ∈ C[z]<m such that p(αj) = βj , j ∈
{1, . . . ,m}.

Proof. Assume T is normal. By Theorem 5.1 there exists an orthonormal
basis {u1, . . . , un} and {λ1, . . . , λn} ⊆ C such that

Tuj = λjuj for all j ∈ {1, . . . , n}.

Consequently,
T ∗uj = λjuj for all j ∈ {1, . . . , n}.

24



Let v be arbitrary in V . Applying T and T ∗ to the expansion of v in the
basis vectors {u1, . . . , un} we obtain

Tv =
n∑

j=1

λj⟨v, uj⟩uj

and

T ∗v =
n∑

j=1

λj⟨v, uj⟩uj .

Let #{λ1, . . . , λn} = m. That is, assume that T has m distinct eigenvalues.
Let p(z) = a0+a1z+ · · ·+amzm ∈ C[z] be the unique polynomial such that

p(λj) = λj for all j ∈ {1, . . . , n}.

Clearly, for all j ∈ {1, . . . , n} we have

p(T )uj = p(λj)uj = λjuj = T ∗uj .

Therefore p(T ) = T ∗.
Now assume TU ⊆ U . Then T kU ⊆ U for all k ∈ N and also αTU ⊆

U for all α ∈ C. Hence p(T )U = T ∗U ⊆ U . The theorem follows from
Lemma 3.5.

Lastly, we review the proof in the book. This proof is in essence very
similar to the first proof. It brings up a matrix representation of T , which
might help us visualize what is going on in the first proof.

Proof. Assume TU ⊆ U . By Lemma 3.5 T ∗(U ⊥) ⊆ U ⊥.
Now V = U ⊕U ⊥. Let n = dim(V ). Let {u1, . . . , um} be an orthonor-

mal basis of U and let {um+1, . . . , un} be an orthonormal basis of U ⊥.
Then B = {u1, . . . , un} is an orthonormal basis of V . Since Tuj ∈ U for
all j ∈ {1, . . . ,m} we have

MB
B(T ) =

u1
...

um
um+1

...
un



⟨Tu1, u1⟩ · · · ⟨Tum, u1⟩
...

. . .
... B

⟨Tu1, um⟩ · · · ⟨Tum, um⟩

0 C


Tu1 · · · Tum Tum+1 · · · Tun

(22) eq-MBBTis

25



Here we prepended the basis vectors on the left hand side of the matrix
and we appended the images of the basis vectors under T below the matrix to
emphasize that an appended vector Tuk is expended as a linear combination
of the basis vectors which are prepended with the coefficients given in the
k-th column of the matrix.

For k ∈ {1, . . . ,m} we have Tuk =
∑m

j=1⟨Tuk, uj⟩uj . By the Pythagorean
Theorem

∥Tuk∥2 =
m∑
j=1

|⟨Tuk, uj⟩|2 and ∥T ∗uk∥2 =
n∑

j=1

|⟨T ∗uk, uj⟩|2.

Since T is normal, ∥Tuk∥2 = ∥T ∗uk∥2 for all k ∈ {1, . . . ,m}, and therefore∑m
k=1 ∥Tuk∥2 =

∑m
k=1 ∥T ∗uk∥2. Consequently,

m∑
k=1

m∑
j=1

|⟨Tuk, uj⟩|2 =
m∑
k=1

n∑
j=1

|⟨T ∗uk, uj⟩|2

=

m∑
k=1

m∑
j=1

|⟨T ∗uk, uj⟩|2 +
m∑
k=1

n∑
j=m+1

|⟨T ∗uk, uj⟩|2

=

m∑
k=1

m∑
j=1

|⟨uk, Tuj⟩|2 +
m∑
k=1

n∑
j=m+1

|⟨T ∗uk, uj⟩|2.

We have
m∑
k=1

m∑
j=1

|⟨Tuk, uj⟩|2 =
m∑
k=1

m∑
j=1

|⟨uk, Tuj⟩|2

since these sums consist of identical terms. Hence, the last two displayed
equalities yield

m∑
k=1

n∑
j=m+1

|⟨T ∗uk, uj⟩|2 = 0

As the last double sum consists of the nonnegative terms we deduce that for
all k ∈ {1, . . . ,m} and for all j ∈ {m+ 1, . . . , n} we have

0 = |⟨T ∗uk, uj⟩|2 = |⟨uk, Tuj⟩|2 = |⟨Tuj , uk⟩|2.

Hence also ⟨Tuj , uk⟩ = 0 for all k ∈ {1, . . . ,m} and for all j ∈ {m+1, . . . , n}.
This proves that B = 0 in (22). Therefore, Tuj is orthogonal to U for all
j ∈ {m+ 1, . . . , n}, which implies T

(
U ⊥) ⊆ U ⊥.

Theorem 6.1 and Lemma 3.5 yield the following corollary.
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Corollary 6.2. Let (V , ⟨ · , · ⟩) be an inner product space over C. Let T ∈
L (V ) be normal and let U be a subspace of V . The following statements
are equivalent:

(a) TU ⊆ U .

(b) T
(
U ⊥) ⊆ U ⊥.

(c) T ∗U ⊆ U .

(d) T ∗(U ⊥) ⊆ U ⊥.

If any of the for above statements are true, then the following statements
are true

(e)
(
T
∣∣
U

)∗
= T ∗∣∣

U
.

(f)
(
T
∣∣
U⊥

)∗
= T ∗∣∣

U⊥.

(g) T
∣∣
U

is a normal operator on U .

(h) T
∣∣
U⊥ is a normal operator on U⊥.

7 Polar Decomposition

There are two distinct subsets of C. Those are the set of nonnegative real
numbers, denoted by R≥0, and the set of complex numbers of modulus 1,
denoted by T. An important tool in complex analysis is the polar represen-
tation of a complex number: for every α ∈ C there exists r ∈ R≥0 and u ∈ T
such that α = r u.

In this section we will prove that an analogous statement holds for op-
erators in L (V ), where (V , ⟨ · , · ⟩) is an inner product space over C. The
initial step in proving this analogous result involves identifying operators in
L (V ) that correspond to nonnegative real numbers and identifying opera-
tors in L (V ) that correspond to complex numbers with modulus 1. That
is done in the following two definitions.

Definition 7.1. Let (V , ⟨ · , · ⟩) be an inner product space over C. An
operator Q ∈ L (V ) is said to be nonnegative if ⟨Qv, v⟩ ≥ 0 for all v ∈ V .

Note that Axler uses the term “positive” instead of nonnegative. We
think that nonnegative is more appropriate, since 0L (V ) is a nonnegative
operator. There is nothing positive about any zero, we think.
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Proposition 7.2. Let (V , ⟨ · , · ⟩) be an inner product space over C and let
T ∈ L (V ). Then T is nonnegative if and only if T is normal and all its
eigenvalues are nonnegative.

th-sqrt-nno Theorem 7.3. Let (V , ⟨ · , · ⟩) be an inner product space over C. Let Q ∈
L (V ) be a nonnegative operator, let u1, . . . , un be an orthonormal basis of
V , and let λ1, . . . , λn ∈ R≥0 be such that

Quj = λjuj for all j ∈ {1, . . . , n}. (23) eq-sqrt-nno-1

The following statements are equivalent.

i-sqrt-nno-a (a) S ∈ L (V ) is a nonnegative operator and S2 = Q.

i-sqrt-nno-b (b) For every λ ∈ R≥0 we have

nul(Q− λI) = nul(S −
√
λI).

i-sqrt-nno-c (c) For every v ∈ V we have

Sv =
n∑

j=1

√
λj⟨v, uj⟩uj .

Proof. (a) ⇒ (b). We first prove that nulQ = nulS. Since Q = S2 we have
nulS ⊆ nulQ. Let v ∈ nulQ, that is, let Qv = S2v = 0. Then ⟨S2v, v⟩ = 0.
Since S is nonnegative it is self-adjoint. Therefore, ⟨S2v, v⟩ = ⟨Sv, Sv⟩ =
∥Sv∥2. Hence, ∥Sv∥ = 0, and thus Sv = 0. This proves that nulQ ⊆ nulS
and (b) is proved for λ = 0.

Let λ > 0. Then the operator S +
√
λI is invertible. To prove this, let

v ∈ V \ {0V } be arbitrary. Then ∥v∥ > 0 and therefore〈
(S +

√
λI)v, v

〉
= ⟨Sv, v⟩+

√
λ⟨v, v⟩ ≥

√
λ∥v∥2 > 0.

Thus, v ̸= 0 implies (S+
√
λI)v ̸= 0. This proves the injectivity of S+

√
λI.

To prove nul(Q−λI) = nul(S−
√
λI), let v ∈ V be arbitrary and notice

that (Q − λI)v = 0 if and only if
(
S2 −

√
λ
2
I
)
v = 0, which, in turn, is

equivalent to (
S +

√
λI
)(
S −

√
λI
)
v = 0.

Since S+
√
λI is injective, the last equality is equivalent to

(
S−

√
λI
)
v = 0.

This completes the proof of (b).
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(b)⇒ (c). Let u1, . . . , un be an orthonormal basis of V and let λ1, . . . , λn ∈
R≥0 be such that (23) holds. For arbitrary j ∈ {1, . . . , n} (23) yields
uj ∈ nul(Q− λjI). By (b), uj ∈ nul(S −

√
λjI). Thus

Suj =
√

λjuj for all j ∈ {1, . . . , n}. (24) eq-sqrt-nno-2

Let v =
∑n

j=1⟨v, uj⟩uj be arbitrary vector in V . Then, the linearity of S
and (24) imply the claim in (c).

The implication (c) ⇒ (a) is straightforward.

The implication (a) ⇒ (c) of Theorem 7.3 yields that for a given non-
negative Q a nonnegative S such that Q = S2 is uniquely determined. The
common notation for this unique S is

√
Q.

Definition 7.4. Let (V , ⟨ · , · ⟩) be an inner product space over C. An
operator U ∈ L (V ) is said to be unitary if U∗U = I.

pr-uop Proposition 7.5. Let (V , ⟨ · , · ⟩) be an inner product space over C and let
T ∈ L (V ). The following statements are equivalent.

(a) T is unitary.

(b) For all u, v ∈ V we have ⟨Tu, Tv⟩ = ⟨u, v⟩.
(c) For all v ∈ V we have ∥Tv∥ = ∥v∥.
(d) T is normal and all its eigenvalues have modulus 1.

Theorem 7.6 (Polar Decomposition in L (V )). Let (V , ⟨ · , · ⟩) be an inner
product space over C. For every T ∈ L (V ) there exist a unitary operator
U in L (V ) and a unique nonnegative Q ∈ L (V ) such that T = UQ; U is
unique if and only if T is invertible.

Proof. First, notice that the operator T ∗T is nonnegative: for every v ∈ V
we have

⟨T ∗Tv, v⟩ = ⟨Tv, Tv⟩ = ∥Tv∥2 ≥ 0.

To prove the uniqueness of Q assume that T = UQ with U unitary and
Q nonnegative. Then Q∗ = Q, U∗ = U−1 and therefore, T ∗T = Q∗U∗UQ =
QU−1UQ = Q2. Since Q is nonnegative we have Q =

√
T ∗T .

Set Q =
√
T ∗T . By Theorem 7.3(b) we have nulQ = nul(T ∗T ). More-

over, we have nul(T ∗T ) = nulT . The inclusion nulT ⊆ nul(T ∗T ) is trivial.
For the converse inclusion notice that v ∈ nul(T ∗T ) implies T ∗Tv = 0, which
yields ⟨T ∗Tv, v⟩ = 0 and thus ⟨Tv, Tv⟩ = 0. Consequently, ∥Tv∥ = 0, that
is Tv = 0, yielding v ∈ nulT . So,

nulQ = nul(T ∗T ) = nulT (25) eq-nQ=nT
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is proved.
First assume that T is invertible. By (25) and the Nullity-Rank Theo-

rem, Q is invertible as well. Therefore T = UQ is equivalent to U = TQ−1 in
this case. Since Q is unique, this proves the uniqueness of U . Set U = TQ−1.
Since Q is self-adjoint, Q−1 is also self-adjoint. Therefore U∗ = Q−1T ∗,
yielding U∗U = Q−1T ∗TQ−1 = Q−1Q2Q−1 = I. That is, U is unitary.

Now assume that T is not invertible. Since by (25) we have nulQ =
nulT , the Nullity-Rank Theorem implies that dim(ranQ) = dim(ranT ).
Notice that nulQ = (ranQ)⊥ since Q is self-adjoint. Since T is not invert-
ible, dim(ranQ) = dim(ranT ) < dimV , implying that

dim(nulQ) = dim
(
(ranQ)⊥

)
= dim

(
(ranT )⊥

)
> 0. (26) eq-drQp=drTp

We have two orthogonal decompositions of V :

V = (ranQ)⊕ (nulQ) = (ranT )⊕
(
(ranT )⊥

)
.

These two orthogonal decompositions are compatibile in the sense that the
corresponding components have same dimensions, that is

dim(ranQ) = dim(ranT ) and dim(nulQ) = dim
(
(ranT )⊥

)
.

We will define U : V → V in two steps based on these two orthogonal
decompositions. First we define the action of U on ranQ, that is we define
the operator Ur : ranQ → ranT , then we define an operator Un : nulQ →
(ranT )⊥.

We define Ur : ranQ → ranT in the following way: Let u ∈ ranQ be
arbitrary and let x ∈ V be such that u = Qx. Then we set

Uru = Tx.

First we need to show that Ur is well defined. Let x1, x2 ∈ V be such that
u = Qx1 = Qx2. Then, x1 − x2 ∈ nulQ. Since nulQ = nulT , we thus have
x1 − x2 ∈ nulT . Consequently, Tx1 = Tx2, that is Ur is well defined.

Next we prove that Ur is angle-preserving. Let u1, u2 ∈ ranQ be arbi-
trary and let x1, x1 ∈ V be such that u1 = Qx1 and u2 = Qx2 and calculate

⟨Uru1, Uru2⟩ =
〈
Ur(Qx1), Ur(Qx2)

〉
by definition of Ur = ⟨Tx1, Tx2⟩

by definition of adjoint = ⟨T ∗Tx1, x2⟩

by definition of Q = ⟨Q2x1, x2⟩
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since Q is self-adjoint = ⟨Qx1, Qx2⟩

by definition of x1, x2 = ⟨u1, u2⟩

Thus Ur : ranQ → ranT is angle-preserving.
Next we define an angle-preserving operator

Un : nulQ → (ranT )⊥.

By (26), we can set

m = dim(nulQ) = dim
(
(ranT )⊥

)
> 0.

Let e1, . . . , em be an orthonormal basis on nulQ and let f1, . . . , fm be an
orthonormal basis on (ranT )⊥. For arbitrary w ∈ nulQ define

Unw = Un

( m∑
j=1

⟨w, ej⟩ej
)

:=
m∑
j=1

⟨w, ej⟩fj .

Then, for w1, w2 ∈ nulQ we have

⟨Unw1, Unw2⟩ =
〈 m∑

i=1

⟨w1, ei⟩fi,
m∑
j=1

⟨w2, ej⟩fj
〉

=

m∑
j=1

⟨w1, ej⟩⟨w2, ej⟩

= ⟨w1, w2⟩.

Hence Un is angle-preserving on (ranQ)⊥.
Since the orthomormal bases in the definition of Un were arbitrary and

since m > 0, the operator Un is not unique.
Finally we define U : V → V as a direct sum of Ur and Un. Recall that

V = (ranQ)⊕ (nulQ).

Let v ∈ V be arbitrary. Then there exist unique u ∈ (ranQ) and w ∈ (nulQ)
such that v = u+ w. Set

Uv = Uru+ Unw.

We claim that U is angle-preserving. Let v1, v2 ∈ V be arbitrary and let
vi = ui +wi with ui ∈ (ranQ) and wi ∈ (nulQ) with i ∈ {1, 2}. Notice that

⟨v1, v2⟩ = ⟨u1 + w1, u2 + w2⟩ = ⟨u1, u2⟩+ ⟨w1, w2⟩, (27) eq-pom-1
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since u1, u2 are orthogonal to w1, w2. Similarly

⟨Uru1 + Unw1, Uru2 + Unw2⟩ = ⟨Uru1, Uru2⟩+ ⟨Unw1, Unw2⟩, (28) eq-pom-2

since Uru1, Uru2 ∈ (ranT ) and Unw1, Unw2 ∈ (ranT )⊥. Now we calculate,
starting with the definition of U ,

⟨Uv1, Uv2⟩ = ⟨Uru1 + Unw1, Uru2 + Unw2⟩

by (28) = ⟨Uru1, Uru2⟩+ ⟨Unw1, Unw2⟩

Ur and Un are angle-preserving = ⟨u1, u2⟩+ ⟨w1, w2⟩

by (27) = ⟨v1, v2⟩.

Hence U is angle-preserving and by Proposition 7.5 we have that U is uni-
tary.

Finally we show that T = UQ. Let v ∈ V be arbitrary. Then Qv ∈
ranQ. By definitions of U and Ur we have

UQv = UrQv = Tv.

Thus T = UQ, where U is unitary and Q is nonnegative.

8 Singular Value Decomposition

The following theorem is long. It deals with an arbitrary nonzero operator
between finite-dimensional inner product spaces over C. Its main parts are
(I) and (IV). Part (I) establishes the existence of a Singular Value Decom-
position, while in Part (IV), we prove the existence and uniqueness of the
Moore-Penrose inverse for such an operator.

th-svd Theorem 8.1. Let m,n ∈ N. Let (V , ⟨ · , · ⟩V ) and (W , ⟨ · , · ⟩W ) be finite-
dimensional inner product spaces over C such that m = dimV and n =
dimW . Let T ∈ L (V ,W ) be a nonzero operator. Then there exist r ∈ N
such that r ≤ min{m,n}, positive scalars σ1, . . . , σr and orthonormal bases
B = {v1, . . . , vm} of V and C = {w1, . . . , wn} of W such that the following
statements hold:

th-svd-i1 (I) For every v ∈ V we have

Tv =
r∑

j=1

σj⟨v, vj⟩V wj . (29) eq-svd
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th-svd-i1a (II) The top left block corner of the n×m matrix MB
C (T ), which is of size

r × r, is a diagonal matrix with positive diagonal entries σ1, . . . , σr.
All other entries of MB

C (T ) are equal to 0. That is,

MB
C (T ) =

r


n− r





σ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · σr 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


︸ ︷︷ ︸

r
︸ ︷︷ ︸

m− r

n×m matrix
with a diagonal
r×r top left block
and with all other
entries equal to 0.

Or, in block-matrix notation

MB
C (T ) =

[
Σr 0

0 0

]
, (n×m matrix)

where Σr is an r × r diagonal matrix with positive entries σ1, . . . , σr
on the diagonal and the zero matrices of the appropriate sizes.

th-svd-i2 (III) For every w ∈ W we have

T ∗w =
r∑

j=1

σj⟨w,wj⟩W vj . (30) eq-svd*

Equivalently,

MC
B(T ∗) =

[
Σr 0

0 0

]
, (m× n matrix)

th-svd-i3 (IV) Let S ∈ L (W ,V ). The following three statements are equivalent.

th-svd-i31 (i) S satisfies the following four equations

TST = T, STS = S, (TS)∗ = TS, (ST )∗ = ST, (31) eq-MPiS

th-svd-i32 (ii) For every w ∈ W we have

Sw =
r∑

j=1

1

σj
⟨w,wj⟩W vj . (32) eq-svdMPi
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th-svd-i33 (iii)

MC
B(S) =

[
Σ−1
r 0

0 0

]
. (m× n matrix)

Proof. (I) Let T ∗ ∈ L (W ,V ) be the adjoint of T . Since for all v ∈ V we
have

⟨T ∗Tv, v⟩V = ⟨Tv, Tv⟩W ≥ 0,

the operator T ∗T ∈ L (V ) is nonnegative, and, as such, self-adjoint with
the nonnegative eigenvalues λ1, . . . , λn. We assume that the eigenvalues are
ordered in nonincreasing order λ1 ≥ · · · ≥ λn. Since T ̸= 0L (V ) we have
λ1 > 0. Set

r = max
{
k ∈ {1, . . . , n} : λk > 0

}
. (33) eq-rankr

Thus, for all k ∈ {1, . . . , n}, if k ≤ r, then λk > 0, and, if k > r, then
λk = 0. Set

σk =
√

λk, k ∈ {1, . . . , r}. (34) eq-svs

Since T ∗T is a self-adjoint operator on V , there exists an orthonormal
basis B = (v1, . . . , vm) of V such that

∀k ∈ {1, . . . , n} T ∗Tvk = λkvk. (35) eq-tstep

Recall that

nul(T ) = nul(T ∗T ) and ran(T ∗) = ran(T ∗T )

It follows from the definition of r in (33) and (35) that

nul(T ) = nul(T ∗T ) = span
{
vk : k ∈ {1, . . . , n} ∧ k > r

}
.

Since T ∗T is self-adjoint and since B is an orthonormal basis of V , (33) and
(35) imply

ran(T ∗) = ran(T ∗T ) =
(
nul(T ∗T )

)⊥
= span

{
vk : k ∈ {1, . . . , n} ∧ k ≤ r

}
.

Therefore
r = dim ran(T ∗).

Notice that for all k ∈ {1, . . . , r} we have

0 < λk = (σk)
2 = λk⟨vk, vk⟩V = ⟨T ∗Tvk, vk⟩V = ⟨Tvk, T vk⟩W = ∥Tvk∥2W ,
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and define r unit vectors in ran(T ) ⊆ W as follows

wk =
1

σk
Tvk, k ∈ {1, . . . , r}.

The following calculation shows that the vectors w1, . . . , wr are mutually
orthogonal. Let j, k ∈ {1, . . . , r} be arbitrary and such that j ̸= k. Then

⟨wj , wk⟩W =
1

σjσk
⟨Tvj , T vk⟩W =

1

σjσk
⟨T ∗Tvj , vk⟩V =

λj

σjσk
⟨vj , vk⟩V = 0,

since B is an orhonormal basis for V . Consequently, w1, . . . , wr are linearly
independent in W . Hence, r ≤ min{m,n}.

Since
r + dimnul(T ) = m = dimV

and, by the Nullity-Rank Theorem,

dimnul(T ) + dim ran(T ) = m = dimV ,

we deduce that r = dim ran(T ). Hence {w1, . . . , wr} is an orthonormal basis

for ran(T ). If ran(T ) is a proper subspace of W , since
(
ran(T )

)⊥
= nul(T ∗),

choosing wr+1, . . . , wn to be an orthonormal basis for nul(T ∗) we obtain an
orthonormal basis C = {w1, . . . , wn} for W . Let v ∈ V be arbitrary and
calculate

Tv = T

(
m∑
k=1

⟨v, vk⟩V vk

)

linearity of T =

m∑
k=1

⟨v, vk⟩V Tvk

definition of r =
r∑

k=1

⟨v, vk⟩V Tvk

definition of wk =

r∑
k=1

⟨v, vk⟩V σkwk

=
r∑

k=1

σk⟨v, vk⟩V wk.

(III) Define S ∈ L (W ,V ) by: For every w ∈ W set

Sw =
r∑

j=1

σj⟨w,wj⟩W vj .
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For an arbitrary v ∈ V and an arbitrary w ∈ W calculate

⟨v, Sw⟩V =

〈
v,

r∑
j=1

σj⟨w,wj⟩W vj

〉
V

=

r∑
j=1

σj⟨w,wj⟩W ⟨v, vj⟩V

=
r∑

j=1

σj⟨v, vj⟩V ⟨wj , w⟩W

=

〈
r∑

j=1

σj⟨v, vj⟩V wj , w

〉
W

= ⟨Tv,w⟩W .

Since v ∈ V and w ∈ W were arbitrary, the preceding calculation proves
that S = T ∗. (citation)

(IV) The equivalence (ii)⇔(iii) follows from the definition of the matrices
Σr and MC

B(S).
To prove (ii)⇒(i), assume (ii). (This is proof of the existence of the

Moore-Penrose inverse.) Then, (30) and (32) imply that ran(S) = ran(T ∗)
and nul(S) = nul(T ∗). Further, (29) and (32) yield

TS = Pran(T ) = Pnul(S)⊥ and ST = Pran(S) = Pnul(T )⊥ .

Since an orthogonal projection is a self-adjoint operator, both TS and ST
are self-adjoint. Since Pran(T )T = T and Pran(S)S = S, we deduce that
TST = T and STS = S. Thus (ii)⇒(i).

To prove (i)⇒(iii), assume (i). (This is proof of the uniqueness of the
Moore-Penrose inverse.) Let

MC
B(S) =

[
A B

C D

]
, (m× n matrix)

where A is an r×r matrix, B is r×(n− r) matrix, C is (m− r)×r matrix,
and D is (m− r)×(n− r) matrix. We proved in (II)

MB
C (T ) =

[
Σr 0

0 0

]
, (n×m matrix)
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with Σr being an r×r diagonal matrix with positive entries on the diagonal
and the zeros of appropriate sizes. Then

MC
C (TS) =

[
ΣrA ΣrB

0 0

]
, (n× n matrix)

and

MB
B (ST ) =

[
AΣr 0

CΣr 0

]
. (m×m matrix)

Since TS and ST are self-adjoint, we deduce that ΣrB = 0 and CΣr = 0.
Consequently, B = 0 and C = 0 as Σr is invertible. Since TST = T , the
operator TS acts as an identity on ran(T ). Therefore ΣrA = Ir. Hence
A = Σ−1

r . Hence,

MC
B(S) =

[
Σ−1
r 0

0 D

]
.

Now the equality S = STS yields[
Σ−1
r 0

0 D

]
= MC

B(S)

= MC
B(STS)

= MC
B(S)MB

C (T )MC
B(S)

=

[
Σ−1
r 0

0 D

][
Σr 0

0 0

][
Σ−1
r 0

0 D

]

=

[
Σ−1
r 0

0 D

][
Ir 0

0 0

]

=

[
Σ−1
r 0

0 0

]
.

Hence, D = 0, and consequently,

MC
B(S) =

[
Σ−1
r 0

0 0

]
.

This proves (i)⇒(iii). Since we proved

(i) ⇒ (iii) ⇒ (ii) ⇒ (i)

proof of (IV) is complete.
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The values σ1, . . . , σr from Theorem 8.1, which are in fact the square-
roots of the positive eigenvalues of T ∗T , are called singular values of T .
Equality (29) or the matrix in (II) is called a singular value decomposition
of T .

For T ∈ L (V ,W ), the unique operator T+ ∈ L (W ,V ) that satisfies
the equalities

TT+T = T, T+TT+ = T+, (TT+)∗ = TT+, (T+T )∗ = T+T. (36) eq-MPi

is called the Moore-Penrose inverse of T ,

9 Problems

Exercise 9.1. Let (V , ⟨ · , · ⟩) be an inner product space and let U be a

subspace of V . Prove that
((

U ⊥)⊥)⊥ = U ⊥.

10 Appendix: Polarization Identity for Sesquilin-
ear Forms

Definition 10.1. Let V be a vector space over a scalar field F. A function

[ · , · ] : V × V → F

is a sesquilinear form on V if the following two conditions are satisfied.

(a) (linearity in the first variable)

∀α, β ∈ F ∀u, v, w ∈ V [αu+ βv,w] = α[u,w] + β[v, w].

(b) (anti-linearity in the second variable)

∀α, β ∈ F ∀u, v, w ∈ V [u, αv + βw] = α[u, v] + β[u,w].

ex-sfnh Example 10.2. Let M ∈ Cn×n be arbitrary. Then

[x,y] = (Mx) · y, x,y ∈ Cn,

is a sesquilinear form on the complex vector space Cn. Here · denotes the
usual dot product in C.
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th-poli Theorem 10.3 (Polarization identity). Let V be a vector space over a scalar
field F and let [ · , · ] : V × V → F be a sesquilinear form on V . If i ∈ F,
then

[u, v] =
1

4

3∑
k=0

ik
[
u+ ikv, u+ ikv

]
(37) eq-pi

for all u, v ∈ V .

Proof. For the proof we expend the sum on the right hand side, ignoring
the fraction 1/4, using the linearity in the first variable and anti-linearity
in the second variable. The resulting expression will have the following four
values of the sesquilinear form: [u, u], [u, v], [v, u], [v, v]. For each of these
values and for each k ∈ {0, 1, 2, 3} we present the corresponding coefficients
in a table with the values of the form in the header and values for each k in
each row:

[u, u] [u, v] [v, u] [v, v]

k = 0 1 1 1 1

k = 1 i 1 −1 i

k = 2 −1 1 1 −1

k = 3 −i 1 −1 −i

sum 0 4 0 0

co-slf-0 Corollary 10.4. Let V be a vector space over a scalar field F and let [ · , · ] :
V × V → F be a sesquilinear form on V . If i ∈ F and [v, v] = 0 for all
v ∈ V , then [u, v] = 0 for all u, v ∈ V .
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