
EIGENSYSTEMS OF A LINEAR OPERATORS

BRANKO ĆURGUS

1. Algebra of linear operators

In this section we consider a vector space V over F. Here F is either F or
C. For the most important results we assume that F = C. We do not have
time to develop the theory for R. By L (V ) we denote the vector space
L (V ,V ) of all linear operators on V . The vector space L (V ) with the
composition of operators as an additional binary operation is an algebra in
the sense of the following definition.

Definition 1.1. A vector space A over a field F is an algebra over F if the
following conditions are satisfied:

ME. There exist a binary operation · : A × A → A .
MA. (associativity) For all x, y, z ∈ A we have (x · y) · z = x · (y · z).
MD. (right-distributivity) For all x, y, z ∈ A we have (x+y)·z = x·z+y ·z.
MD. (left-distributivity) For all x, y, z ∈ A we have z ·(x+y) = z ·x+z ·y.
MS. (respect for scaling) For all x, y ∈ A and all α ∈ F we have α(x ·y) =

(αx) · y = x · (αy).
This binary operation in an algebra is often referred to as multiplication. As
usual with multiplication we drop the dot, and just write xy instead of x · y.
♢

The multiplicative identity in the algebra L (V ) is the identity operator
IV .

For T ∈ L (V ) we recursively define nonnegative integer powers of T by
T 0 = IV and for all n ∈ N we define Tn = T ◦ Tn−1.

For T ∈ L (V ), set

AT = span
{
T k : k ∈ N ∪ {0}

}
.

Clearly AT is a subspace of L (V ). Moreover, we will see below that AT is
a commutative subalgebra of L (V ).

Recall that by the definition of a span, a nonzero S ∈ L (V ) belongs to
AT if and only if there exist m ∈ N ∪ {0} and scalars α0, α1, . . . , αm ∈ F
such that am ̸= 0 and

S =

m∑
k=0

αkT
k. (1) eq-lcTs
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The last expression reminds us of a polynomial over F. Recall that by
F[z] we denote the vector space of all polynomials over F. That is

F[z] =

{
n∑

j=0

αjz
j : n ∈ N ∪ {0}, (α0, . . . , αn) ∈ Fn+1

}
.

The multiplication in F[z] is introduced in the following definition.

def-mp Definition 1.2 (5.16 page 138 in the textbook). Let m,n ∈ N ∪ {0} and

p(z) =
m∑
i=0

αiz
i ∈ F[z] and q(z) =

n∑
j=0

βjz
j ∈ F[z]. (2) eq-pq

We set

(pq)(z)
def
=

m+n∑
k=0

( ∑
(i,j)∈Ik

αiβj

)
zk,

where, for all k ∈ {0, . . . ,m+ n}, we set

Ik =
{
(i, j) ∈ {0, . . . ,m} × {0, . . . , n} : i+ j = k

}
.

♢

It is straightforward to verify that the multiplication in Definition 1.2
satisfies the axiomsME,MA,MD,MD, andMS. Hence, F[z] is an algebra
over F. Since the multiplication in F is commutative, it follows that pq = qp
for all p, q ∈ F[z]. That is, F[z] is a commutative algebra.

The clear alikeness of the expression (1) and the expression for the poly-
nomial p in (2) is the motivation for the following definition. For a fixed
T ∈ L (V ) we define

ΞT : F[z] → L (V )

by setting

ΞT (p) =
m∑
i=0

αiT
i where p(z) =

m∑
i=0

αiz
i ∈ F[z]. (3) eq-Xi

It is common to write p(T ) for ΞT (p).

th-Xah Theorem 1.3 (5.17 page 138 in the textbook). Let T ∈ L (V ). The func-
tion ΞT : F[z] → L (V ) defined in (3) is an algebra homomorphism. The
range of ΞT is AT .

Proof. It is straightforward to prove that ΞT : F[z] → L (V ) is linear.
We will prove that ΞT : F[z] → L (V ) is multiplicative. That is, for all
p, q ∈ F[z] we have ΞT (pq) = ΞT (p)ΞT (q). To prove this, let p, q ∈ F[z] be
arbitrary and given in (2). Then, first applying the by definition in (3),

ΞT (p)ΞT (q) =

(
m∑
i=0

αiT
i

)(
n∑

j=0

βjT
j

)
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L (V ) is an algebra =

m∑
i=0

n∑
j=0

αiβjT
i+j

L (V ) is a vector space =
m+n∑
k=0

( ∑
(i,j)∈Ik

αiβj

)
T k

by Definition 1.2 = ΞT (pq).

This proves the multiplicative property of ΞT .
The fact that AT is the range of ΞT is straightforward. □

Corollary 1.4. Let T ∈ L (V ). The subspace AT of L (V ) is a commuta-
tive subalgebra of L (V ).

Proof. Let Q,S ∈ AT . Since AT is the range of ΞT there exist p, q ∈
F[z] such that Q = ΞT (p) and S = ΞT (q). Then, since ΞT is an algebra
homomorphism we have

QS = ΞT (p)ΞT (q) = ΞT (pq) = ΞT (qp) = ΞT (q)ΞT (p) = SQ.

This sequence of equalities shows that QS ∈ ran(ΞT ) = AT and QS =
SQ. That is AT is closed with respect to the operator composition and the
operator composition on AT is commutative. □

co-linfact Corollary 1.5. Let V be a complex vector space and let T ∈ L (V ) be a
nonzero operator. Then for every p ∈ C[z] such that m = deg p ≥ 1 there
exist a nonzero α ∈ C and z1, . . . , zm ∈ C such that

ΞT (p) = p(T ) = α(T − z1I) · · · (T − zmI).

Proof. Let p ∈ C[z] such that m = deg p ≥ 1. Then there exist α0, . . . , αm ∈
C such that αm ̸= 0 such that

p(z) =
m∑
k=0

αjz
j .

By the Fundamental Theorem of Algebra there exist nonzero α ∈ C and
z1, . . . , zm ∈ C and

p(z) = α(z − z1) · · · (z − zm).

Here α = αm and z1, . . . , zm are the roots of p. Since by Theorem 1.3 the
operator ΞT is an algebra homomorphism, we have

p(T ) = ΞT (p)

= ΞT

(
α(z − z1) · · · (z − zm)

)
= αΞT

(
(z − z1)

)
· · · ΞT

(
(z − zm)

)
= α(T − z1I) · · · (T − zmI).

This completes the proof. □
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2. Existence of an eigenvalue

We will need the following lemma about injections.

le-inj-n Lemma 2.1. Let n ∈ N, let A be a nonempty set and let f1, . . . , fn ∈ AA.
If fk : A → A is an injection for all k ∈ {1, . . . , n}, then the composition
f1 ◦ · · · ◦ fn is also an injection.

Proof. We proceed by Mathematical Induction. The base step is trivial. It
is useful to prove the implication for n = 2. Assume that f, g ∈ AA are
injections. Let s, t ∈ A be such that s ̸= t. Then, since g is an injection,
g(s) ̸= g(t). Since f is injective, f(g(x)) ̸= f(g(t)). Thus, f ◦ g is injective.

Next we prove the inductive step. Let m ∈ N and assume that f1 ◦ · · · ◦
fm is an injection whenever f1, . . . , fm ∈ AA are all injections. (This is
the inductive hypothesis.) Now assume that f1, . . . , fm, fm+1 ∈ AA are all
injections. By the inductive hypothesis the function f = f1 ◦ · · · ◦ fm is an
injection. Since by assumption g = fm+1 is an injection, the already proved
claim for n = 2 yields that

f ◦ g = f1 ◦ · · · ◦ fm ◦ fm+1

is an injection. This completes the proof. □

Definition 2.2. Let V be a vector space over F, T ∈ L (V ). A scalar λ ∈ F
is an eigenvalue of T if there exists v ∈ V such that v ̸= 0 and Tv = λv.
The subspace nul(T − λI) of V is called the eigenspace of T corresponding
to λ. ♢

Definition 2.3. Let V be a finite-dimensional vector space over F. Let
T ∈ L (V ). The set of all eigenvalues of T is denoted by σ(T ). It is called
the spectrum of T . ♢

th-ev-ex Theorem 2.4 (5.19 page 143 in the textbook). Let V be a nontrivial finite-
dimensional vector space over C. Let T ∈ L (V ). Then there exists a λ ∈ C
and v ∈ V such that v ̸= 0V and Tv = λv.

Proof. The claim of the theorem is trivial if T = 0L (V ). So, assume that
T ∈ L (V ) is a nonzero operator.

Let n = dimV and let u ∈ V \ {0V }. Now consider the vectors

u, Tu, T 2u, . . . , Tnu. (4) eq-uTu

If two of these vectors coincide, say k, l ∈ {0, . . . , n}, k < l are such that
T ku = T lu, setting αj = 0 for j ∈ {0, . . . , n}\{k, l} and αk = 1 and αl = −1
we obtain a nontrivial linear combination of the vectors in (4).

If the vectors in (4) are distinct, since n = dimV , it follows from the
Steinitz Exchange Lemma that the vectors in (4) are linearly dependent.

Hence, in either case, there exist α0, . . . , αn ∈ C and k ∈ {0, . . . , n} such
that

α0u+ α1Tu+ α2T
2u+ · · ·+ αnT

nu = 0V and αk ̸= 0. (5) eq-lin-com
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Since u ̸= 0V it is not possible that αj = 0 for all j ∈ {1, . . . , n}. Therefore,
there exists k ∈ {1, . . . , n} such that αk ̸= 0.

Set
p(z) = α0 + α1z + α2z

2 + · · ·+ αnz
n.

Since there exists k ∈ {1, . . . , n} such that αk ̸= 0, we have thatm = deg p ≥
k > 0.

Thus we have constructed a polynomial p of positive degree for which, by
(5),

p(T )u = 0V with u ∈ V \ {0V }.
By the Fundamental Theorem of Algebra there exist α ̸= 0 and z1, . . . , zm ∈

C such that
p(z) = α(z − z1) · · · (z − zm).

Here α = αm and z1, . . . , zm are the roots of p.
Since ΞT is an algebra homomorphism we have

p(T ) = ΞT (p)

= αΞT (z − z1) · · · ΞT (z − zm)

= α(T − z1I) · · · (T − zmI).

Equality (5) yields that the operator p(T ) is not an injection. Lemma 2.1
now implies that there exists j ∈ {1, . . . ,m} such that T−zjI is not injective.
That is, there exists v ∈ V , v ̸= 0V such that

(T − zjI)v = 0.

Setting λ = zj completes the proof. □

le-poatev Lemma 2.5. Let V be a nontrivial finite-dimensional vector space over F,
let T ∈ L (V ) and Tv = λv with λ ∈ F and v ∈ V \ {0V }. For p ∈ F[z] we
have

p(T )v = p(λ)v.

That is, if λ is an eigenvalue of T with a corresponding eigenvector v, then
p(λ) is an eigenvalue of p(T ) with the same eigenvector v.

Proof. The equality is obvious if the polynomial p is constant. Assume that
deg p = m ∈ N and let

p(z) = α0 + α1z + · · ·+ αmzm (6) eq-pcal

with α0, . . . , αm ∈ F. Let Tv = λv with λ ∈ F and v ∈ V \ {0V }. Then for
every k ∈ N we have

T kv = T k−1(Tv) = T k−1(λv) = λT k−1v = · · · = λkv.

Further, we calculate, starting with the definition of p(T ),

p(T )v =
(
ΞT (p)

)
v

definition of Ξ =

(
m∑
k=0

αkT
k

)
v
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L (V ) is a vector space =

m∑
k=0

αk(T
kv)

definition of T k and Tv = λv =

m∑
k=0

(αkλ
k)v

axioms of V =

(
m∑
k=0

αkλ
k

)
v

by (6) = p(λ)v.

Thus p(T )v = p(λ)v, that is p(λ) an eigenvalue of p(T ). □

In the preceding lemma, we proved that p
(
σ(T )

)
⊆ σ

(
p(T )

)
. The converse

inclusion does not hold when F = R. For example, let T be the rotation by
π/2 in R2. Then T 2 = −I2, so

p
(
σ(T )

)
= p
(
∅
)
= ∅ ⊂ {−1} = σ

(
−I2

)
.

However, the equality p
(
σ(T )

)
= σ

(
p(T )

)
does hold when F = C, as estab-

lished by the Spectral Mapping Theorem, which follows.

th-smt Theorem 2.6. Let V be a nontrivial finite-dimensional vector space over
C, let T ∈ L (V ) and p ∈ C[z]. Then

σ
(
p(T )

)
= p
(
σ(T )

)
.

Proof. The equality is obvious if the polynomial p is constant. Assume that
deg p = m ∈ N and let the coefficients of p be α0, · · · , αm ∈ C.

To prove σ
(
p(T )

)
⊆ p

(
σ(T )

)
, let µ ∈ σ

(
p(T )

)
be arbitrary. Then there

exists w ∈ V \ {0V } such that

p(T )w = µw.

Set q(z) = p(z)−µ. Then q(T )w = 0V and since w ∈ V \{0V } the operator
q(T ) is not an injection. By the Fundamental Theorem of Algebra there
exist α, z1, . . . , zm ∈ C such that α ̸= 0 and

q(z) = α(z − z1) · · · (z − zm).

Since ΞT is an algebra homomorphism we have

q(T ) = ΞT (q)

= αΞT (z − z1) · · · ΞT (z − zm)

= α(T − z1I) · · · (T − zmI).

That is, q(T ) is a composition of m + 1 operators. Since q(T ) is not an
injection, Lemma 2.1 yields that there exists k ∈ {1, . . . ,m} such that the
operator T − zkI is not an injection. This implies that zk ∈ σ(T ). Set
λ = zk ∈ σ(T ). Then q(λ) = 0, that is p(λ)− µ = 0. Thus we have proved
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that for arbitrary µ ∈ p
(
σ(T )

)
there exists λ ∈ σ(T ) such that µ = p(λ).

This proves

σ
(
p(T )

)
⊆ p
(
σ(T )

)
. □

Using the method of the proof of the preceding theorem one can prove.

Proposition 2.7. Let V be a nontrivial finite-dimensional vector space over
C with n = dimV and let T ∈ L (V ). Then σ(T ) = {0} if and only if
Tn = 0L (V ).

The next theorem can be stated in English simply as: Eigenvectors cor-
responding to distinct eigenvalues are linearly independent.

Theorem 2.8 (5.11 page 136 in the textbook). Let V be a vector space
over F, T ∈ L (V ) and n ∈ N. Assume

(a) λ1, . . . , λn ∈ F are such that λi ̸= λj for all i, j ∈ {1, . . . , n} such
that i ̸= j,

(b) v1, . . . , vn ∈ V \{0V } are such that Tvk = λkvk for all k ∈ {1, . . . , n}.
Then {v1, . . . , vn} is linearly independent.

Proof. Let λ1, . . . , λn be distinct eigenvalues of T and let v1, . . . , vn be cor-
responding eigenvectors:

Tvk = λkvk, for all k ∈ {1, . . . , n}. (7)

For each k ∈ {1, . . . , n} define the polynomial

qk(z) =
∏{

(z − λj) : j ∈ {1, . . . , n} \ {k}
}
.

Then qk has exactly n− 1 distinct roots {λ1, . . . , λn} \ {λk} and

qk(λk) =
∏{

(λk − λj) : j ∈ {1, . . . , n} \ {k}
}
̸= 0.

That is

qk(λj) =

{
0 j ̸= k,

qk(λk) ̸= 0 j = k,
for all j, k ∈ {1, . . . , n}. (8) eq-qk1

By Lemma 2.5 we have

qk(T )vj = qk(λj)vj for all j, k ∈ {1, . . . , n}. (9) eq-qk2

Now we are ready to prove the linear independence of v1, . . . , vn. Let
α1, . . . , αn ∈ F be such that

α1v1 + · · ·+ αnvn = 0V . (10) eq-Vaughn-li

Let k ∈ {1, . . . , n} be arbitrary. Apply the operator qk(T ) to both sides of
(10) to obtain

α1qk(T )v1 + · · ·+ αnqk(T )vn = 0V . (11) eq-Vaughn-li1

By (9) we have

α1qk(λ1)v1 + · · ·+ αnqk(λn)vn = 0V .
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By (8) the last equality simplifies to

αkqk(λk)vk = 0V .

Since vk ̸= 0V and qk(λk) ̸= 0 we deduce

αk = 0.

Since k ∈ {1, . . . , n} was arbitrary the proof of linear independence is com-
plete. □

Corollary 2.9. Let V be a finite-dimensional vector space over F and let
T ∈ L (V ). Then T has at most n = dimV distinct eigenvalues.

Proof. Let B be a basis of V where B = {u1, ..., un}. Then #B = n
and spanB = V . Let C = {v1, ..., vm} be eigenvectors corresponding to m
distinct eigenvalues. Then C is a linearly independent set with #C = m.
By the Steinitz Exchange Lemma, m ≤ n. Consequently, T has at most n
distinct eigenvalues. □

3. Existence of an upper-triangular
matrix representation

Definition 3.1. A matrix A ∈ Fn×n with entries aij , i, j ∈ {1, . . . , n} is
called upper triangular if aij = 0 for all i, j ∈ {1, . . . , n} such that i > j. ♢

Definition 3.2. Let V be a vector space over F and T ∈ L (V ). A subspace
U of V is called an invariant subspace under T if T (U ) ⊆ U . ♢

The following proposition is straightforward.

Proposition 3.3. Let S, T ∈ L (V ) be such that ST = TS. Then each
eigenspaces of S is invariant under T and each eigenspace of T is invariant
under S.

Definition 3.4. Let V be a finite-dimensional vector space over F with
n = dimV ∈ N. Let T ∈ L (V ). A sequence of nontrivial subspaces
U1, . . . ,Un of V such that

U1 ⊊ U2 ⊊ · · · ⊊ Un (12) eq-fan-sss

and
TUk ⊆ Uk for all k ∈ {1, . . . , n}

is called a fan for T in V . A basis {v1, . . . , vn} of V is called a fan basis
corresponding to T if the subspaces

Vk = span{v1, . . . , vk}, k ∈ {1, . . . , n},
form a fan for T . ♢

Notice that (12) implies

1 ≤ dimU1 < dimU2 < · · · < dimUn ≤ n.

Consequently, if U1, . . . ,Un is a fan for T we have dimUk = k for all k ∈
{1, . . . , n}. In particular Un = V .
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th-utc Theorem 3.5 (textbook 5.39 page 156). Let n ∈ N and let V be a finite-
dimensional vector space over F with dimV = n and let T ∈ L (V ). Let
B = (v1, . . . , vn) be a basis of V and set

Vk = span{v1, . . . , vk}, k ∈ {1, . . . , n}.
The following statements are equivalent.

i-utc-1 (a) MB
B (T ) is upper-triangular.

i-utc-2 (b) For all k ∈ {1, . . . , n} we have Tvk ∈ Vk.
i-utc-3 (c) For all k ∈ {1, . . . , n} we have TVk ⊆ Vk.
i-utc-4 (d) B is a fan basis corresponding to T .

Proof. (a) ⇒ (b). Assume that MB
B (T ) is upper triangular. That is

MB
B (T ) =



a11 a12 · · · a1k · · · a1n

0 a22 · · · a2k · · · a2n
...

...
. . .

...
...

0 0 · · · akk · · · 0
...

...
...

. . .
...

0 0 · · · 0 · · · ann


.

Let k ∈ {1, . . . , n} be arbitrary. Then, by the definition of MB
B (T ),

CB(Tvk) =



a1k
...

akk
0
...
0


.

Consequently, by the definition of CB, we have

Tvk = a1kv1 + · · ·+ akkvk ∈ span
{
v1, . . . , vk

}
= Vk.

Thus, (b) is proved.
(b) ⇒ (a). Assume that Tvk ∈ Vk for all k ∈ {1, . . . , n}. Let aij , i, j ∈

{1, . . . , n}, be the entries of MB
B (T ). Let j ∈ {1, . . . , n} be arbitrary. Since

Tvj ∈ Vj there exist α1, . . . , αj ∈ F such that

Tvj = α1v1 + · · ·+ αjvj .

By the definition of CB we have

CB(Tvj) =



α1
...
αj

0
...
0


.
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On the other side, by the definition of MB
B (T ), we have

CB(Tvj) =



a1k
...

ajj
aj+1,j

...
anj


.

The last two equalities, and the fact that CB is a function, imply aij = 0
for all i ∈ {j + 1, . . . , n}. This proves (a).

(b) ⇒ (c). Suppose Tvk ∈ Vk = span{v1, . . . , vk} for all k ∈ {1, . . . , n}.
Let v ∈ Vk. Then v = α1v1 + · · · + αkvk. Applying T , we get Tv =
α1Tv1 + · · ·+ αkTvk. Thus,

Tv ∈ span{Tv1, . . . , T vk}. (13) eq-Tv-span1

Since

Tvj ∈ Vj ⊆ Vk for all j ∈ {1, . . . , k},
we have

span{Tv1, . . . , T vk} ⊆ Vk.

Together with (13), this proves (c).
(c) ⇒ (b). Suppose TVk ⊆ Vk for all k ∈ {1, . . . , n}. Then since vk ∈ Vk,

we have Tvk ∈ Vk for each k ∈ {1, . . . , n}.
(c)⇔ (d) follows from the definition of a fan basis corresponding to T . □

th-ex-up Theorem 3.6 (textbook 5.47 page 160). Let V be a finite-dimensional com-
plex vector space with dimV = n ∈ N and let T ∈ L (V ). Then there exists
a basis B of V such that MB

B (T ) is upper-triangular.

Proof. We proceed by the principle of Mathematical Induction on n =
dim(V ).

The base case is trivial. Assume dimV = 1 and T ∈ L (V ). Set B = {u},
where u ∈ V \{0V } is arbitrary. Then there exists λ ∈ C such that Tu = λu.
Thus, MB

B (T ) =
[
λ
]
.

Now we prove the inductive step. Let m ∈ N be arbitrary. The inductive
hypothesis is

For every k ∈ {1, . . . ,m} the following implication holds: If
dimU = k and S ∈ L (U ), then there exists a basis A of
U such that MA

A (S) is upper-triangular.

To complete the inductive step, we need to prove the implication:

If dimV = m+1 and T ∈ L (V ), then there exists a basis B of
V such that MB

B (T ) is upper-triangular.
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To prove the red implication assume that dimV = m+1 and T ∈ L (V ).
By Theorem 2.4 the operator T has an eigenvalue. Let λ be an eigenvalue
of T . Set U = ran(T − λI). Because (T − λI) is not injective, it is not
surjective, and thus k = dim(U ) < dim(V ) = m+1. That is k ∈ {1, . . . ,m}.

Moreover, TU ⊆ U . To show this, let u ∈ U . Then Tu = (T−λI)u+λu.
Since (T − λI)u ∈ U and λu ∈ U , Tu ∈ U . Denote by S the restriction
of T to U . That is, Su = Tu for all u ∈ U . Since TU ⊆ U , we have
S ∈ L (U ).

By the inductive hypothesis (the green box), there exists a basis A =
(u1, . . . , uk) of U such that MA

A (S) is upper-triangular. This, by Theo-
rem 3.5, implies

Tuj = Suj ∈ span{u1, . . . , uj} for all j ∈ {1, . . . , k}.
Extend A to a basis B = {u1, . . . , uk, v1, . . . , vm+1−k} of V . Since

Tvj = (T − λI)vj + λvj , j ∈ {1, . . . ,m+ 1− k},
where (T − λI)vj ∈ U , for all j ∈ {1, . . . ,m+ 1− k} we have

Tvj ∈ span{u1, . . . , uk, vj} ⊆ span{u1, . . . , uk, v1, . . . , vj}.
By Theorem 3.5 MB

B (T ) is upper-triangular. □

Remark 3.7. Theorem 3.6 is stated as Theorem 5.47 in the textbook. Since
the textbook covers both F = R and F = C the book’s proof is different from
ours. To some extend our proof is more direct. ♢

th-invc Theorem 3.8. Let V be a finite-dimensional vector space over F such that
dimV = n ∈ N, and let T ∈ L (V ). Let B = (v1, . . . , vn) be a basis
of V such that MB

B (T ) is upper triangular with the diagonal entries ajj,
j ∈ {1, . . . , n}. Then T is isomorphism if and only if for all j ∈ {1, . . . , n}
we have ajj ̸= 0.

Proof. In this proof we set

Vk = span{v1, ..., vk}, k ∈ {1, ..., n}.
Then

V1 ⊊ V2 ⊊ . . . ⊊ Vn (14) eq-fan-sub

and by Theorem 3.5, TVk ⊆ Vk.
We first prove the contrapositive of the “if” part. Assume that T is not

an isomorphism. Then T is not injective. Consider the set

K =
{
k ∈ {1, ..., n} : TVk ⊊ Vk

}
Since T is not injective, nulT ̸= {0V }. Thus by the Rank-Nullity Theorem,
ranT ⊊ V = Vn. Since TVn = ranT , it follows that TVn ⊊ Vn. Therefore
n ∈ K. Hence the set K is a nonempty set of positive integers. Hence, by
the Well-Ordering principle minK exists. Set j = minK.

If j = 1, then dimV1 = 1, but since TV1 ⊊ V1 it must be that dim(TV1) =
0. Thus TV1 = {0V }, so Tv1 = 0v. Hence CB(Tv1) = [0 · · · 0]⊤ and so
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a11 = 0. If j > 1, then j − 1 ∈ {1, . . . , n} but j − 1 ̸∈ K. By Theorem 3.5,
TVj−1 ⊆ Vj−1 and, since j − 1 ̸∈ K, TVj−1 ⊊ Vj−1 is not true. Hence
TVj−1 = Vj−1. Since j ∈ K, we have TVj ⊊ Vj . Now we have

Vj−1 = TVj−1 ⊆ TVj ⊊ Vj .

Consequently,

j − 1 = dimVj−1 ≤ dim
(
TVj

)
< dimVj = j,

which implies dim
(
TVj

)
= j − 1 and therefore TVj = Vj−1. This implies

that there exist α1, . . . , αj−1 ∈ F such that

Tvj = α1v1 + · · ·+ αj−1vj−1.

By the definition of MB
B (T ) this implies that ajj = 0.

Next we prove the “if” part. Assume that there exists j ∈ {1, ..., n} such
that ajj = 0. Then

Tvj = a1jv1 + · · ·+ aj−1,jvj−1 + 0vj ∈ Vj−1. (15) eq-inv-if1

By Theorem 3.5 and (14) we have

Tvi ∈ Vi ⊆ Vj−1 for all i ∈ {1, . . . , j − 1}. (16) eq-inv-if2

Now (15) and (16) imply Tvi ∈ Vj−1 for all i ∈ {1, . . . , j} and consequently
TVj ⊆ Vj−1. To complete the proof, we apply the Rank-Nullity theorem to
the restriction T |Vj

of T to the subspace Vj :

dimnul
(
T |Vj

)
+ dim ran

(
T |Vj

)
= j.

Since TVj ⊆ Vj−1 implies dim ran
(
T |Vj

)
≤ j − 1, we conclude

dimnul
(
T |Vj

)
≥ 1.

Thus nul
(
T |Vj

)
̸= {0V }, that is, there exists v ∈ Vj such that v ̸= 0 and

Tv = T |Vj
v = 0. This proves that T is not invertible. □

co-invc Corollary 3.9. Let V be a finite-dimensional vector space over F with
dimV = n ∈ N, and let T ∈ L (V ). Let B be a basis of V such that
MB

B (T ) is upper triangular with diagonal entries ajj, j ∈ {1, . . . , n}. The
following statements are equivalent.

i-invc-1 (a) T is not injective.
i-invc-2 (b) T is not invertible.
i-invc-3 (c) 0 is an eigenvalue of T .
i-invc-4 (d)

∏n
i=1 aii = 0.

i-invc-5 (e) There exists j ∈ {1, . . . , n} such that ajj = 0.

Proof. The equivalence (a) ⇔ (b) follows from the Rank-nullity theorem and
it has been proved earlier. The equivalence (a) ⇔ (c) is almost trivial. The
equivalence (a) ⇔ (e) was proved in Theorem 3.8 and The equivalence (d)
⇔ (e) is should have been proved in high school. □
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th-sp-di Theorem 3.10 (textbook 5.41 p. 157). Let V be a finite-dimensional vec-
tor space over F with dimV = n ∈ N, and let T ∈ L (V ). Let B be a
basis of V such that MB

B (T ) is upper triangular with diagonal entries ajj,
j ∈ {1, . . . , n}. Then

σ(T ) =
{
ajj : j ∈ {1, ..., n}

}
.

Proof. Notice that MB
B : L (V ) → Fn×n is an isomorphism of algebras.

Therefore

MB
B (T − λI) = MB

B (T )− λMB
B (I) = MB

B (T )− λIn.

Here In denotes the identity matrix in Fn×n. As MB
B (T ) and MB

B (I) =

In are upper triangular, MB
B (T − λI) is upper triangular as well with the

diagonal entries ajj − λ with j ∈ {1, ..., n}.
To prove the set equality

σ(T ) =
{
ajj : j ∈ {1, ..., n}

}
.

in the theorem we need to prove two inclusions.
First we prove ⊆. Let λ ∈ σ(T ). Because λ is an eigenvalue, T − λI is

not injective. Because T − λI is not injective. By Theorem 3.8 one of the
diagonal entries of the upper triangular matrix

MB
B (T − λI) = MB

B (T )− λIn

is zero. That is, there exists i ∈ {1, ..., n} such that aii − λ = 0. Thus
λ = aii. So σ(T ) ⊆

{
ajj : j ∈ {1, ..., n}

}
.

Next we prove ⊇. Let j ∈ {1, ..., n} be arbitrary. Then the j-th diagonal
entry of the matrix

MB
B (T − ajjI) = MB

B (T )− ajjIn

is equal to ajj − ajj = 0. By Theorem 3.8 the operator T − ajjI is not
injective. This implies that ajj is an eigenvalue of T . Thus ajj ∈ σ(T ). This
completes the proof. □

4. Existence of the Minimal Polynomial

Here I present a different proof of Theorem 5.22 in the textbook. The
proof in the book uses the Mathematical Induction on the dimension of the
space. The proof below uses the fact that every bounded nonempty set of
positive integers has a maximum.

le-pv Lemma 4.1. Let V be a nontrivial finite-dimensional vector space over F
and T ∈ L (V ) \ {0L (V )}. For every v ∈ V \ {0V } there exists a unique
positive integer kv ∈ N and a unique monic polynomial pv ∈ F[z] such that

le-pv-i1 (i) 1 ≤ deg pv = kv ≤ dimV ,
le-pv-i2 (ii) v, . . . , T kv−1v are linearly independent,

le-pv-i2a (iii) v, . . . , T kv−1v, T kvv are linearly dependent,
le-pv-i3 (iv) v, . . . , T kv−1v ∈ nul

(
pv(T )

)
,
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le-pv-i4 (v) deg pv ≤ dim
(
nul pv(T )

)
.

Proof. Let v ∈ V \ {0V } be arbitrary and let k ∈ N be the smallest positive
integer such that

T kv ∈ span
{
T j−1v : j ∈ {1, . . . , k}

}
.

With kv = k we have k ≤ dimV , (ii) holds, and there exist unique α0, . . . , αk−1 ∈
F not all zero such that

T kv = α0v + · · ·+ αk−1T
k−1v.

Set

pv(z) = −α0 − · · · − αk−1z
k−1 + zk.

Then
(
pv(T )

)
v = 0V and (i) holds. We deduce (iv) since for all j ∈ {1, . . . , k}

we have (
pv(T )T

j−1
)
v =

(
T j−1pv(T )

)
v = T j−1

(
pv(T )v

)
= 0V .

As a consequence of (ii) and (iv) we obtain (v). □

Theorem 4.2. Let V be a nontrivial finite-dimensional vector space over
F. For every T ∈ L (V ), there exists a unique monic polynomial p ∈ F[z]
with p ̸= 0 such that p(T ) = 0L (V ) and p is minimal with this property,
meaning that if q ∈ F[z] satisfies q(T ) = 0L (V ) and deg q ≤ deg p, then q is
a scalar multiple of p. Furthermore, we have deg p ≤ dimV .

Proof. If T = 0L (V ), then p(z) = z has desired properties. All polynomials
that we consider in this proof are monic polynomials. Assume that T ̸=
0L (V ) and set

PT =
{
q ∈ F[z] : deg q ≤ dim

(
nul q(T )

)}
.

The set PT is not empty since by Lemma 4.1 the polynomial pv ∈ PT for
every v ∈ V \ {0V }.

By the definition of PT , for every polynomial q ∈ PT we have deg q ≤
dimV . Therefore, the following maximum exists,

m = max
{
deg q : q ∈ PT

}
,

and m ≤ dimV .
Let q ∈ PT . We will prove the implication

q(T ) ̸= 0L (V ) ⇒ deg q < m. (17) eq-dnm

The contrapositive of the implication in (17) proves the existence of p such
that p(T ) = 0L (V ).

To prove (17) assume q(T ) ̸= 0L (V ); that is, there exists u ∈ V such that
w = q(T )u ̸= 0V . Let kw and pw be the positive integer and the polynomial
associated with w in Lemma 4.1. To prove (17), we will prove that pwq, the
product of the polynomials pw and q, is in PT , and deg q < deg(pwq).
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First, by Lemma 4.1 we have

deg(pwq) = deg pw + deg q ≥ 1 + deg q > deg q.

Second, to prove pwq ∈ PT , let u1, . . . , ul be a basis for nul q(T ). Then,
since by Lemma 4.1 the vectors w, . . . , T kw−1w are linearly independent, we
have that the vectors

u, . . . , T kw−1u, u1, . . . , ul,

are linearly independent and they all belong to nul
(
pw(T )q(T )

)
. (Prove this

as an exercise.) Therefore, by Lemma 4.1,

dim
(
nul
(
pw(T )q(T )

))
≥ kw + dim

(
nul q(T )

)
≥ kw + deg q

≥ deg pw + deg q

= deg(pwq).

Hence, pwq ∈ PT . □

Remark 4.3. I like the above proof since it gives an algorithmic way of
finding a polynomial q such that q(T ) = 0L (V ). What is the algorithm?
Take v1 ∈ V \ {0V }. Find pv1 from Lemma 4.1. If pv1(T ) = 0L (V ), we are
done. If not, set v2 = pv1(T )u1 ̸= 0V . Then

deg(pv1pv2) ≤ dim
(
nul
((
pv1pv2

)
(T )
))

≤ dimV

and
dim

(
nul
(
pv1(T )

))
< dim

(
nul
((
pv1pv2

)
(T )
))

≤ dimV .

Again, if
(
pv1pv2

)
(T ) ̸= 0L (V ), then set v3 =

(
pv1pv2

)
(T )u2 ̸= 0V . Then

deg(pv1pv2pv3) ≤ dim
(
nul
((
pv1pv2pv3

)
(T )
))

≤ dimV

and

dim
(
nul
(
pv1(T )

))
< dim

(
nul
((
pv1pv2

)
(T )
))

< dim
(
nul
((
pv1pv2pv3

)
(T )
))

≤ dimV .

This algorithm stops after at most (dimV )− 1 steps. ♢


