EIGENSYSTEMS OF A LINEAR OPERATORS

BRANKO CURGUS

1. ALGEBRA OF LINEAR OPERATORS

In this section we consider a vector space ¥ over F. Here F is either F or
C. For the most important results we assume that F = C. We do not have
time to develop the theory for R. By Z(¥) we denote the vector space
ZL(V,¥) of all linear operators on #. The vector space £ (%) with the
composition of operators as an additional binary operation is an algebra in
the sense of the following definition.

Definition 1.1. A vector space < over a field F is an algebra over F if the
following conditions are satisfied:

ME. There exist a binary operation - : &/ X & — .
MA. (associativity) For all z,y,z € o/ we have (z-y)-z=x-(y- 2).
MD. (right-distributivity) For all x,y, z € o/ we have (z+y)-z = z-z4y-z.
MD. (left-distributivity) For all x,y, z € & we have z-(x+y) = z-z+2-y.
MS. (respect for scaling) For all x,y € &7 and all a € F we have a(z-y) =
(az) -y == (o).
This binary operation in an algebra is often referred to as multiplication. As
usual with multiplication we drop the dot, and just write xzy instead of x - y.

¢

The multiplicative identity in the algebra .Z (%) is the identity operator
Iy.
For T € Z(¥') we recursively define nonnegative integer powers of T' by
T = I, and for all n € N we define 7" =T o T 1.

For T e Z(V), set

oy = span{Tk :keNU {0}}

Clearly <71 is a subspace of .Z (7). Moreover, we will see below that o7 is
a commutative subalgebra of Z(¥).

Recall that by the definition of a span, a nonzero S € Z(7') belongs to
ofp if and only if there exist m € NU {0} and scalars ag,a,...,q, € F
such that a,, # 0 and

S=> a,T". (1)
k=0
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The last expression reminds us of a polynomial over F. Recall that by
F[z] we denote the vector space of all polynomials over F. That is

Flz] = {zn:ajzj :neNU{0}, (ao,...,an) EIF”“}.

=0
The multiplication in F[z] is introduced in the following definition.

Definition 1.2 (5.16 page 138 in the textbook). Let m,n € NU {0} and
p(z) = Zaizi € Flz] and ¢q(z) = Zﬁjzj € Flz]. (2)
=0 =0

We set
m+n
TICEDS ( > azﬂj)zk,
k=0 (i,j)eﬂk
where, for all k € {0,...,m +n}, we set

nkz{(i,j)e{o,...,m}x{o,...,n};iﬂzk}.
0

It is straightforward to verify that the multiplication in Definition 1.2
satisfies the axioms ME, MA, MD, MD, and MS. Hence, F[z] is an algebra
over F. Since the multiplication in F is commutative, it follows that pg = ¢p
for all p,q € F[z]. That is, F[z] is a commutative algebra.

The clear alikeness of the expression (1) and the expression for the poly-
nomial p in (2) is the motivation for the following definition. For a fixed
T € Z(7) we define

=7 F[Z] — g(%)
by setting

Er(p) = ZaiTi where  p(z) = Zaizi € Flz]. (3)
=0 =0

It is common to write p(T") for Zp(p).

Theorem 1.3 (5.17 page 138 in the textbook). Let T' € £ (V). The func-
tion E : Flz] — ZL(¥) defined in (3) is an algebra homomorphism. The
range of Zr is <.

Proof. Tt is straightforward to prove that Zp : F[z] — Z(¥) is linear.
We will prove that Zp : Flz] — Z(¥) is multiplicative. That is, for all
p,q € F[z] we have Zp(pq) = Zp(p)Zr(q). To prove this, let p,q € F[z] be
arbitrary and given in (2). Then, first applying the by definition in (3),

Er(p)Er(q) = (Z aﬂ”) (Z ﬁjT])
i=0 =0
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‘3(7/) is an algebra ‘ = Emz En: ;3T

i=0 j=0
m+n

‘,2”(7/) is a vector space‘: Z ( Z Oéiﬁj)Tk
k=0 \(i,j)€lx

0
’by Definition 1.2 ‘ = E7(pq).

This proves the multiplicative property of Zr.
The fact that o/ is the range of Zp is straightforward. O

Corollary 1.4. Let T € (V). The subspace /p of L (V) is a commuta-
tive subalgebra of L (V).

Proof. Let QQ,S € ofp. Since «p is the range of Zp there exist p,q €
F[z] such that @ = Zr(p) and S = Z7(¢g). Then, since Zr is an algebra
homomorphism we have

QS = Er(p)Er(q) = E7(pq) = E7(qp) = E7(q)=7(p) = SQ.

This sequence of equalities shows that QS € ran(=2r) = o/ and QS =
SQ. That is o is closed with respect to the operator composition and the
operator composition on & is commutative. ([

Corollary 1.5. Let ¥ be a complex vector space and let T € L(¥) be a
nonzero operator. Then for every p € C[z] such that m = degp > 1 there
exist a nonzero a € C and z1,. .., 2y, € C such that

Er(p) =p(T) =T — 1) -+ (T — z1).

Proof. Let p € C[z] such that m = degp > 1. Then there exist ay, ..., a, €
C such that au, # 0 such that

m
p(z) = Z a;z’.
k=0
By the Fundamental Theorem of Algebra there exist nonzero o € C and

21,...,2m € C and

p(z) =alz—z1) (2 — z2m).

Here a = ayy, and zy, ..., 2z, are the roots of p. Since by Theorem 1.3 the
operator =7 is an algebra homomorphism, we have

p(T) = Zr(p)

This completes the proof. ([l
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2. EXISTENCE OF AN EIGENVALUE
We will need the following lemma about injections.

Lemma 2.1. Let n € N, let A be a nonempty set and let fi,..., f, € A4,
If fr + A — A is an injection for all k € {1,...,n}, then the composition
fio---0 f, is also an injection.

Proof. We proceed by Mathematical Induction. The base step is trivial. It
is useful to prove the implication for n = 2. Assume that f,g € A4 are
injections. Let s,t € A be such that s # t. Then, since g is an injection,
g(s) # g(t). Since f is injective, f(g(z)) # f(g(t)). Thus, f o g is injective.

Next we prove the inductive step. Let m € N and assume that fio---o
fm is an injection whenever fi,..., f,n € A4 are all injections. (This is
the inductive hypothesis.) Now assume that fi,..., fm, fmi1 € A4 are all
injections. By the inductive hypothesis the function f = fio---0o f,;, is an
injection. Since by assumption g = f,,+1 is an injection, the already proved
claim for n = 2 yields that

feg=/fio-ofmo fmp

is an injection. This completes the proof. [l

Definition 2.2. Let ¥ be a vector space over F, T' € £ (¥). A scalar \ € F
is an eigenvalue of T if there exists v € ¥ such that v # 0 and Tv = Av.
The subspace nul(T — AI) of ¥ is called the eigenspace of T' corresponding

to . O

Definition 2.3. Let ¥ be a finite-dimensional vector space over F. Let
T € Z(¥). The set of all eigenvalues of T is denoted by o(T"). It is called
the spectrum of T. O

Theorem 2.4 (5.19 page 143 in the textbook). Let ¥ be a nontrivial finite-
dimensional vector space over C. Let T € £(V). Then there exists a A € C
and v € ¥V such that v # 0y and Tv = \v.

Proof. The claim of the theorem is trivial if " = 04 (y). So, assume that
T € £(¥) is a nonzero operator.
Let n = dim ¥ and let uw € ¥\ {0y }. Now consider the vectors

w, Tu, T?u, ..., T . (4)

If two of these vectors coincide, say k,l € {0,...,n}, k <[ are such that
T*u = Tlu, setting a; = 0 for j € {0,...,n}\{k,l} and o = 1 and oy = —1
we obtain a nontrivial linear combination of the vectors in (4).

If the vectors in (4) are distinct, since n = dim ¥, it follows from the
Steinitz Exchange Lemma that the vectors in (4) are linearly dependent.

Hence, in either case, there exist ag,...,a, € C and k € {0,...,n} such
that

aou+ oy Tu+ caoT?u+ -+ a,T"u =0y and oy, # 0. (5)
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Since u # 0y it is not possible that a; = 0 for all j € {1,...,n}. Therefore,
there exists k € {1,...,n} such that oy # 0.
Set
p(2) = a4+ a1z + azz® + - + a, 2"
Since there exists k € {1,...,n} such that o # 0, we have that m = degp >
k> 0.
Thus we have constructed a polynomial p of positive degree for which, by

(),
p(T)u =0y with we ¥\ {0y}

By the Fundamental Theorem of Algebra there exist a # 0 and z1, ..., 2y, €
C such that

p(z)=alz—2z1) (2 — zm).
Here a = oy, and 21, ..., z,, are the roots of p.
Since Zr is an algebra homomorphism we have

p(T) = Zr(p)
=aZr(z—21) - Er(z — zm)
=a(T—=zI) - (T —zyI).

Equality (5) yields that the operator p(7T') is not an injection. Lemma 2.1

now implies that there exists j € {1,..., m} such that T'—z;I is not injective.
That is, there exists v € ¥, v # 0y such that

(T = zI)v = 0.
Setting A = z; completes the proof. O

Lemma 2.5. Let ¥ be a nontrivial finite-dimensional vector space over F,
let T € (V) and Tv = v with A € F and v € ¥ \ {0y }. Forp € F[z] we
have

p(T)v = p(A)v.
That is, if A is an eigenvalue of T with a corresponding eigenvector v, then
p(A) is an eigenvalue of p(T) with the same eigenvector v.

Proof. The equality is obvious if the polynomial p is constant. Assume that
degp =m € N and let
p(z) =ap+ a1z + -+ apz™ (6)

with ag,...,am € F. Let Tv = Av with A € F and v € ¥\ {0y }. Then for
every k € N we have

TFy = TF"YTw) = TF 1 () = XTF 1ty = ... = My,
Further, we calculate, starting with the definition of p(T),
p(T)v = (Er(p))v

m
definition of = ‘ = Z oszk> v
k=0
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3

In the preceding lemma, we proved that p(U(T)) Co (p(T)) The converse
inclusion does not hold when F = R. For example, let T" be the rotation by
7/2 in R%. Then T? = —1I5, so

p(o(T)) =p(0) =0 C {~1} = o(~D).

However, the equality p(c(T)) = o(p(T)) does hold when F = C, as estab-
lished by the Spectral Mapping Theorem, which follows.

Theorem 2.6. Let ¥ be a nontrivial finite-dimensional vector space over
C,letT e ZL(V) andp € Clz]. Then

o (p(T)) = p(o(T)).

Proof. The equality is obvious if the polynomial p is constant. Assume that
degp = m € N and let the coefficients of p be ag, -, a;, € C.

To prove o (p(T)) C p(o(T)), let p € o(p(T)) be arbitrary. Then there
exists w € ¥\ {0y} such that

p(T)w = pw.

Set q(z) = p(z) — . Then ¢(T)w = 0y and since w € ¥\ {0y} the operator
q(T) is not an injection. By the Fundamental Theorem of Algebra there
exist a, z1, ..., 2m € C such that o # 0 and

q(z) = alz —z1) -+ (2 = zm).
Since =7 is an algebra homomorphism we have
q(T') = Er(q)
=aZp(z—2z1) - Zp(z — z)
=a(T —z1I) - (T — z,1).
That is, ¢(T") is a composition of m + 1 operators. Since ¢(7') is not an
injection, Lemma 2.1 yields that there exists k € {1,...,m} such that the

operator T' — z;I is not an injection. This implies that z € o(T). Set
A=z, € o(T). Then ¢(\) = 0, that is p(A) — p = 0. Thus we have proved
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that for arbitrary 4 € p(o(T)) there exists A € o(T') such that p = p(X).
This proves

o(p(T)) € plo(T)). 0
Using the method of the proof of the preceding theorem one can prove.

Proposition 2.7. Let ¥ be a nontrivial finite-dimensional vector space over
C with n = dim¥ and let T € L(¥). Then o(T) = {0} if and only if
The next theorem can be stated in English simply as: Eigenvectors cor-
responding to distinct eigenvalues are linearly independent.
Theorem 2.8 (5.11 page 136 in the textbook). Let ¥ be a vector space
over F, T € Z(¥) and n € N. Assume
(@) A1,...,A\n € F are such that \; # X\ for all i,5 € {1,...,n} such

that i # j,
(b) v1,...,v, € ¥\{0y} are such that Tvy, = Ay, for allk € {1,...,n}.
Then {vi,...,v,} is linearly independent.
Proof. Let Ai,..., A, be distinct eigenvalues of T and let vy, ..., v, be cor-
responding eigenvectors:

Tu, = \vg, forall ke{l,...,n}. (7)
For each k € {1,...,n} define the polynomial

a(2) = [T{=A) s g e 1 onp\ (R}

Then g has exactly n — 1 distinct roots {A1,...,An} \ {\x} and

a0 = [T{w =)+ j € {L.np\ (B} £ 0.

That is
() = {ka) 20 j i: forall jke{l,....n}. (8
By Lemma 2.5 we have
ae(T)vj = qr(\j)v; forall j,ke{l,...,n}. (9)
Now we are ready to prove the linear independence of vy,...,v,. Let
ai, .. .,a, € F be such that
a1v1 + -+ apu, = 0y (10)

Let k € {1,...,n} be arbitrary. Apply the operator g;(7") to both sides of
(10) to obtain

alqk(T)vl + -+ Oznqk(T>’l)n = 0y. (11)
By (9) we have

ale()‘l)vl R Oéan()‘n)vn =0y.
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By (8) the last equality simplifies to
Qi (Ak)vE = Oy
Since v # 0y and qi(A;) # 0 we deduce
a = 0.

Since k € {1,...,n} was arbitrary the proof of linear independence is com-
plete. ([

Corollary 2.9. Let ¥ be a finite-dimensional vector space over F and let
T e ZL(Y). Then T has at most n = dim ¥ distinct eigenvalues.

Proof. Let & be a basis of ¥ where & = {uj,...,up}. Then #% = n
and span B = V. Let € = {v1,..., v} be eigenvectors corresponding to m
distinct eigenvalues. Then % is a linearly independent set with #% = m.
By the Steinitz Exchange Lemma, m < n. Consequently, T' has at most n
distinct eigenvalues. O

3. EXISTENCE OF AN UPPER-TRIANGULAR
MATRIX REPRESENTATION

Definition 3.1. A matrix A € F"*" with entries a;j, 4,5 € {1,...,n} is
called upper triangular if a;; =0 for all 4, j € {1,...,n} such that i > j. ¢

Definition 3.2. Let ¥ be a vector space over F and 7' € .Z (7). A subspace
U of ¥ is called an invariant subspace under T if T(%) C U . O

The following proposition is straightforward.

Proposition 3.3. Let S,T € £ (V) be such that ST = T'S. Then each
etgenspaces of S is invariant under T and each eigenspace of T is invariant
under S.

Definition 3.4. Let ¥ be a finite-dimensional vector space over F with
n=dm? € N. Let T € Z(¥). A sequence of nontrivial subspaces
U, ..., %, of ¥ such that

UCUC - CUn (12)
and
T%, C U, for all Ee{l,...,n}
is called a fan for T in ¥. A basis {v1,...,v,} of ¥ is called a fan basis
corresponding to T if the subspaces

Vi = spanf{vy, ..., v}, ke{l,...,n},
form a fan for 7. O
Notice that (12) implies
1<dim?% <dim% < -+ < dim %, < n.

Consequently, if 24,...,%, is a fan for T we have dim %}, = k for all k €
{1,...,n}. In particular %, = 7.
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Theorem 3.5 (textbook 5.39 page 156). Let n € N and let ¥ be a finite-
dimensional vector space over F with dim¥ = n and let T € L(V). Let
B = (v1,...,0,) be a basis of ¥V and set

Vi = spanf{vy, ..., v}, ke{l,...,n}.
The following statements are equivalent.

(a) MZ(T) is upper-triangular.

(b) For all k € {1,...,n} we have T € Y.
(c) Forallk e {1,...,n} we have TV, C V4.
(d) £ is a fan baszs correspondmg toT.

Proof. (a) = (b). Assume that MZ(T) is upper triangular. That is

[a11 a2 -+ aip - aip
0 a/22 PEEEES a2k “ .. a/2n
ME(T : : .o :
4(T) = 0 0 - ap --- 0
0 0 - 0 - ap]

Let k € {1,...,n} be arbitrary. Then, by the definition of M7 (T),

a1k

Cop(Tuvg) = |

Consequently, by the definition of Cy, we have
Tv, = a1pv1 + - - + appVi € span{m, . ,vk} =Y.
Thus, (b) is proved.

(b) = (a). Assume that Tvy € ¥#; for all k € {1,...,n}. Let a;;, i,j €
{1,...,n}, be the entries of MZ(T). Let j € {1,...,n} be arbitrary. Since
Tv; € ¥; there exist aq,...,a; € F such that

ij =oqv1 + -+ vy .

By the definition of C'» we have

Oél_
o
Co(Tvj) = | §
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On the other side, by the definition of M%(T), we have

a1k

s
Cu(Tv;) = ajj]u

L Gnj

The last two equalities, and the fact that C'z is a function, imply a;; = 0
for alli € {j+1,...,n}. This proves (a).

(b) = (c). Suppose Tvy, € ¥, = span{vy,...,v;} for all k € {1,...,n}.
Let v € ¥;. Then v = ajv; + --- + agvg. Applying T, we get Tv =
a1Tvy + - - - + apTvi. Thus,

Tv € span{T'vy,...,Tv}. (13)

Since
Tv; € V; €V for all jed{l,... k},
we have
span{Tvy,...,Tvp} C .

Together with (13), this proves (c).

(c) = (b). Suppose T%, C ¥, for all k € {1,...,n}. Then since v € ¥,
we have Tvy, € ¥, for each k € {1,...,n}.

(¢) & (d) follows from the definition of a fan basis corresponding to 7. [

Theorem 3.6 (textbook 5.47 page 160). Let ¥ be a finite-dimensional com-
plex vector space with dim ¥ =n € N and let T € £(V'). Then there exists
a basis B of V such that M;?(T) is upper-triangular.

Proof. We proceed by the principle of Mathematical Induction on n =
dim(7).

The base case is trivial. Assumedim ¥ = 1and T € Z(¥). Set Z = {u},
where u € ¥\{0y} is arbitrary. Then there exists A € C such that Tu = A\u.
Thus, MZ(T) = [A].

Now we prove the inductive step. Let m € N be arbitrary. The inductive
hypothesis is

For every k € {1,...,m} the following implication holds: If
dm% = k and S € L (%), then there exists a basis &/ of
% such that M jj; (S) is upper-triangular.

To complete the inductive step, we need to prove the implication:

Ifdim¥ =m+1and T € Z(¥), then there exists a basis & of
¥ such that M7 (T) is upper-triangular.
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To prove the red implication assume that dim % =m+1and T € Z(¥).
By Theorem 2.4 the operator T" has an eigenvalue. Let A be an eigenvalue
of T. Set % = ran(T — AI). Because (T' — AI) is not injective, it is not
surjective, and thus k = dim(% ) < dim(?) = m+1. Thatisk € {1,...,m}.

Moreover, T% C % . To show this, let u € 2. Then Tu = (T'— A )u+Au.
Since (T'— M)u € % and \u € %, Tu € % . Denote by S the restriction
of T to % . That is, Su = Tu for all w € %. Since T% C %, we have
SeZL(U).

By the inductive hypothesis (the green box), there exists a basis &/ =
(u1,...,ur) of Z such that Mg(S) is upper-triangular. This, by Theo-
rem 3.5, implies

Tuj = Suj € span{ui,...,u;} for all jed{l,... k}.
Extend < to a basis # = {u1,...,ug,v1,...,Vms+1-k} of ¥. Since
Tvj = (T — M)v; + \vj, je{l,....m+1—k},
where (I'— X )v; € %, for all j € {1,...,m+ 1 — k} we have

Tv; € span{uy, ..., uk,vj} C span{uy,...,ux, vi,...,0;}.
By Theorem 3.5 M%(T) is upper-triangular. O

Remark 3.7. Theorem 3.6 is stated as Theorem 5.47 in the textbook. Since
the textbook covers both F = R and F = C the book’s proof is different from
ours. To some extend our proof is more direct. O

Theorem 3.8. Let ¥ be a finite-dimensional vector space over F such that
dm? =n e N, and let T € L(V). Let B = (v1,...,v,) be a basis
of V' such that M;?(T) is upper triangular with the diagonal entries ajj,
jeA{l,....,n}. Then T is isomorphism if and only if for all j € {1,...,n}
we have aj; # 0.

Proof. In this proof we set
Y = span{vi, ..., vx }, ke{l,..,n}
Then
NCHC .. ST (14)
and by Theorem 3.5, T%. C 7.

We first prove the contrapositive of the “if” part. Assume that T is not
an isomorphism. Then 7T is not injective. Consider the set

K = {ke{l,...,n} : T%g%}

Since T is not injective, nul T # {0y }. Thus by the Rank-Nullity Theorem,
ranT C ¥ = ¥,. Since TY,, = ranT, it follows that T%, C ¥;. Therefore
n € K. Hence the set K is a nonempty set of positive integers. Hence, by
the Well-Ordering principle min K exists. Set j = min K.

If j =1, then dim ] = 1, but since T'#; C ¥] it must be that dim(7%]) =
0. Thus T% = {0y}, so Tv; = 0,. Hence C»(Tv1) = [0---0]" and so
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ajp =0. If 5 > 1, then j —1 € {1,...,n} but j — 1 ¢ K. By Theorem 3.5,
TY;—1 € Yj—1 and, since j —1 ¢ K, T%;,_y C ¥;_1 is not true. Hence
TV;_1 = "Yj_1. Since j € K, we have T'/; C #;. Now we have

Vi =171 CT7; & ;.
Consequently,
j—1=dim¥%_; <dim(T¥;) < dim¥; = j,
which implies dim(T”I/j) = j — 1 and therefore T%; = ¥;_1. This implies
that there exist aq,...,a;_1 € F such that

ij =ovr + -+ o101,

By the definition of M7 (T') this implies that aj; = 0.
Next we prove the “if” part. Assume that there exists j € {1,...,n} such
that aj; = 0. Then

ij =ayvr + -+ aj-1,;59-1+ O’Uj € a//jfl. (15)
By Theorem 3.5 and (14) we have
Tv; € Y g%_l for all 1€ {1,...,j—1}. (16)

Now (15) and (16) imply T'v; € ¥;_1 for all i € {1,...,j} and consequently
TY; C ¥j—1. To complete the proof, we apply the Rank-Nullity theorem to
the restriction T'[y; of T' to the subspace 7;:

dimnul(T|y/j) + dimran(T|7/j) =7
Since T%; C ¥;_1 implies dim ran(T!y/j) < j—1, we conclude
dimnul (7T, ) > 1.

Thus nul(T'|y;) # {0y}, that is, there exists v € ¥; such that v # 0 and
Tv = T|y,v = 0. This proves that T" is not invertible. O

Corollary 3.9. Let ¥ be a finite-dimensional vector space over F with
dim? =n € N, and let T € L(V). Let B be a basis of V' such that
Mg(T) is upper triangular with diagonal entries a;j, j € {1,...,n}. The
following statements are equivalent.

(a) T is not injective.

(b) T is not invertible.

(c) 0 is an eigenvalue of T'.
(d) ILi=y ai = 0.
(e) There exists j € {1,...,n} such that aj; = 0.

Proof. The equivalence (a) < (b) follows from the Rank-nullity theorem and
it has been proved earlier. The equivalence (a) < (c) is almost trivial. The
equivalence (a) < (e) was proved in Theorem 3.8 and The equivalence (d)
< (e) is should have been proved in high school. O
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Theorem 3.10 (textbook 5.41 p. 157). Let ¥ be a finite-dimensional vec-
tor space over F with dim¥ = n € N, and let T € L (V). Let B be a

basis of ¥ such that Mg(T) is upper triangular with diagonal entries a;j,
je{l,...,n}. Then

o(T) = {ajj 1jedl, ,n}}

Proof. Notice that M g : L(V) — F™" is an isomorphism of algebras.
Therefore

MZ(T — X)) = MZ(T) — A\MZ(I) = MZ(T) — \,.

Here I, denotes the identity matrix in F**". As MZ(T) and MZ(I) =
I,, are upper triangular, Mg(T — M) is upper triangular as well with the
diagonal entries a;; — A with j € {1,...,n}.

To prove the set equality

o(T)={aj;:j€{1,...,n}}.
in the theorem we need to prove two inclusions.
First we prove C. Let A € o(T"). Because A is an eigenvalue, T' — \I is
not injective. Because T' — Al is not injective. By Theorem 3.8 one of the
diagonal entries of the upper triangular matrix

MZ(T = M) = MZ(T) = A,

is zero. That is, there exists ¢ € {1,...,n} such that a; — A = 0. Thus
A =a;. So O’(T) - {ajj 1 j € {1,...,n}}.

Next we prove DO. Let j € {1,...,n} be arbitrary. Then the j-th diagonal
entry of the matrix

MZ(T — aj;I) = MZ(T) — ay;1,

is equal to aj; — a;; = 0. By Theorem 3.8 the operator T — a;;I is not
injective. This implies that a;; is an eigenvalue of T'. Thus a;; € o(T"). This
completes the proof. O

4. EXISTENCE OF THE MINIMAL POLYNOMIAL

Here I present a different proof of Theorem 5.22 in the textbook. The
proof in the book uses the Mathematical Induction on the dimension of the
space. The proof below uses the fact that every bounded nonempty set of
positive integers has a maximum.

Lemma 4.1. Let ¥ be a nontrivial finite-dimensional vector space over F
and T € L(V)\{0gy)}. For everyv € ¥ \ {0y} there exists a unique
positive integer k, € N and a unique monic polynomial p, € F|z] such that
(1) 1< degpv = ky < dim 7/;
(ii) v,...,T* Y are linearly independent,
(iii) v,...,T* v, Tkvv are linearly dependent,
(iv) v,...,T* 1y € nul(p,(T)),
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(v) degp, < dim(nulp,(T)).

Proof. Let v € ¥\ {0y} be arbitrary and let £ € N be the smallest positive
integer such that

TFo € span{Tj_lv cjed{l,.. ,k}}

With k, = k we have k < dim ¥, (ii) holds, and there exist unique ay, ..., a1 €
F not all zero such that

TFy = oo + -+ Oék_1Tk_1U.

Set
po(2) = —ag — - — ap_12" 4 2R
Then (p,(T))v = 04 and (i) holds. We deduce (iv) since for all j € {1,...,k}

we have
(pU(T)Tj_l)U = (Tj_lpv(T))v = Tj_l(pv(T)v) =0y.
As a consequence of (ii) and (iv) we obtain (v). O

Theorem 4.2. Let ¥ be a nontrivial finite-dimensional vector space over
F. For every T € ZL(V), there exists a unique monic polynomial p € F[z]
with p # 0 such that p(T') = O0g(y) and p is minimal with this property,
meaning that if q € F[z] satisfies q(T) = 0.y and degq < degp, then q is
a scalar multiple of p. Furthermore, we have degp < dim 7.

Proof. If T'= 0.4y, then p(z) = z has desired properties. All polynomials
that we consider in this proof are monic polynomials. Assume that T #
0% (y) and set

P = {q € Flz] : degq < dim(nulq(T))}.

The set &1 is not empty since by Lemma 4.1 the polynomial p, € P for
every v € ¥\ {0y }.

By the definition of &p, for every polynomial ¢ € Zr we have degq <
dim ¥". Therefore, the following maximum exists,

m = max{degq 1q € ,@T},

and m < dim 7.
Let ¢ € &p. We will prove the implication

q(T) #0gp¢yy = degq<m. (17)

The contrapositive of the implication in (17) proves the existence of p such
that p(T) = Og(y/)

To prove (17) assume q(7T') # 0.¢(y); that is, there exists u € ¥ such that
w = q(T)u # 0y. Let ky, and p,, be the positive integer and the polynomial
associated with w in Lemma 4.1. To prove (17), we will prove that p,q, the
product of the polynomials p,, and ¢, is in 7, and deg q < deg(pwq).
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First, by Lemma 4.1 we have

deg(pwq) = degpy, + degq > 1+ degq > deggq.

Second, to prove p,q € Pr, let uy,...,u; be a basis for nul ¢(T"). Then,
since by Lemma 4.1 the vectors w, . .., T* 1w are linearly independent, we
have that the vectors

kw—1
Uy oo, TV U, UL, ., Uy,

are linearly independent and they all belong to nul(p,(T)q(T)). (Prove this
as an exercise.) Therefore, by Lemma 4.1,

dim (nul(pw(T)q(T))) > ky + dim(nul ¢(T'))
> ky +degq
> degpy + degq
= deg(pwq)-
Hence, p,q € Pr. O

Remark 4.3. I like the above proof since it gives an algorithmic way of
finding a polynomial g such that q(T') = 0g(yy. What is the algorithm?
Take v1 € ¥\ {Oy}. Find p,, from Lemma 4.1. If p,, (T) = 0.y, we are
done. If not, set vy = py, (T')u1 # 0. Then

deg(pv, pu,) < dim(nul((pv, pu, ) (1)) < dim ¥

and
dim (nul(py, (7)) < dim(nul((py,pv,)(T))) < dim ¥

Again, if (py,pv,)(T) # 0.2(y), then set v3 = (py, Py, ) (T)uz # 0y. Then
deg(pv, PusPvs) < dim (nul((py, puypu, ) (1)) < dim ¥
and
dim (nul(py, (7)) < dim (nul((py, pv, ) (T)))

< dim (nul ( (pv1pv2pv3) (T)) )
< dim7¥.

This algorithm stops after at most (dim #’) — 1 steps. ¢



