
LINEAR OPERATORS

BRANKO ĆURGUS

Throughout these notes, we study vector spaces over a scalar field F,
which is either R or C. The set of positive integers is denoted by N, and
its elements are i, j, k, l,m, n, p. For a nonempty finite set A, the number of
elements in A is denoted by #A ∈ N, with #∅ = 0.

Vector spaces and sets of vectors are denoted by capital calligraphic let-
ters, such as V ,X ,A , etc. Vectors in abstract vector spaces are denoted by
lowercase Latin letters, such as u, v, x, y, etc. Linear operators are denoted
by uppercase Latin letters, such as S, T , etc. Scalars are represented by
lowercase Greek letters, such as α, β, etc.

Vectors in Euclidean spaces Fn are denoted by boldface lowercase letters,
such as a,b, etc. Matrices with entries in F are denoted by uppercase Latin
letters in sans-serif font, such as A,B,M, etc. The n × n identity matrix is
denoted by In, while 0 represents a zero matrix whose size will be specified
in context. The transpose of a matrix M is denoted by M>.

Pay attention to exceptions to these conventions. If you notice significant
deviations, please let me know.

1. Functions

First we review formal definitions related to functions. In this section A
and B are nonempty sets.

The formal definition of function identifies a function and its graph. A
justification for this is the fact that if you know the graph of a function, then
you know the function, and conversely, if you know a function you know its
graph. Simply stated the definition below says that a function from a set A
to a set B is a subset f of the Cartesian product A×B such that for each
x ∈ A there exists unique y ∈ B such that (x, y) ∈ F .

d-df Definition 1.1. A function from A into B is a subset f of the Cartesian
product A×B such that the following two conditions are satisfied

∀x ∈ A ∃y ∈ B such that (x, y) ∈ f. (Fun 1)

∀x ∈ A ∀y, z ∈ B (x, y) ∈ f ∧ (x, z) ∈ f ⇒ y = z (Fun 2)

♦
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The condition (Fun 2) in Definition 1.1 is popularly known as the vertical
line test. Its full form is as follows:

∀x1, x2 ∈ A
∀y1, y2 ∈ B

(x1, y1) ∈ f ∧ (x2, y2) ∈ f ∧ x1 = x2 ⇒ y1 = y2. (1.1) eq-f2

The implication in (1.1) is important since its partial contrapositive is
often used in proofs. Its partial contrapositive is:

∀x1, x2 ∈ A
∀y1, y2 ∈ B

(x1, y1) ∈ f ∧ (x2, y2) ∈ f ∧ y1 6= y2 ⇒ x1 6= x2. (1.2) eq-cf2

If f is a function, the relationship (x, y) ∈ f is commonly written as
y = f(x). The symbol f : A→ B denotes a function from A to B.

The reason you might not recognize the implication in (1.2) as familiar
is that in Definition 1.1, (1.1), and (1.2), instead of the standard notation
y = f(x), we used the graph notation (x, y) ∈ f . The implication in (1.2)
in the standard notation reads: For all x1, x2 ∈ A the following implication
holds: f(x1) 6= f(x2) ⇒ x1 6= x2.

d-fdr Definition 1.2. Let f ⊂ A× B be a function. The set A is said to be the
domain of f : A→ B. The set B is said to be the codomain of f : A→ B.
The set {

y ∈ B : ∃x ∈ A such that (x, y) ∈ f
}

is called the range of f : A→ B. It is denoted by ran(f). ♦

d-dfsi Definition 1.3. Let f ⊂ A × B be a function. The function f : A → B is
said to be a surjection if the following condition is satisfied

∀y ∈ B ∃x ∈ A such that (x, y) ∈ f. (Sur)

The function f : A→ B is said to be an injection if the following condition
is satisfied

∀x1, x2 ∈ A
∀y1, y2 ∈ B

(x1, y1) ∈ f ∧ (x2, y2) ∈ f ∧ x1 6= x2 ⇒ y1 6= y2. (Inj)

♦

d-dfb Definition 1.4. Let f ⊂ A × B be a function. The function f : A → B is
said to be a bijection if it is both: a surjection and an injection. That is,
f ⊂ A × B is a bijection if it satisfies four conditions: (Fun 1), (Fun 2),
(Sur), and (Inj). ♦

Next we give a formal definition of a composition of two functions. How-
ever, before giving a definition we need to prove a proposition.

Proposition 1.5. Let f : A→ B and g : C → D be functions. If ran f ⊆ C,
then {

(x, z) ∈ A×D : ∃ y ∈ B (x, y) ∈ f ∧ (y, z) ∈ g
}

(1.3) eq-comp

is a function from A to D.

Proof. A proof is a nice exercise. �
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The function defined by (1.3) is called the composition of functions f
and g. It is denoted by f ◦ g.

The function {
(x, x) ∈ A×A : x ∈ A

}
is called the identity function on A. It is denoted by idA. In the standard
notation idA is the function idA : A→ A such that idA(x) = x for all x ∈ A.

A function f : A → B is invertible if there exist functions g : B → A
and h : B → A such that f ◦ g = idB and h ◦ f = idA.

th-inv Theorem 1.6. Let f : A→ B be a function. The following statements are
equivalent.

(a) The function f is invertible.
(b) The function f is a bijection.

th-inv-c (c) There exists a unique function g : B → A such that f ◦ g = idB and
g ◦ f = idA.

If f is invertible, then the unique g whose existence is proved in Theo-
rem 1.6 (c) is called the inverse of f ; it is denoted by f−1.

Let f : A → B be a function. It is common to extend the notation f(x)
for x ∈ A to subsets of A. For X ⊆ A we introduce the notation

f(X) =
{
y ∈ B : ∃x ∈ X y = f(x)

}
.

With this notation, the range of f is simply the set f(A). It is also common
to extend this notation to describe “inverse” image of a subset in B. For
Y ⊆ B we introduce the notation

f−1(Y ) =
{
x ∈ A : f(x) ∈ Y

}
.

Notice that this notation is used for arbitrary function f . It does not imply
that f is invertible. Here f−1 is just a notational device.

Below are few exercises about functions from my Math 312 notes.

Exercise 1.7. Let A, B and C be nonempty sets. Let f : A → B and
g : B → C be injections. Prove that g ◦ f : A→ C is an injection. ♦

Exercise 1.8. Let A, B and C be nonempty sets. Let f : A → B and
g : B → C be surjections. Prove that g ◦ f : A→ C is a surjection. ♦

exefgb Exercise 1.9. Let A, B and C be nonempty sets. Let f : A → B and
g : B → C be bijections. Prove that g ◦ f : A→ C is a bijection. Prove that
(g ◦ f)−1 = f−1 ◦ g−1. ♦

Exercise 1.10. Let A, B and C be nonempty sets. Let f : A → B,
g : B → C. Prove that if g ◦ f is an injection, then f is an injection. ♦

Exercise 1.11. Let A, B and C be nonempty sets and let f : A → B,
g : B → C. Prove that if g ◦ f is a surjection, then g is a surjection. ♦
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Exercise 1.12. Let A, B and C be nonempty sets and let f : A → B,
g : B → C and h : C → A be three functions. Prove that if any two of
the functions h ◦ g ◦ f , g ◦ f ◦ h, f ◦ h ◦ g are injections and the third is a
surjection, or if any two of them are surjections and the third is an injection,
then f, g, and h are bijections. ♦

2. Linear operators

In this section U , V and W are vector spaces over a scalar field F.

2.1. The definition and the vector space of all linear operators. A
function T : V → W is said to be a linear operator if it satisfies the
following conditions:

∀u ∈ V ∀ v ∈ V T (u+ v) = T (u) + f(v), (2.1) eq-add

∀α ∈ F ∀ v ∈ V T (αv) = αT (v). (2.2) eq-hom

The property (2.1) is called additivity, while the property (2.2) is called
homogeneity. Together additivity and homogeneity are called linearity.

Denote by L (V ,W ) the set of all linear operators from V to W . Define
the addition and scaling in L (V ,W ). For S, T ∈ L (V ,W ) and α ∈ F we
define

(S + T )(v) = S(v) + T (v), ∀ v ∈ V , (2.3) eq-po+

(αT )(v) = αT (v), ∀ v ∈ V . (2.4) eq-po-s

Notice that two plus signs which appear in (2.3) have different meanings.
The plus sign on the left-hand side stands for the addition of linear operators
that is just being defined, while the plus sign on the right-hand side stands
for the addition in W . Notice the analogous difference in empty spaces
between α and T in (2.4). Define the zero mapping in L (V ,W ) to be

0L (V ,W )(v) = 0W , ∀ v ∈ V .

For T ∈ L (V ,W ) we define its opposite operator by

(−T )(v) = −T (v), ∀ v ∈ V .

Proposition 2.1. The set L (V ,W ) with the operations defined in (2.3),
and (2.4) is a vector space over F.

For T ∈ L (V ,W ) and v ∈ V it is customary to write Tv instead of T (v).

Example 2.2. Assume that a vector space V is a direct sum of its subspaces
U and W , that is V = U ⊕W . Define the function P : V → V by

Pv = w ⇔ v = u+ w, u ∈ U , w ∈ W .

Then P is a linear operator. It is called the projection of V onto W parallel
to U ; it is denoted by PW ‖U . ♦
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The definition of the linearity of a function between vector spaces is ex-
pressed in the standard functional notation. The next proposition states
that a function between vector spaces is linear if and only if its graph is
a subspace of the direct product of the domain and the codomain of that
function.

pr-lfsub Proposition 2.3. Let V and W be vector spaces over a scalar field F. Let
f : V → W be a function and denote by Gf the graph of f ; that is let

Gf =
{(
v, w

)
∈ V ×W : v ∈ V and w = f(v)

}
⊆ V ×W .

The function f is linear if and only if the set Gf is a subspace of the vector
space V ×W .

pr-imsub Proposition 2.4. Let V and W be vector spaces over a scalar field F. Let
T ∈ L (V ,W ), let G be a subspace of V and let H be a subspace of W .
Then

T (G ) =
{
w ∈ W : ∃v ∈ G such that w = Tv

}
is a subspace of W and

T−1(H ) =
{
v ∈ V : Tv ∈H

}
is a subspace of V .

2.2. Composition, inverse, isomorphism. In the next two propositions
we prove that the linearity is preserved under composition of linear operators
and under taking the inverse of a linear operator.

Proposition 2.5. Let S : U → V and T : V → W be linear operators.
The composition T ◦ S : U → W is a linear operator.

Proof. Prove this as an exercise. �

When composing linear operators it is customary to write simply TS
instead of T ◦ S.

The identity function on V is denoted by IV . It is defined by IV (v) = v
for all v ∈ V . It is clearly a linear operator.

pr-inv-l Proposition 2.6. Let T : V → W be a linear operator which is a bijection.
Then the inverse T−1 : W → V of T is a linear operator.

Proof. Since T is a bijection, from what we learned about function, there
exists a function S : W → V such that ST = IV and TS = IW . Since T is
linear and TS = IW we have

T
(
αSx+ βSy

)
= αT (Sx) + βT (Sy) = α(TS)x+ β(TS)y = αx+ βy

for all α, β ∈ F and all x, y ∈ W . Applying S to both sides of

T
(
αSx+ βSy

)
= αx+ βy

we get

(ST )
(
αSx+ βSy

)
= S

(
αx+ βy

)
∀α, β ∈ F ∀x, x ∈ W .
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Since ST = IV , we get

αSx+ βSy = S
(
αx+ βy

)
∀α, β ∈ F ∀x, y ∈ W ,

thus proving the linearity of S. Since by definition S = T−1 the proposition
is proved. �

A linear operator T : V → W which is a bijection is called an isomor-
phism between vector spaces V and W .

By Proposition 2.6 each isomorphism is invertible and its inverse is also
an isomorphism.

2.3. The Coordination Operator. The following theorem introduces a
fundamental isomorphism between a finite-dimensional vector space V over
F and Fm, where m = dim V .

th-cor Theorem 2.7. Let V be a finite-dimensional vector space over F, let m =
dim V , and let B = {v1, . . . , vm} be a basis for V . The function CB : V →
Fm is defined for all v ∈ V as follows:

CB(v) = a where a =

α1
...
αm

 ∈ Fm and v = α1v1 + · · ·+ αmvm.

This function is an isomorphism between V and Fm.

Proof. First, we express CB in terms of its graph representation:

CB =

(v,a) ∈ V × Fm : v = α1v1 + · · ·+ αmvm ∧ a =

α1
...
αm




To establish that CB is a bijection, we prove the following four statements:
(Fun 1), (Fun 2), (Sur), and (Inj).

A blueprint of the proof is as follows:

(1) V = span B implies (Fun 1).
(2) B is linearly independent implies (Fun 2).
(3) The axioms of a vector space AE and SE imply (Sur).

(This implication follows from the (Fun 1) property of the addition
and scaling functions.)

(4) The axioms of a vector space AE and SE imply (Inj).
(The implication in (Inj) follows from the (Fun 2) properties of the
addition and scaling functions.)

To prove that the bijection CB is linear, we need to show that CB is a
subspace of V × Fm. This is a straightforward verification. �

It is important to point out that the formula for the inverse function

(CB)−1 : Fm → V
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is given by

(CB)−1

α1
...
αm

 =

m∑
j=1

αjvj for all

α1
...
αm

 ∈ Fm. (2.5) eq-CB-i

Observe that equation (2.5) defines a function from Fm to V regardless of
whether B forms a basis of V .

Definition 2.8. The function CB : V → Fm introduced in Theorem 2.7 is
called the Coordination Operator. ♦

exa-LBC Example 2.9. Inspired by the definition of CB and (2.5), we define a gen-
eral operator in this spirit. Let V and W be vector spaces over F. Let V
be finite-dimensional, m = dim V and let B = (v1, . . . , vm) be a basis for
V . Let C = (w1, . . . , wm) be any m-tuple of vectors in W . The entries of
an m-tuple can be repeated, they can all be equal, for example equal to 0W .
We define the linear operator LB

C : V → W by

LB
C (v) =

m∑
j=1

αjwj where

α1
...
αm

 = CB(v). (2.6) eq-rCA

In fact, LB
C : V → W is a composition of CB : V → Fm and the operator

Fm → W defined by ξ1
...
ξm

 7→ m∑
j=1

ξjwj for all

 ξ1
...
ξm

 ∈ Fm. (2.7) eq-rC

It is easy to verify that (2.7) defines a linear operator.
Denote by Em the standard basis of Fm, that is the basis which consists of

the columns of the identity matrix Im. Then CB = LB
Em

and (CB)−1 = LEm
B .

♦

Exercise 2.10. Let V and W be vector spaces over F. Let V be finite-
dimensional, m = dim V and let B be a basis for V . Let C = (w1, . . . , wm)
be a list of vectors in W with m entries.

(a) Characterize the injectivity of LB
C : V → W .

(b) Characterize the surjectivity of LB
C : V → W .

(c) Characterize the bijectivity of LB
C : V → W .

(d) If LB
C : V → W is an isomorphism, find a simple formula for (LB

C )−1.

♦

Proposition 2.11. Let V and W be vector spaces over F. Let V be finite-
dimensional, m = dim V and let B = (v1, . . . , vm) be a basis for V . For
every T ∈ L (V ,W ) we have T = LB

C if and only if C = (Tv1, . . . , T vm).
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2.4. The nullity-rank theorem. Let T : V → W is be a linear operator.
The linearity of T implies that the set

nulT =
{
v ∈ V : Tv = 0W

}
is a subspace of V . This subspace is called the null space of T . Similarly,
the linearity of T implies that the range of T is a subspace of W . Recall
that

ranT =
{
w ∈ W : ∃ v ∈ V w = Tv

}
.

Proposition 2.12. A linear operator T : V → W is an injection if and
only if nulT = {0V }.

Proof. We first prove the “if” part of the proposition. Assume that nulT =
{0V }. Let u, v ∈ V be arbitrary and assume that Tu = Tv. Since T is linear,
Tu = Tv implies T (u−v) = 0W . Consequently u−v ∈ nulT = {0V }. Hence,
u− v = 0V , that is u = v. This proves that T is an injection.

To prove the “only if” part assume that T : V → W is an injection.
Let v ∈ nulT be arbitrary. Then Tv = 0W = T0V . Since T is injective,
Tv = T0V implies v = 0V . Thus we have proved that nulT ⊆ {0V }. Since
the converse inclusion is trivial, we have nulT = {0V }. �

Theorem 2.13 (Nullity-Rank Theorem). Let V and W be vector spaces
over a scalar field F and let T : V → W be a linear operator. If V is
finite-dimensional, then nulT and ranT are finite-dimensional and

dim(nulT ) + dim(ranT ) = dim V . (2.8) eq-rnt

Proof. Assume that V is finite-dimensional. We proved earlier that for an
arbitrary subspace U of V there exists a subspace X of V such that

U ⊕X = V and dim U + dim X = dim V .

Thus, there exists a subspace X of V such that

(nulT )⊕X = V and dim(nulT ) + dim X = dim V . (2.9) eq-st1-rnt

Since dim(nulT ) + dim X = dim V , to prove the theorem we only need to
prove that dim X = dim(ranT ). To this end, we consider the restriction
T |X : X → ranT of T to the subspace X . This operator is defined by

T |X (v) = Tv ∀v ∈X .

We will prove that T |X is an isomorphism. Let {x1, . . . , xm} be a basis for
X . To prove that T |X is a surjection, we will prove

span
{
Tx1, . . . , Txm

}
= ranT. (2.10) eq-span-rnt

Clearly
{
Tx1, . . . , Txm

}
⊆ ranT . Consequently, since ranT is a subspace of

W , we have span
{
Tx1, . . . , Txm

}
⊆ ranT . To prove the converse inclusion,

let w ∈ ranT be arbitrary. Then, there exists v ∈ V such that Tv = w.
Since V = (nulT )+X , there exist u ∈ nulT and x ∈X such that v = u+x.
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Then Tv = T (u+x) = Tu+Tx = Tx. As x ∈X , there exist ξ1, . . . , ξm ∈ F
such that x =

∑m
j=1 ξjxj . Now we use linearity of T to deduce

w = Tv = Tx =

m∑
j=1

ξjTxj .

This proves that w ∈ span
{
Tx1, . . . , Txm

}
. Since w was arbitrary in ranT

this completes a proof of (2.10).
Next we prove that the vectors Tx1, . . . , Txm are linearly independent.

Let α1, . . . , αm ∈ F be arbitrary and assume that

α1Tx1 + · · ·+ αmTxm = 0W . (2.11) eq-li-rnt

Since T is linear (2.11) implies that

α1x1 + · · ·+ αmxm ∈ nulT. (2.12) eq-li2-rnt

Recall that x1, . . . , xm ∈X and X is a subspace of V , so

α1x1 + · · ·+ αmxm ∈X . (2.13) eq-li3-rnt

Now (2.12), (2.13) and the fact that (nulT ) ∩X = {0V } imply

α1x1 + · · ·+ αmxm = 0V . (2.14) eq-li4-rnt

Since x1, . . . , xm are linearly independent, (2.14) yields αj = 0 for all j ∈
{1, . . . ,m}. This completes a proof of the linear independence of the vectors
Tx1, . . . , Txm.

Thus
{
Tx1, . . . , Txm

}
is a basis for ranT . Consequently dim(ranT ) = m.

Since m = dim X , (2.9) implies (2.8). This completes the proof. �

A direct proof of the Nullity-Rank Theorem is as follows:

Proof. Since nulT is a subspace of V it is finite-dimensional. Set k =
dim

(
nulT

)
and let C =

{
u1, . . . , uk

}
be a basis for nulT .

Since V is finite-dimensional there exists a finite set F ⊂ V such that
span(F ) = V . Then the set TF is a finite subset of W and ranT =
span

(
TF

)
. Thus ranT is finite-dimensional. Let dim

(
ranT

)
= m and let

G =
{
w1, . . . , wm

}
be a basis of ranT .

Since clearly for every j ∈
{

1, . . . ,m
}

, wj ∈ ranT , we have that for

every j ∈
{

1, . . . ,m
}

there exists vj ∈ V such that Tvj = wj . Set D ={
v1, . . . , vm

}
.

Further set B = C ∪D .
We will prove the following three facts:

(I) C ∩D = ∅,
(II) span B = V ,

(III) B is a linearly independent set.

To prove (I), notice that, since G is linearly independent, the vectors in
G are nonzero. Therefore, for every v ∈ D we have that Tv 6= 0W . Since for
every u ∈ C we have Tu = 0W we conclude that u ∈ C implies u 6∈ D . This
proves (I).
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Next we prove (II). By the definition of B we have B ⊂ V . Since V is a
vector space, we have span B ⊆ V .

To prove the converse inclusion, let v ∈ V be arbitrary. Then Tv ∈ ranT .
Since G spans ranT , there exist β1, . . . , βm ∈ F such that

Tv =

m∑
j=1

βjwj .

Set

v′ =

m∑
j=1

βjvj .

Then, by linearity of T , we have

Tv′ =

m∑
j=1

βjTvj =

m∑
j=1

βjwj = Tv.

The last equality and the linearity of T yield T (v−v′) = 0W . Consequently,
v − v′ ∈ nulT . Since C spans nulT , there exist α1, . . . , αk ∈ F such that

v − v′ =
k∑

j=1

αiui.

Consequently,

v = v′ +
k∑

j=1

αiui =
k∑

j=1

αiui +
m∑
j=1

βjvj .

This proves that for arbitrary v ∈ V we have v ∈ span B. Thus V ⊆ span B
and (II) is proved.

To prove (III), let α1, . . . , αk ∈ F and β1, . . . , βm ∈ F be arbitrary and
assume that

k∑
j=1

αiui +

m∑
j=1

βjvj = 0V . (2.15) eq-assu-4-l-i

Applying T to both sides of the last equality, and using the fact that ui ∈
nulT and the definition of vj we get

m∑
j=1

βjwj = 0W .

Since E is a linearly independent set the last equality implies that βj = 0
for all j ∈ {1, . . . ,m}. Now substitute these equalities in (2.15) to get

k∑
j=1

αiui = 0V .

Since C is a linearly independent set the last equality implies that αi = 0
for all i ∈ {1, . . . , k}. This proves the linear independence of B.
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It follows from (II) and (III) that B is a basis for V . By (I) we have that
#B = #C + #D = k +m. This completes proof of the theorem. �

The nonnegative integer dim(nulT ) is called the nullity of T ; the non-
negative integer dim(ranT ) is called the rank of T .

The nullity-rank theorem in English reads: If a linear operator is defined
on a finite-dimensional vector space, then its nullity and its rank are finite
and they add up to the dimension of the domain.

Proposition 2.14. Let V and W be vector spaces over F. Assume that V
is finite-dimensional. The following statements are equivalent

(a) There exists a surjection T ∈ L (V ,W ).
(b) W is finite-dimensional and dim V ≥ dim W .

Proposition 2.15. Let V and W be vector spaces over F. Assume that V
is finite-dimensional. The following statements are equivalent

(a) There exists an injection T ∈ L (V ,W ).
(b) Either W is infinite-dimensional or dim V ≤ dim W .

Proposition 2.16. Let V and W be vector spaces over F. Assume that V
is finite-dimensional. The following statements are equivalent

(a) There exists an isomorphism T : V → W .
(b) W is finite-dimensional and dim W = dim V .

3. Matrix of a linear operator

3.1. A Natural Isomorphism between L (V ,W ) and Fn×m. Let V
and W be nontrivial finite-dimensional vector spaces over F, m = dim V ,
n = dim W , let B = {v1, . . . , vm} be a basis for V , and let C = {w1, . . . , wn}
be a basis for W . The mapping CB provides an isomorphism between V
and Fm and CC provides an isomorphism between W and Fn.

Recall that the simplest way to define a linear operator from Fm to Fn

is to use an n ×m matrix A. It is convenient to consider an n ×m matrix
to be an m-tuple of its columns, which are vectors in Fn. For example, let
a1, . . . ,am ∈ Fn be columns of an n×m matrix A. Then we write

A =
[
a1 · · · am

]
.

This notation is convenient since it allows us to write a multiplication of a
vector x ∈ Fm by a matrix B as

Ax =

m∑
j=1

ξjaj where x =

 ξ1
...
ξm

 . (3.1) eq-defBx

Notice the similarity of the definition in (3.1) to the definition (2.6) of
the operator LB

C in Example 2.9. Taking B to be the standard basis Em of
Fm and taking C to be the m-tuple of columns of A, which are vectors in
Fn—call this m-tuple A —we have LEm

A (x) = Ax.
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In some sense, we identify the vector space Fn×m with the vector space(
Fn
)m

.
Let T : V → W be a linear operator. Our next goal is to connect T in a

natural way to a certain n×m matrix A. That “natural way” is suggested
by following diagram:

V W

Fm Fn

T

CB CC

A

C−1
B

(3.2) cd-rB

We seek an n×m matrix A such that the action of T between V and W
is in some sense replicated by the action of A between Fm and Fn. Precisely,
we seek A such that

A(CB(v)) = CC (Tv) ∀ v ∈ V . (3.3) eq-cdB

In English: multiplying the vector of coordinates of v by A we get exactly
the coordinates of Tv. Or, starting from x ∈ Fm, we follow the arrows in
the commutative diagram in (3.2), and calculate

Ax = CC

(
T
(
C−1

B (x)
))
. (3.4) eq-cdB1

With x =

 ξ1
...
ξm

 and B = (v1, . . . , vm) in (3.4) we have that

Ax = CC

(
T
(
C−1

B (x)
))

= CC

(
T

( m∑
j=1

ξjvj

))

= CC

(
m∑
j=1

ξjTvj

)

=

m∑
j=1

ξjCC

(
Tvj

)
.

The preceding sequence of equalities and the definition of the matrix-vector
multiplication shows that

A =
[
CC (Tv1) · · · CC (Tvm)

]
. (3.5) eq-defB

The matrix A defined in (3.5) has the desired property stated in (3.3). With
this A the diagram in (3.2) is commutative.
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For an arbitrary T ∈ L (V ,W ) the formula (3.5) associates the matrix
A ∈ Fn×m with T . In other words (3.5) defines a function from L (V ,W )
to Fn×m. We formally define this function in the following theorem.

th-MatR Theorem 3.1. Let V and W be finite-dimensional vector spaces over F,
m = dim V , n = dim W , let B = {v1, . . . , vm} be a basis for V and let
C = {w1, . . . , wn} be a basis for W . The function

MB
C : L (V ,W )→ Fn×m

defined by

MB
C (T ) =

[
CC (Tv1) · · · CC (Tvm)

]
for all T ∈ L (V ,W ) (3.6) eq-defM

is an isomorphism.

Proof. It is straightforward to verify that MB
C is a linear operator.

Since the definition of MB
C (T ) coincides with (3.5), equality (3.3) yields

CC (Tv) =
(
MB

C (T )
)
CB(v). (3.7) eq-cdMBC

The most direct way to prove that MB
C is an isomorphism is to construct

its inverse. The inverse is suggested by the diagram (3.8) below. In the
following diagram, T is the only unknown:

V W

Fm Fn

T

CB

A

(CC )−1 (3.8) cd-rT

Define
NB

C : Fn×m → L (V ,W )

by (
NB

C (A)
)
(v) = (CC )−1

(
ACB(v)

)
, for all A ∈ Fn×m. (3.9) eq-defN

Next we prove that

NB
C ◦MB

C = IL (V ,W ) and MB
C ◦NB

C = IFn×m .

First for arbitrary T ∈ L (V ,W ) and arbitrary v ∈ V we calculate((
NB

C ◦MB
C

)
(T )
)

(v) = (CC )−1
((
MB

C (T )
)
(CB(v))

)
by (3.9)

= (CC )−1
(
CC (Tv)

)
by (3.7)

= Tv.

Hence
(
NB

C ◦MB
C

)
(T ) = T and thus, since T ∈ L (V ,W ) was arbitrary,

NB
C ◦MB

C = IL (V ,W ).

Let now A ∈ Fn×m be arbitrary and calculate(
MB

C ◦NB
C

)
(A) = MB

C

(
NB

C (A)
)
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by (3.6) =
[
CC

((
NB

C (A)
)
(v1)

)
· · · CC

((
NB

C (A)
)
(vm)

)]
by (3.9) =

[
ACB(v1) · · · ACB(vm)

]
matrix mult. = A

[
CB(v1) · · · CB(vm)

]
def. of CB = A Im

matrix mult. = A.

Thus,
(
MB

C ◦NB
C

)
(A) = A for all A ∈ Fn×m, proving that MB

C ◦NB
C = IFn×m .

This completes the proof that MB
C is a bijection. Since it is linear, MB

C
is an isomorphism. �

The following corollary is a special case of (3.7).

cor-ccM Corollary 3.2. Let m ∈ N and let V be finite-dimensional vector spaces
over F with m = dim V . Let B and C be bases for V . Then

∀v ∈ V CC (v) =
(
MB

C (IV )
)
CB(v)

Definition 3.3. In the setting of Corollary 3.2, the m×m matrix MB
C (IV )

is called change of coordinates matrix, or change of bases matrix ♦

th-MTS Theorem 3.4. Let k,m, n ∈ N, let U , V and W be finite-dimensional
vector spaces over F, k = dim U , m = dim V , n = dim W , let A be a
basis for U , let B be a basis for V , and let C be a basis for W . Let
S ∈ L (U ,V ) and T ∈ L (V ,W ). Let MA

B (S) ∈ Fm×k, MB
C (T ) ∈ Fn×m

and MA
C (TS) ∈ Fn×k be as defined in Theorem 3.1. Then

MA
C (TS) =

(
MB

C (T )
)(
MA

B (S)
)
.

Proof. Let A = (u, . . . , uk) and calculate, first using the definition in (3.6),
then the boxed tools

MA
C (TS) =

[
CC

(
TSu1

)
· · · CC

(
TSuk

)]
by (3.7) =

[(
MB

C (T )
)(
CB(Su1)

)
· · ·

(
MB

C (T )
)(
CB(Suk)

)]
matrix mult. =

(
MB

C (T )
)[
CB(Su1) · · · CB(Suk)

]
by (3.6) =

(
MB

C (T )
)(
MA

B (S)
)
.

�
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The following diagram illustrates the content of Theorem 3.4.

V

U W

Fm

Fk Fn

T

CB

S

TS

CA CC

MB
C (T )

MA
B (S)

MA
C (TS)=

(
MB

C (T )
)(

MA
B (S)

)
Definition 3.5. Let V and W be vector spaces over F. Operators S ∈
L (V ) and T ∈ L (W ) are said to be similar if there exist an isomorphisms
Φ : V → W such that

T = ΦSΦ−1.

♦

Definition 3.6. Let n ∈ N and let A and B be n × n matrices. Matrices
A and B are said to be similar if there exists an invertible n × n matrix P
such that B = PAP−1. ♦

Theorem 3.7. Let n ∈ N and let V and W be finite-dimensional vector
spaces over F such that n = dim V = dim W . Let S ∈ L (V ) and T ∈
L (W ). The following statements are equivalent.

(i) The operators S and T are similar.
(ii) For every basis A of V (respectively, every basis B of W ), there

exists a basis B of W (respectively, a basis A of V ) such that

MA
A (S) = MB

B (T ). (3.10) eq-MbbEq

(iii) For every basis A of V and every basis B of W the n× n matrices
MA

A (S) and MB
B (T ) are similar.

4. Problems

Problem 4.1. Let V and W be vector spaces over a scalar field F. Let S
be a subspace of the direct product vector space V ×W , let G be a subspace
of V and let H be a subspace of W . Then

S (G ) =
{
w ∈ W : ∃v ∈ G such that (v, w) ∈ S

}
is a subspace of W and

S −1(H ) =
{
v ∈ V : ∃w ∈H such that (v, w) ∈ S

}
is a subspace of V . ♦
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Problem 4.2. Let V and W be finite-dimensional vector spaces over a
scalar field F. Let S be a subspace of the direct product vector space
V ×W . The following four sets are subspaces

dom S =
{
v ∈ V : ∃w ∈ W such that (v, w) ∈ S

}
,

ran S =
{
w ∈ W : ∃ v ∈ V such that (v, w) ∈ S

}
,

nul S =
{
v ∈ V : (v, 0W ) ∈ S

}
,

mul S =
{
w ∈ W : (0V , w) ∈ S

}
.

and the following equality holds:

dim dom S + dim mul S = dim ran S + dim nul S .

Hint: The following equivalence holds. For all v ∈ V and all w ∈ W we
have:

(v, w) ∈ S ⇔ (v + x,w + y) ∈ S ∀x ∈ nul S and ∀y ∈ mul S .

♦

pb-rev Problem 4.3. Let V and W be finite-dimensional vector spaces over a
scalar field F and recall that V ×W and W ×V are the direct product vector
spaces. Prove that the function

R : V ×W → W ×V

defined by

R(v, w) = (w, v) for all (v, w) ∈ V ×W

is an isomorphism. ♦

Problem 4.4. Let V and W be finite-dimensional vector spaces over a
scalar field F and recall that V ×W and W ×V are the direct product vector
spaces. Let T be a subset of V ×W . Then T is an isomorphism between
V and W if and only if the set{

(w, v) ∈ W ×V : (v, w) ∈ T
}

= RT

is an isomorphism between W and V . (Use Problem 4.3 and Propositions 2.3
and 2.4 to prove this equivalence.) ♦

pr-poly-es Problem 4.5. This problem explores the vector space P3 = R[x]<4 of
polynomials od degree at most 3 with real coefficients. Recall that the
standard basis for this vector space is the basis which consists of monomials:

M =
(
1, x, x2, x3

)
.

pr-poly-es-I (I) Consider the linear operator T ∈ L
(
P3,P3

)
= L

(
P3

)
defined by

∀p ∈P3 (Tp)(x) = p(−1) + p(−3)x+ p(1)x2 + p(3)x3.

(a) Find the 4× 4 matrix A = MM
M (T ), the matrix of T relative to

the basis of monomials M .
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(b) Find the inverse of the matrix A considering it as the matrix of
the linear operator T−1. That is, find MM

M (T−1) by using logic
of polynomials, not using matrix calculations.

(c) The operator T has four eigenvalues. Determine these eigenval-
ues and the corresponding eigen-polynomials. That is, find the
real numbers λ1, λ2, λ3, λ4 and the corresponding polynomials
p1(x), p2(x), p3(x), p4(x) in P3 such that

∀j ∈ {1, 2, 3, 4} (Tpj)(x) = λjpj(x).

(II) Instead of the special numbers −1,−3, 1, 3 ∈ R used in (I), consider
an arbitrary

c =


γ1

γ2

γ3

γ4

 ∈ R4,

and define Lc ∈ L
(
P3

)
by

∀p ∈P3

(
Lcp

)
(x) = p(γ1) + p(γ2)x+ p(γ3)x2 + p(γ4)x3.

(a) Consider the function Ψ : R4 → L
(
P3

)
defined by Ψ(c) = Lc.

Is this function linear? Is this function a surjection? Is this
function an injection?

(b) Characterize c ∈ R4 for which Lc ∈ L
(
P3

)
is an isomorphism.

(c) Does there exist c,d ∈ R4 such that LcLd = IP3?

♦

Problem 4.6. Let n ∈ N and denote by Pn = R[x]≤n the vector space of
all polynomials of degree at most n with coefficients in R.

Denote by D = d
dx the differentiation operator defined on Pn.

Let t ∈ R. Denote by St the shift operator defined on Pn by

∀f ∈Pn (Stf)(x) = f(x+ t).

We have proved that D,St ∈ L
(
Pn,Pn

)
= L

(
Pn

)
. All statements

below are in the vector space L
(
Pn

)
. The operators D,St depend on n as

everything else in this problem. However, for conciseness, we choose not to
emphasise that by indexing them by n.

(a) Prove that for all t ∈ R we have

St =

n∑
k=0

1

k!
tkDk. (4.1) eq-StDk

While this is not exclusively a linear algebra task, it is an important
mathematical fact with significant linear algebraic consequences.

(b) The preceding result implies that

∀t ∈ R St ∈ span
{
Dk : k ∈ N ∪ {0}

}
,
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where D0 def
= IPn . Consequently,

span
{
St : t ∈ R

}
⊆ span

{
Dk : k ∈ N ∪ {0}

}
.

Does the converse inclusion hold?
(c) Set

D = span
{
Dk : k ∈ N ∪ {0}

}
, S = span

{
St : t ∈ R

}
.

Find a basis for each of these spaces consisting of the operators
that are being spanned. Be specific and as thorough as possible, in
particular when discussing S .

(d) In formula (4.1), a shift operator is expressed as a specific linear
combination of the powers of the derivative operator. Do analogous
converse formulas exist? That is, can the powers of the differenti-
ation operator be expressed as specific linear combinations of shift
operators, or as linear combinations of the powers of a fixed shift
operator?

♦

pr-tdsh Problem 4.7. In an earlier problem we considered special subspaces

Sω
def
=
{
f ∈ RR : ∃ a, b ∈ R such that f(x) = a sin(ωx+ b), t ∈ R

}
.

of the vector space RR of all real valued functions defined on R. Here ω is
an arbitrary fixed nonzero real number. We proved that

Tω =
(
cos(ωx), sin(ωx)

)
is a basis of Sω.

(a) Denote by D = d
dx the differentiation operator defined on Sω. Prove

that D ∈ L
(
Sω,Sω

)
and calculate MTω

Tω
(D).

(b) Let t ∈ R. Denote by St the shift operator defined on Sω by

∀f ∈ Sω (Stf)(x) = f(x+ t).

Prove that St ∈ L
(
Sω,Sω

)
and calculate MTω

Tω
(St).

pr-tdsh-i3 (c) Prove that

d

dt

(
MTω

Tω
(St)

)
= MTω

Tω
(D)MTω

Tω
(St).

pr-tdsh-i4 (d) Set

D = MTω
Tω

(D).

Prove that

MTω
Tω

(St) =

∞∑
k=0

1

k!
tkDk.

♦
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pr-pdsh Problem 4.8. Let n ∈ N and denote by Pn = R[x]≤n the vector space of
all polynomials of degree less or equal to n. Denote by

Mn =
(
1, x, . . . , xn

)
the basis of Pn consisting of the monomials in Pn.

(a) Denote by D = d
dx the differentiation operator defined on Pn. Prove

that D ∈ L
(
Pn,Pn

)
and calculate MMn

Mn
(D).

(b) Let t ∈ R. Denote by St the shift operator defined on Pn by

∀f ∈Pn (Stf)(x) = f(x+ t).

Prove that St ∈ L
(
Pn,Pn

)
and calculate MMn

Mn
(St).

pr-pdsh-i3 (c) Prove that

d

dt

(
MMn

Mn
(St)

)
= MMn

Mn
(D)MMn

Mn
(St).

pr-pdsh-i4 (d) Set

D = MMn
Mn

(D).

Prove that

MPn
Pn

(St) =

n∑
k=0

1

k!
tkDk.

♦

Remark 4.9. The content of items (c) and (d) in Problems 4.7 and 4.8
indicates that the formula

etD = St
makes sense on the space of all differentiable functions.

♦


