LINEAR OPERATORS

BRANKO CURGUS

Throughout these notes, we study vector spaces over a scalar field F,
which is either R or C. The set of positive integers is denoted by N, and
its elements are i, j, k, [, m,n, p. For a nonempty finite set A, the number of
elements in A is denoted by #A € N, with #0 = 0.

Vector spaces and sets of vectors are denoted by capital calligraphic let-
ters, such as ¥, 2, o/, etc. Vectors in abstract vector spaces are denoted by
lowercase Latin letters, such as u,v,z,y, etc. Linear operators are denoted
by uppercase Latin letters, such as 5,7, etc. Scalars are represented by
lowercase Greek letters, such as «, 3, etc.

Vectors in Euclidean spaces F" are denoted by boldface lowercase letters,
such as a, b, etc. Matrices with entries in F are denoted by uppercase Latin
letters in sans-serif font, such as A, B, M, etc. The n x n identity matrix is
denoted by l,,, while 0 represents a zero matrix whose size will be specified
in context. The transpose of a matrix M is denoted by M.

Pay attention to exceptions to these conventions. If you notice significant
deviations, please let me know.

1. FUNCTIONS

First we review formal definitions related to functions. In this section A
and B are nonempty sets.

The formal definition of function identifies a function and its graph. A
justification for this is the fact that if you know the graph of a function, then
you know the function, and conversely, if you know a function you know its
graph. Simply stated the definition below says that a function from a set A
to a set B is a subset f of the Cartesian product A x B such that for each
x € A there exists unique y € B such that (x,y) € F.

Definition 1.1. A function from A into B is a subset f of the Cartesian
product Ax B such that the following two conditions are satisfied

Ve A Jy e B suchthat (z,y) € f. (Fun 1)
Vee A Vy,zeB (z,y) e fA(z,2)ef = y== (Fun 2)
O
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The condition (Fun 2) in Definition 1.1 is popularly known as the vertical
line test. Its full form is as follows:
Vi, z9 € A

Vyl y2€B (-’L'byl) Gf/\(xg,m) Ef/\xlzl'Q = Y1 = Y. (11)

The implication in (1.1) is important since its partial contrapositive is
often used in proofs. Its partial contrapositive is:

Vai, 20 € A

Vyi,y2 € B (z1,91) € fA(22,92) € FAN F Y2 = z1# 220 (1.2)

If f is a function, the relationship (z,y) € f is commonly written as
y = f(z). The symbol f: A — B denotes a function from A to B.

The reason you might not recognize the implication in (1.2) as familiar
is that in Definition 1.1, (1.1), and (1.2), instead of the standard notation
y = f(x), we used the graph notation (z,y) € f. The implication in (1.2)
in the standard notation reads: For all z1,z2 € A the following implication

holds: f(z1) # f(w2) = x1 # x2.

Definition 1.2. Let f C A x B be a function. The set A is said to be the
domain of f : A — B. The set B is said to be the codomain of f : A — B.
The set

{y € B: 3z € A such that (z,y) € f}

is called the range of f: A — B. It is denoted by ran(f). O

Definition 1.3. Let f C A x B be a function. The function f: A — B is
said to be a surjection if the following condition is satisfied

Vye B Jx € A such that (z,y) € f. (Sur)
The function f : A — B is said to be an injection if the following condition
is satisfied

Vxl,xg cA

Yyr. s € B (x1,91) € fFA(22,92) € fAZ1 F# 22 = y1 #y2. (Inj)

O

Definition 1.4. Let f C A x B be a function. The function f: A — B is
said to be a bijection if it is both: a surjection and an injection. That is,
f C A x B is a bijection if it satisfies four conditions: (Fun 1), (Fun 2),
(Sur), and (Inj). O

Next we give a formal definition of a composition of two functions. How-
ever, before giving a definition we need to prove a proposition.

Proposition 1.5. Let f : A — B and g : C — D be functions. Ifran f C C,
then
{(z,2) e AxD:3y e B (z,y) € fA(y,2) € g} (1.3)

s a function from A to D.

Proof. A proof is a nice exercise. d
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The function defined by (1.3) is called the composition of functions f
and g. It is denoted by f o g.
The function

{(z,z) e AxA:z € A}

is called the identity function on A. It is denoted by id4. In the standard
notation id 4 is the function id4 : A — A such that id4(x) = x for all z € A.

A function f : A — B is invertible if there exist functions g : B — A
and h: B — A such that fog=1idg and ho f = id4.

Theorem 1.6. Let f: A — B be a function. The following statements are
equivalent.

(a) The function f is invertible.

(b) The function f is a bijection.

(c) There exists a unique function g : B — A such that f o g =idp and

go f=idy.
If f is invertible, then the unique g whose existence is proved in Theo-

rem 1.6 (c) is called the inverse of f; it is denoted by f~1.

Let f: A — B be a function. It is common to extend the notation f(x)
for £ € A to subsets of A. For X C A we introduce the notation

f(X)={yeB:3zeXy=f()}.

With this notation, the range of f is simply the set f(A). It is also common
to extend this notation to describe “inverse” image of a subset in B. For
Y C B we introduce the notation

f~Yy) = {zeA: flz)eY}.

Notice that this notation is used for arbitrary function f. It does not imply
that f is invertible. Here f~! is just a notational device.
Below are few exercises about functions from my Math 312 notes.

Exercise 1.7. Let A, B and C be nonempty sets. Let f : A — B and
g : B — C be injections. Prove that go f : A — (' is an injection. O

Exercise 1.8. Let A, B and C be nonempty sets. Let f : A — B and
g : B — C be surjections. Prove that go f : A — C is a surjection. O

Exercise 1.9. Let A, B and C' be nonempty sets. Let f : A — B and
g : B — C be bijections. Prove that go f : A — C is a bijection. Prove that

(gof)yt=fTlog™" 0
Exercise 1.10. Let A, B and C be nonempty sets. Let f : A — B,
g: B — C. Prove that if g o f is an injection, then f is an injection. O

Exercise 1.11. Let A, B and C be nonempty sets and let f : A — B,
g: B — C. Prove that if g o f is a surjection, then ¢ is a surjection. O
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Exercise 1.12. Let A, B and C' be nonempty sets and let f : A — B,
g: B — C and h : C — A be three functions. Prove that if any two of
the functions hogo f, go foh, f o ho g are injections and the third is a
surjection, or if any two of them are surjections and the third is an injection,
then f, g, and h are bijections. %

2. LINEAR OPERATORS

In this section %, ¥ and # are vector spaces over a scalar field F.

2.1. The definition and the vector space of all linear operators. A
function T : ¥ — # is said to be a linear operator if it satisfies the
following conditions:

Vue?V YveV T(u+v)=T(u)+ f(v), (2.1)

VaeF Yve? T(av) = aT(v). (2.2)

The property (2.1) is called additivity, while the property (2.2) is called
homogeneity. Together additivity and homogeneity are called linearity.
Denote by Z(¥,#') the set of all linear operators from ¥ to # . Define

the addition and scaling in Z(¥,#). For S,T € L (¥, %) and o € F we
define

(S+T)(v)=Sw)+T(v), YveV, (2.3)
(aT)(v) = aT(v), Yoe?. (2.4)

Notice that two plus signs which appear in (2.3) have different meanings.
The plus sign on the left-hand side stands for the addition of linear operators
that is just being defined, while the plus sign on the right-hand side stands
for the addition in 7. Notice the analogous difference in empty spaces
between v and 7' in (2.4). Define the zero mapping in Z (¥, #') to be

Of(’V,W) (v) = Oy, Yve?.
For T € Z(V,# ') we define its opposite operator by
(=T)(v) = =T(v), Yovev.

Proposition 2.1. The set L(V,#') with the operations defined in (2.3),
and (2.4) is a vector space over F.

ForT € Z(V,# ) and v € ¥ it is customary to write T'v instead of T'(v).

Example 2.2. Assume that a vector space 7 is a direct sum of its subspaces
U and W, that is ¥ = % ® W . Define the function P : ¥ — ¥ by

Pv=w = v=ut+w, uwueEY, wewW.

Then P is a linear operator. It is called the projection of ¥ onto # parallel
to % ; it is denoted by Py 4 . %
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The definition of the linearity of a function between vector spaces is ex-
pressed in the standard functional notation. The next proposition states
that a function between vector spaces is linear if and only if its graph is
a subspace of the direct product of the domain and the codomain of that
function.

Proposition 2.3. Let ¥V and # be vector spaces over a scalar field F. Let
[V =W be a function and denote by 9y the graph of f; that is let

Gy ={(v,w) €¥YxXW :veV and w=f(v)} C¥xH.

The function f is linear if and only if the set 9y is a subspace of the vector

space VX W .

Proposition 2.4. Let ¥V and # be vector spaces over a scalar field F. Let
T € LV, W), let G be a subspace of V' and let H be a subspace of W' .
Then

T(@)={we¥ : FJve¥ such that w="Tv}

s a subspace of W and
T H)={veV : Tve X}
s a subspace of V.

2.2. Composition, inverse, isomorphism. In the next two propositions
we prove that the linearity is preserved under composition of linear operators
and under taking the inverse of a linear operator.

Proposition 2.5. Let S : % — ¥V and T : V' — W be linear operators.
The composition T oS : % — W is a linear operator.

Proof. Prove this as an exercise. O

When composing linear operators it is customary to write simply TS
instead of T o S.

The identity function on ¥ is denoted by Iy. It is defined by Iy (v) = v
for all v € 7. It is clearly a linear operator.

Proposition 2.6. LetT : ¥V — W be a linear operator which is a bijection.
Then the inverse T~Y: W — ¥ of T is a linear operator.

Proof. Since T is a bijection, from what we learned about function, there
exists a function S : # — ¥ such that ST = Iy and T'S = Iy. Since T is
linear and T'S = Iy we have

T(aSz + BSy) = aT(Sz) + BT(Sy) = a(T'S)z + B(TS)y = az + By
for all a, 8 € F and all z,y € #. Applying S to both sides of
T(aSz + BSy) = az + By
we get
(ST)(aSz + 8Sy) = S(ax+By) Va,BeF Vz,ze¥.
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Since ST = Iy, we get
aSm+ﬁSy:S(ax+By) Va, €F Vax,ye ¥,

thus proving the linearity of S. Since by definition S = 7! the proposition
is proved. O

A linear operator T : ¥ — # which is a bijection is called an isomor-
phism between vector spaces ¥ and #'.

By Proposition 2.6 each isomorphism is invertible and its inverse is also
an isomorphism.

In the next theorem we introduce the most important isomorphism be-
tween a finite-dimensional space ¥ and a space F" where n = dim 7.

Theorem 2.7. Let ¥ be a finite-dimensional vector space over F |, let n =
dim ¥ and let = {b1,...,b,} be a basis for V. The function Cg : ¥ — F"
defined by: for allv e ¥
(€3]
Cz(v):=a where a=|: | €F" and v=a1b+ -+ anby,
Qn

s an isomorphism between ¥ and F™.

Proof. First we redefine Cg by defining it as its graph:
o1
Cp=1<(v,a) eV xF":v=a1b1 +- -+ apby Na=
On,

To prove that Cy is a bijection we need to prove four statements: (Fun 1),
(Fun 2), (Sur), and (Inj).
A blueprint of the proof is as follows:
(1) ¥ = span & implies (Fun 1);
(2) & is linearly independent implies (Fun 2);
(3) The axioms of a vector space AE and SE imply (Sur).
(This implication is a consequence of the (Fun 1) property of the
addition function and the scaling function.)
(4) The axioms of a vector space AE and SE imply (Inj);
(The implication in (Inj) is a consequence of the (Fun 2) properties
of the addition function and the scaling function.)

To prove that the bijection Cgz is linear we need to prove that Cz is a
subspace of ¥ X #'. O
It is important to point out that the formula for the inverse (Cz)~ ! :
F* — ¥ of Cg is given by
a1 n a1
Cx)7 | | = Zajvj, for all © | e FT. (2.5)
j=1

Qp 7%
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Notice that (2.5) defines a function from F” to ¥ even if & is not a basis
of V.

Example 2.8. Inspired by the definition of C'» and (2.5), we define a gen-
eral operator of this kind. Let ¥ and # be vector spaces over F. Let
¥ be finite-dimensional, n = dim ¥ and let %4 be a basis for ¥. Let
¢ = (wi,...,wy,) be any n-tuple of vectors in #'. The entries of an n-
tuple can be repeated, they can all be equal, for example to 0. We define
the linear operator Lg 2V =W by

n Qi
LY (v) = Z W where D | =Cxp(v). (2.6)
j=1

Qp

In fact, L%’Z‘} : ¥ — W is a composition of Cz : ¥ — F™ and the operator
F* — % defined by

&1 n a1
=Y &, for all | e P (2.7)
&n Jj=1 Qy,
It is easy to verify that (2.7) defines a linear operator.
Denote by & the standard basis of F"*, that is the basis which consists of
the columns of the identity matrix I,,. Then Cy = L7 and (Cg)~! = L%,

O

Exercise 2.9. Let ¥ and # be vector spaces over F. Let ¥ be finite-
dimensional, n = dim ¥ and let Z be a basis for ¥". Let € = (wy,...,wy)
be a list of vectors in # with n entries.

(a) Characterize the injectivity of LZ : ¥ — #.

(b) Characterize the surjectivity of LZ : ¥ — #'.

(c) Characterize the bijectivity of L : ¥ — #/.

(d) If LZ : ¥ — # is an isomorphism, find a simple formula for (LZ)~L.

O

Proposition 2.10. Let ¥ and # be vector spaces over F. Let ¥ be finite-
dimensional, m = dim ¥ and let B = (by,--- ,by, be a basis for V. For
every T € L (V' , W) we have T = Lf’; if and only if € = (Tby,...,Thy,).

2.3. The nullity-rank theorem. Let T': ¥ — # is be a linear operator.
The linearity of T" implies that the set

nulT:{vE”//:Tv:Oyy}
is a subspace of ¥". This subspace is called the null space of T. Similarly,

the linearity of T" implies that the range of T is a subspace of #". Recall
that

ranT:{wEW:HUE“I/ w:TU}.



8 BRANKO CURGUS

Proposition 2.11. A linear operator T : ¥V — W is an injection if and
only if nulT = {04 }.

Proof. We first prove the “if” part of the proposition. Assume that nul7 =
{0y }. Let u,v € ¥ be arbitrary and assume that 7w = Tw. Since T is linear,
Tu = Tv implies T'(u—v) = 0y . Consequently u—v € nulT = {0y }. Hence,
u — v = Oy, that is u = v. This proves that T is an injection.

To prove the “only if” part assume that 7" : ¥ — # is an injection.
Let v € nulT be arbitrary. Then Tv = 04 = T0y. Since T is injective,
Tv = TOy implies v = 0y. Thus we have proved that nulT C {0y }. Since
the converse inclusion is trivial, we have nulT = {0y }. O

Theorem 2.12 (Nullity-Rank Theorem). Let ¥ and # be vector spaces
over a scalar field F and let T : ¥V — W be a linear operator. If V is
finite-dimensional, then nulT and ranT are finite-dimensional and

dim(nulT") + dim(ranT") = dim 7. (2.8)

Proof. Assume that 7 is finite-dimensional. We proved earlier that for an
arbitrary subspace % of ¥ there exists a subspace 2~ of ¥ such that

UDX =YV and dim% + dim 2 =dim 7.
Thus, there exists a subspace 2~ of ¥ such that
(lT)e X =7 and dim(nulT') + dim 2" = dim 7. (2.9)

Since dim(nul7") + dim 2" = dim ¥/, to prove the theorem we only need to
prove that dim 2" = dim(ran7’). To this end, we consider the restriction
T|g : 2 — ranT of T to the subspace 2. This operator is defined by

Tly(w)=Tv YveX.

We will prove that T'| 4 is an isomorphism. Let {x1,..., 2y} be a basis for
2. To prove that T'| 2 is a surjection, we will prove

span{T:cl, ce Txm} =ranT. (2.10)
Clearly { Tzq,... ,Txm} C ranT. Consequently, since ranT" is a subspace of
W, we have span{Txl, . ,Txm} CranT. To prove the converse inclusion,

let w € ranT be arbitrary. Then, there exists v € ¥ such that Tv = w.
Since ¥ = (nul T')+.2", there exist u € nul T and = € 2" such that v = u+x.
Then Tv =T(u+z) =Tu+Tx =Tx. Asx € 2, there exist &1, ..., {n € F
such that z = Z;”Zl &jxr;. Now we use linearity of T' to deduce

m
w=Tv=Tx = ijij.
j=1

This proves that w € span{Ta:l, T :cm} Since w was arbitrary in ran T
this completes a proof of (2.10).
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Next we prove that the vectors T'x1,...,Tx,, are linearly independent.
Let ay,...,an, € F be arbitrary and assume that
oaTx1 + -+ anTry, =0yp. (2.11)
Since T is linear (2.11) implies that
ar1zy + -+ Ty € nul T (2.12)
Recall that x1,...,z, € 2 and £ is a subspace of ¥, so
o1x1 + -+ amr, € 2. (2.13)
Now (2.12), (2.13) and the fact that (nul7) N 2" = {0y} imply
o107 + .-+ ATy = 07/' (2.14)
Since x1,..., %y, are linearly independent, (2.14) yields o; = 0 for all j €
{1,...,m}. This completes a proof of the linear independence of the vectors
Txq,...,Txy,.
Thus {T1,...,Tay} is a basis for ran T. Consequently dim(ranT') = m.
Since m = dim 2", (2.9) implies (2.8). This completes the proof. O

A direct proof of the Nullity-Rank Theorem is as follows:

Proof. Since nulT is a subspace of ¥ it is finite-dimensional. Set k =
dim(nul T) and let € = {ul, .. ,uk} be a basis for nul 7.

Since ¥ is finite-dimensional there exists a finite set % C ¥ such that
span(.#) = ¥. Then the set T.% is a finite subset of # and ranT =
span(Tﬁ ) Thus ranT is finite-dimensional. Let dim(ran T) = m and let
9 = {wl, .. .,wm} be a basis of ranT.

Since clearly for every j € {1,...,m}, w; € ranT, we have that for
every j € {1,...,m} there exists v; € ¥ such that Tv; = w;. Set ¥ =
V1, ... ,Um}.

Further set £ =% U 9.
We will prove the following three facts:
(I) €n2 =0,

(IT) span B =7,

(ITI) A is a linearly independent set.

To prove (I), notice that, since ¢ is linearly independent, the vectors in
¢ are nonzero. Therefore, for every v € & we have that Tv # 0y . Since for
every u € ¥ we have Tu = O we conclude that u € ¥ implies v ¢ 2. This
proves (I).

To prove (II), first notice that by the definition of £ C ¥. Since ¥ is a
vector space, we have span % C 7.

To prove the converse inclusion, let v € ¥ be arbitrary. Then Tv € ranT.
Since ¢ spans ranT, there exist 81, ..., 8, € F such that

m
Tv = Z ijj.
j=1
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Set
m
v = Z Bjvj.
=1

Then, by linearity of T', we have

m m
Tv' =Y BTv; =Y Bjw; =Tv.
j=1

j=1
The last equality and the linearity of T yield T'(v —v’) = 0. Consequently,
v —v' € nulT. Since € spans nulT, there exist aq,...,q; € F such that

k
/
V—V = E ;UG
J=1

Consequently,

k k m
U:v’—l—ZoziuZ-: E oy + E Bjvj.
=1 j=1 j=1

This proves that for arbitrary v € ¥ we have v € span #. Thus ¥ C span %
and (II) is proved.

To prove (III), let aq,...,ax € F and f1,...,Bn € F be arbitrary and
assume that

k m
Z Uy + Z Bjvj = Oy . (2.15)
=1 =1

Applying T to both sides of the last equality, and using the fact that u; €
nul7" and the definition of v; we get

m
Z ijj = Oyy.
J=1

Since & is a linearly independent set the last equality implies that 8; = 0
for all j € {1,...,m}. Now substitute these equalities in (2.15) to get

k
Z ;U = O«y.
J=1

Since % is a linearly independent set the last equality implies that a; = 0
for all i € {1,...,k}. This proves the linear independence of 4.

It follows from (II) and (III) that 2 is a basis for #. By (I) we have that
H#RB = #C + #2 = k + m. This completes proof of the theorem. O

The nonnegative integer dim(nul7’) is called the nullity of 7'; the non-
negative integer dim(ran7) is called the rank of 7.

The nullity-rank theorem in English reads: If a linear operator is defined
on a finite-dimensional vector space, then its nullity and its rank are finite
and they add up to the dimension of the domain.
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Proposition 2.13. Let ¥ and # be vector spaces over F. Assume that ¥
1s finite-dimensional. The following statements are equivalent

(a) There exists a surjection T € L(V, W).
(b) # is finite-dimensional and dim ¥ > dim #'.

Proposition 2.14. Let ¥ and W be vector spaces over F. Assume that ¥V
18 finite-dimensional. The following statements are equivalent

(a) There exists an injection T € LV, W).
(b) Either # is infinite-dimensional or dim ¥ < dim #'.

Proposition 2.15. Let ¥ and # be vector spaces over F. Assume that ¥
18 finite-dimensional. The following statements are equivalent

(a) There exists an isomorphism T : ¥V — W .
(b) # is finite-dimensional and dim # = dim ¥'.

2.4. Isomorphism between .2 (7, % ) and F"*". Let ¥ and #  be finite-
dimensional vector spaces over F, m = dim¥, n = dim#/, let & =
{v1,...,um} be a basis for ¥ and let € = {wi,...,w,} be a basis for
# . The mapping Cy provides an isomorphism between ¥ and F™ and Cy
provides an isomorphism between # and F".

Recall that the simplest way to define a linear operator from F™ to F"
is to use an n X m matrix A. It is convenient to consider an n X m matrix
to be an m-tuple of its columns, which are vectors in F"™. For example, let
ai,...,a;, € F"” be columns of an n x m matrix A. Then we write

A= [al am].

This notation is convenient since it allows us to write a multiplication of a
vector x € [F™™ by a matrix B as

m 51
Ax = Zﬁjaj where x=|: (2.16)
=1 &n
Notice the similarity of the definition in (2.16) to the definition (2.6) of
the operator Lg in Example 2.8. Taking % to be the standard basis &, of
F™ and taking % to be the m-tuple of columns of A, which are vectors in
F"—call this m-tuple «/—we have Lf}" (x) = Ax.
In _some sense, we identify the vector space F™*™ with the vector space
Fr) .
( L)et T :¥ — W be a linear operator. Our next goal is to connect T in a
natural way to a certain n X m matrix A. That “natural way” is suggested
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by following diagram:

v T oy
Cy Cy
F™ - F™

We seek an n x m matrix A such that the action of T" between ¥ and # is
in some sense replicated by the action of A between F™ and F™. Precisely,
we seek A such that

Cy(Tv) = A(C»(v)) Yoe. (2.17)

In English: multiplying the vector of coordinates of v by A we get exactly
the coordinates of Tv.
Using the basis vectors vy, ..., v, € Z in (2.17) we see that the matrix

A= [Cs(Tv) -+ Co(Tom)) (2.18)

has the desired property (2.17).

For an arbitrary T' € Z (¥, #') the formula (2.18) associates the matrix
A € F**™ with T. In other words (2.18) defines a function from £ (7, #")
to Fm>m,

Theorem 2.16. Let ¥V and # be finite-dimensional vector spaces over T,
m=dim¥, n = dm¥, let B = {v1,...,0m} be a basis for ¥ and let
¢ = {wi,...,wp} be a basis for W. The function

MZ LV W) — F™>m
defined by
MZ(T) = [Ce(Tvy) - Ce(Tvm)], T €LV W) (2.19)
s an tsomorphism.

Proof. 1t is straightforward to verify that Még is a linear operator.
Since the definition of MZ(T') coincides with (2.18), equality (2.17) yields

Cip(Tv) = (MZ(T))Cip(v). (2.20)

The most direct way to prove that M%“’? is an isomorphism is to construct
its inverse. The inverse is suggested by the diagram (2.21). In the following
diagram, T is the only unknown:

Ca (e (2.21)
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Define
NZ :F™™ — L(V W)
by
(NZ(A)(v) = (Cg) T (ACx(v)), forall AeF™m, (2.22)
Next we prove that
NZ oMy =Igwyy) and ML o N = Ignxm.
First for arbitrary T' € £ (¥, #) and arbitrary v € ¥ we calculate

((NZ 0 MZ)(D)) (0) = (Co) (MZ D)) (Colv)) by (2:22)

= (Cg) ™! (Cg(Tw)) by (2.20)
=Tv.
Thus (N7 o MZ)(T) = T and thus, since T € Z(¥,#') was arbitrary,
NC?OM% == Ig(n//y/)
Let now A € F"*™ be arbitrary and calculate

(M o NJ)(A) = M7 (NZ(A))

= [Ca(NZA)(n) -+ Ca((NZ(A) )] by (2.19)

- [AC@(vl) o Aa@(um)] by (2.22)
=A [C@(Ul) . C{@(vm)} matrix mult
=Al,, def. of C'»
=A.

Thus, (MZoNZ)(A) = A for all A € F*™, proving that M7 oNZ = Ignxm.
This completes the proof that M? is a bijection. Since it is linear, Mg
is an isomorphism. O

Theorem 2.17. Let %,V and W be finite-dimensional vector spaces over
F, k=dm%Z, m =dim¥, n =dim¥, let & be a basis for U, let B
be a basis for ¥, and let € be a basis for W . Let S € L(%,V) and
T e LV, W). Let M (S) € F™k MZ(T) € F*™™™ and MZ (TS) € F<k
be as defined in Theorem 2.16. Then

M (TS) = M (T)MZ(S).
Proof. Let o ={u,...,u;} and calculate
MZ(TS) = [C%J(TSul) C’%(TSuk)} by (2.19)

= [MZ(T)(Ca(sw)) - MZ(T)(Col(Sup))| by (2:20)
= M(g [C% (Suy) - %(Suk)} matrix mult.
= MZ(T)MZ(S). by (2.19)
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The following diagram illustrates the content of Theorem 2.17.

Cy

MZ(TS)=MZ(T)MZ (S

<

3. PROBLEMS

Problem 3.1. Let ¥ and # be vector spaces over a scalar field F. Let .
be a subspace of the direct product vector space ¥ x#, let ¢ be a subspace
of ¥ and let S be a subspace of #. Then

S (G) ={we W : Jve¥ suchthat (v,w) €.’}
is a subspace of # and
SN A)={veV : Jwe I such that (v,w) € .7}
is a subspace of 7. %

Problem 3.2. Let ¥ and # be finite-dimensional vector spaces over a
scalar field F. Let . be a subspace of the direct product vector space
V' x# . The following four sets are subspaces

dom . = {v € ¥ : Jw € # such that (v,w) € .7},
ran. = {w € # : Jv € ¥ such that (v,w) € .},
nul.” ={ve? : (v,0y)c .S},
mul.? ={we¥ : (0y,w) €S}
and the following equality holds:
dimdom . + dimmul . = dimran . + dimnul .7.

Hint: The following equivalence holds. For all v € ¥ and all w € # we
have:

(v,w)e S & (v+z,w+y) €S Vrenul” and Vy € mul.”.
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Problem 3.3. Let ¥ and # be finite-dimensional vector spaces over a
scalar field F and recall that ¥ x# and # x ¥ are the direct product vector
spaces. Prove that the function

R:VXW —WxV

defined by

R(v,w) = (w,v) forall (v,w)e ¥ xW
is an isomorphism. O
Problem 3.4. Let ¥ and # be finite-dimensional vector spaces over a
scalar field ' and recall that ¥ x# and # x ¥ are the direct product vector

spaces. Let 7 be a subset of ¥ x#'. Then .7 is an isomorphism between
¥ and # if and only if the set

{(wv)ye# xV : (vyw)e T} =RT

is an isomorphism between # and #'. (Use Problem 3.3 and Propositions 2.3
and 2.4 to prove this equivalence.) O



